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Abstract-Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabel­
ing of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics, 
relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conser­
vation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are 
used to construct the Casimir invariants of the Hamiltonian formalism. 

In memory of Vladimir Petviashvili, who consis­
tently had a sense of what is important. 

1. INTRODUCTION 

It is well known that one c'an find continuous sym­
metries of the Lagrangian for a physical system that 
lead to conservation laws according to Noether's (first) 
theorem. Many familiar physical systems have actions 
that are invariant under infinitesimal space-time trans­
lations; space rotations; and Galilean boosts', elements 
of the ten-parameter Lie group called the Galilei group. 

. These symmetries lead to the conservation laws of 
energy, linear and angular momenta, and uniform 
motion of the center-of-mass. It is also possible, espe­
cially in field theories, that the action is invariant under 
infinitesimal transformations of an infinite continuous 
group parametrized by arbitrary functions. For such 
symmetries, there exist generalized Bianchi identities 
(Noether's second theorem) in addition to the usual 
statement of Noether's first theorem. In this paper we 
explore the consequences of both Noether's theorems 
for an ideal compressible fluid. 

After presenting Noether's first and second theorems 
in the next section, we find the symmetry of an infinite 
continuous group for an ideal compressible fluid 
Lagrangian in Section 3 and for MHD in Section 5. 
These symmetries give rise to Ertel's theorem [1] for 
the fluid case and the conservation of cross helicity for 
MHD. The first discussion of such symmetries seems 
to have been made in [2], where they were called 
exchange symmetries. Since both [2] and [3] connect 
Lagrangian symmetries to Kelvin's circulation theo­
rem, we point out that the circ;ulation theorem can be 
derived from Ertel's theorem. More recently, Ertel's 
theorem has been connected to fluid element relabel­
ing [4, 5]; however,'our treatment is more general than [4] 
and differs from [5]. 

The symmetries here" involve only a continuous 
transformation of the fluid element labels; hence, we 
follow [5] in naming them "relabeling symmetries." 
Conservation of cross helicity in MHD has previously 
been linked to Lagrangian symmetries [6], but not to 
fluid element relabeling. In Section 3, it is also shown 
that the potential energy functional obtained by 
expanding about a stationary equilibrium possesses 
a Bianchi identity and relates to spontaneous symmetry 
breaking, which gives rise to null eigenfunctions. 

In Section 4, we are concerned with the Hamiltonian 
framework and show that the map from Lagrangian 
variables (which are synonymouslY called material 
variables) to Eulerian variables for a fluid has the same 
relabeling symmetry. This symmetry is then used to 
directly construct the Casimir invariants for the nonca­
nonical Poisson bracket [7, 8] for the fluid in Eulerian 
form. This rounds out the usual picture of reduction 
from Lagrangian to Eulerian variables (see, e.g., [8, 9]). 
Later, in Section 5, we do the same for MHD, which 
results in the familiar cross helicity invariant for baro­
tropic flows. Other symmetries of the reduction from 
material to Eulerian variables give rise to Casimir 
invariants too, including a family of invariants that 
incorporates magnetic,helicity as a special case. 

2. NOETHER'S THEOREMS 

Here, we briefly outline the derivation of Noether's 
first and second theorems [10, 11]. 

The action for a classical field theory may be writ-
ten as ' 

Seq] = f ~(q, dq, x)~ X, (1) 

D 
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where :;e is the Lagrangian density; q(x) = (ql, 
q2, ... , q"') are the fields which depend on the variables 
x = (XJ, Xl, ... , :x!'}-xo may be regarded as the time vari­
able-and dq denotes the derivatives of the fields with 
respect to· the variables. 

Under point transformations, 

~i ~i() ~i. ~i( ) X = X x, q = q q, x , (~) 

the action is transformed into 

S[q] = f~(q, aq, x)dnx = S[q]. (3) 

tJ 

where the second equality expresses covariance of the 
action and implies that the Lagrangian density must 
transform as 

cD(~ :I ~~) o(x) CD( :'I ) 
0lJ q, oq, x = o(x).L q, oq, X , (4) 

where o(x)lo(x) stands for the Jacobian of the transfor­
mation. Furthermore,· we seek transformations that 
leave the form of the Euler-Lagrange equations invari-.. 
ant, i.e., we seek (a subset of) synimetry transformation~ .. 
Evidently, for such transformations S[q] = S[q], 
which implies 

where A is a vector with zero flux across the boundary 
of D. (Repeated indices are summed throughout this 
paper). Such transformations, for which the Lagrangian 
density differs at most by a divergence, are called 
invariant transformations. In particular, if ooA 0 = 0, i.e., 
the divergence is only spatial, the Lagrangian is invari­
ant; if the divergence term is absent altogether, the 
Lagrangian density is invariant. 

We now consider invariant point transformations 
that have the following infinitesimal form: 

Xi = i + axi(x) , qi(x) = qi(X) + Ill(q, x). (6) 

Derivatives of the fields change accordingly: 

(7) 

where Il(oli) is defined to be the first order piece of 

ajqi - 0Ri. Finite transf6~tions can be constructed 
by iteration of such infinitesimal ones. Up to the first 
order, axj and Ilqi may be considered functions of either 
the new or the old variables, and the Jacobian may be 
written as 

(8) 

The differential form of (5) is thus 

(9) 

where 3 f£. is defined to be the first-order piece of 

:£(q, aq, x) - :£(q, oq, x), and N is written as aN to 
indicate that it is also of first order. For convenience, we 
define, to first order, 

. Thus, while aqi is the change in the field at a fixed point, 
Ilqi is the change relative to a transformed point. Equa­
tion (9) may now be written as 

(11) 

where Si denotes the functIonal derivatives of the action 
with respect to qi, that is, ., 

(12) 

and the current, 

We now note that, when the equations of motion are 
satisfied, i.e., Si == 0, we are left with 

(14) 

The conservation law expressed by (14) may be recog­
nized as the usual expression of Noether's (first) theorem. 

, . 
Another possibility is to integrate (11) to get 

fSia/d"x = 0. (15) 

D 

Consider, for example, transformations that have the 
form [12] . 

ai = £(x)Xi(x), 

Ilqi = £(X)cpi(X) + dj£(x)\l(q, x), 
(16) 

where E(X) is an infinitesimal, arbitrary f).mction of x. 
(In general, there can exist a set of independent symme-
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tries, in which case one may wish to add a subscript to E.) 
For such transformations, 

(17) 

= J E(X) [SA)i -S.cd)/)X
j 
- dj(Si'l'ij)]ti"X = 0, 

D 

where we have used (to) to express oqi and integrated 
by parts to get rid of the derivative with respect to E. 
The arbitrariness of E allows us to choose it .so that the 
boundary terms disappear. And since the integral in (17) 
vanishes for arbitrary E(X), the Dubois-Reymond 
lemma then implies 

(18) 

Note that, when the equations of motion are satisfied, 
the terms S;[cpi - (dRi)Xi] and diSi'lfj) vanish separately 
(and trivially); this is replaced by a weaker condition, 
(18), when: the equations of motion are not necessarily 
satisfied. Equation (18), whfch depends crucially on 
E(X) being an arbitrary function of x rather than a con­
stant parameter, is an example of the identity of Noet­
her's second theorem, also referred to as a generalized 
Bianchi identity. It is particularly interesting, since it is 
satisfied independently of the equations of motion and 
its existence indicates that not all Euler-Lagrange 
equations of motion are independent. For this reason it 
is also called a strong conservation law as opposed to 
the weak conservation law expressed by (14), which 
requires the equations of motion. 

It is also noteworthy that, for such transformations, 
with an arbitrary E(X) as in (16), the weak conservation 
law itself splits into more than one statement. This follows 
from E(X) and its derivatives being independent; hence, 
terms mUltiplying them must vanish independently. 

3. RELABELING SYMMETRY 
IN HYDRODYNAMICS 

We now apply the discussion of the previous section 
to the case of an ideal fluid Lagrangian. The variable xO. 
of the previous section is replaced explicitly by time, t, 
and three other components of x are to be interpreted as 
the labels, a, of the Lagrangian fluid elements; e.g., 
these could be the initial positions of the fluid elements, 
q(t = 0). The variables q(a, t) keep track 6f the position 
of the fluid element labeled a. At any time, the mapping 
between q and a is an invertible mapping of a domain, 
D, and, to simplify matters, D is assumed to be time 
independent although the fluid is compressible. . 

PLASMA PHYSICS REPORTS Vol. 22 No. 10 1996 

The fluid Lagrangian density :£ may be written 
as [13-15J 

S; = PO[~q2 - V(p, s) - ~(q) J. (19) 

where Po = po(a) is the initial density distribution, and 
q denotes the time derivative of q keeping the label 
fixed. The internal or potential energy per unit mass is 
denoted by V and is assumed to be a function of two 
thermodynamic quantities, viz., the den.sity p and the 
entropy s. Additional forces on the fluid can be 
accounted for by including a potential, <l>(q). 

In what follows, the following determinant identi­

, ties (see e.g., (16]) will be of use. The cofactor Ai of 
the transformation matrix element djqi can be written as 

2A~ - E· Ejmnd q"d ql and satisfies ,-,id m n 

(20) 
t 

where j is the determinant of the transformation 
matrix, i.e., the Jacobian d(q)/d(a) of the time depen­
dent ma'p q - a. The identity 

.,ijl<:; I:; m:; n _ rr. ",Imn 
Co 0 iq 0 jq 0 kq __.:r Co (21) 

is particularly use~l in converting from Lagrangian to 
Eulerian variables. The volume and surface elements 
transform as 

l3 q = jd3 a and dcri = Aidcroj (22) 

where dcrOj denotes the area element in the jth direction 
in label space, while dcri denotes the area element in the 
ith direction in configuration space. 

We also assume adiabaticity, that is, s = so(a) only.' 
Conservation of mass implies pd3q = pocf3a; hence, 
from the first of equations (22) we have 

po(a) 
p(a,t) = T' (23) 

We now seek an infinitesimal relabeling transforma­
tion a = a + C5a(a, t), tl4 = q (a , t) - q(a, t) == ° that leaves 
the Lagrangian density invariant. Evidently, relabeling 
means that each component of q transforms as a scalar. 
The transformed Lagrangian density can be expressed 
by using (4) and, up to first order, leads to 

9;(q, aq, a) - :£(q, aq, a) 

= -[!q2 - V - <l> - POdVJV . (pooa) . 
2 !P dP (24) 

dV r;: ti • ~ ti. i + po-s-ua . y So + POqiua . y q , 
oS . 
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which is invariant if 

V(poBa) = 0, Ba· V So = 0 and Ba = O. (25) 

These requirements assure that the relabeling does not 
alter the mass, lies within isentropic surfaces, and does 
not change the velocity field. They are met by 

pIe for particles is not parameterization invariant.) 
Instead, we integrate the equivalent of (11) over the 
label space (not time) to get the generalized Bianchi 
identity 

8a = VSo X VEo, 
Po 

(26) It can be verified that the above equation is satisfied for 
any q(a, t) by using the form for Si' 

where Eo = Eo(a) is an infinitesimal arbitrary function of 
the label alone and, hence, is advected. 

For this symmetry, Noether's first theorem (14) 
gives us 

;t[4iV . (Eo V qi X V So)] 

+V· [EoVSOXV(~-U--«l>-~)J = 0, 

(27) 

where pep, so), the pressure, is defined by p2au lap. 
Since the conserved current in the above equation is ,not 
unique, we integrate (27) over the label space. The diver­
gence term then vanishes, and 'integration by parts 
allows us to isolate Eo(a), giving , 

:tfEo(a)V4i' V qi x Vsod
3
a = O. (28) 

D 

The arbitrariness of Eo(a) then leads us to the material 
conservation law 

Using the chain rule to convert a derivatives to q deriv­
atives and using (21) yields the corresponding Eulerian 
expression 

- -V s . V x v = O. d(l- - ) 
dt p (30) 

In obtaining the above equation, we have also made use 
of (23) and noted that po(a) has no time dependence. 

Here, the gradient operator in q space ls denoted by V, 
the velocity is v(q, t) = 4 (a(q, t), t), the entropy is seq, t) 
::: so[a(q, t)], the density is p(q, t) = p[a(q, t), t], and dl dt 
denotes the Lagrangian or material derivative 

.!!. = 2./ = 2./ + v· V. 
dt at a at q 

The lack of arbitrariness in time of Eo(a), which 
arose due to the last condition of (25) and can be traced 
to the kinetic energy term, prevents us from using (15) 
directly. (In essence, this is because Hamilton's princi-

S; = - Poii; - A{a jP - poa«l>/a{ (32) 

When the equations of motion are satisfied, S; == 0 and 
(31) reduces to (29), as might be expected. 

Note also that (27) can be expressed in Eulerian 
form by substituting Eo(a) = £'to(a), where 'Co(a) is an 
arbitrary function of the label. Then, we have the 
expression 

.!!.(! V'C "v x V s ~ 
dt p 'J 

• 

= !V't. V(v2 _.£.(PU)-«l»XVs 
.P 2 ap , 

(33) 

where 'C(q, t) = 'to[a(q, t)] is an arbitrary advected quan­
tity. Clearly, even if such an observable, advected quan­
tity that does not affect the potential energy exists (dye, 
perhaps), the above 'equation is not as elegant as (30). 
In (30), the quantity Qs' defined by 

1- -
Q = -Vs,Vxv' 
. s p, ' , (34) 

is called the potential vorticity associated with the 
advected quantity s and (30), which expresses the 
advection of Qs' is called Ertel's theorem of conserva-
tion of potential vorticity. ' 

The conservation 'of potential vorticity was derived 
from a (different) Lagrangian symmetry in [4] for 
incompressible stratified flows. In [5], conservation of 
potential vorticity is derived from a cons~ed varia­
tional principle. The transformation used has a time 
dependence in contrast to the symmetry used here, 
which must be time independent to qualify as a symme­
try. In [2] and [3], relabeling symmetry is related to 
Kelvin's circulation theorem. The treatment in [3] 
expresses the symmetry in terms of q rather than a. 
We can easily make a correspondence by using the one­
to-one mapping between q and a, which implies 

Sq = -(lia .V)q = V£xVs. 
p 

(35) 

The use of relabeling symmetry seems to have, been 
made first in [2], where a relabeling symmetry is found 
for an incompressible ideal fluid without internal 
energy U. ' 
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We now proceed to show the connection of Ertel's the­
orem to Kelvin's circulation theorem. Integrating (29) 
over a volume V fixed in label space and contained in the 
domain D and using Gauss' divergence theorem gives 

:tfSOVqiXVtli' dcro = 0, 
l: 

(36) 

where dcro is the surface enclosing V. and I: is the infin­
itesimal surface element. Now, if Vis chosen to be any 
volume sandwiched between parts of two surfaces of 
constant entropy separated by a small value Sso, the 
contribution to the integral from the sides is small and 
we obtain .. 

SSO;fVqiXVtli·dcro = 0, (37) 
s 

where S is a part of any surface of constant So. Using the 
second of (22), we can thus write for non-zero So . 

;fV x vdcr ~ 0. 
s 

(38) 

In the above equation, dcr is an infinitesimal surface 
element in q space and the isentropic surface S, which 
was fixed in label space, is now considere~ to .be an 

isentropic surface S in q space that evolves in time but 
. is made up of the same fluid elements. Equation (38) is 
Kelvin's circulation theorem and is true on surfaces of 
constant entropy. 

For a homentropic fluid, or equivalently for barotro­
pic flows, instead of (27) we simply get . 

;/Vtl;XVqi) = 0, (39) 

which implies 

_'t=--V-c·Vxv =0 dQ d(l- - ) 
dt dt p 

(40) 

for any advected quantity -c(q, t) = 'toea). It is thus quite 
clear that Kelvin's circulation theorem holds on any 
material surface for barotropic flows. 

In the stability analysis of stationary fluid equilibria 
(in particular, MHD), one often considers the second 
variation of energy functionals. As an example, con­
sider the potential energy functional: 

The eqUilibrium qe is considered to be an extremal 
point of W, and the second variation is checked for def­
initeness at the equilibrium. Noting that W possesses 
the same symmetry as expressed earlier by (26) (but 
without any restriction on the time dependence since, 
here, the integral is. only over space) leads to a general­
ized Bianchi identity: 

V --. xVq'· Vso = 0. (
1 S~ . 

PoSq' 
(42) 

The functional derivatives of W, which are set to zero to 
obtain the extremal point, are thus not ail independent 
of each other. 

The existence of the symmetry also relates to sponta­
neous symmetry breaking and Goldstone's theorem, 
concepts of field theory. (See e.g., [17]; in the context of 
noncanonicalHamiltonian theory, see [18].) We describe 
this for static equilibria, but a more general develop­
ment exists. For the potential energy functional, the 
analogue of (15) is 

I:: JSW I:: i 1 o*W = -.u*qd a=O, o ' D q 
(43) 

where o*q is given by (35). Taking a second variation 
of (43) yields 

. o!W 

2· I:: '::II:: j) (44) :: J(o is ~[q~. Sr/-~~S cJ d3a=0, 
*q S-'S ' 0 I oaJ * 

D 'i qq. .' . 

where this second Sq is arbitrary, and the dot indicates 
that the operator on the left acts on the quantity to the . 
right. Evaluating (44) on an equilibrium point qe yields 

2 JI:: .J
02W

[qeJ I:: j 3 - ° O*We = uq i .' u*qed a= . 
D oq Sq' 

(45) 

Since (45) vanishes for arbitrary Sq, it follows that 

02W[qe]. 0 i =0 o is,) *qe-' 
q 'i. 

(46) 

There are two ways to solve (46): either (i) S*q~ = 

-(CJq~ /CJaJ)CJ*ai = 0, which implies that the equilibrium 

point has the same relabeling symmetry as W {a nota­
bly trivial case since qe[so(a)]} and no symmetry is bro­
ken, or (ii) o ... q~ :;C 0, which implies that B2W[qeJ/Sqioqi 

has S ... qe as a null eigenvector and symmetry is "spon-

" 

W = f Po[U(p, s) + 4>(q)]ia. 
D 

taneously broken." Observe that o ... qe is ~ zero fre­

(4~) quency eigenfunction of the linearized equations of 
motion written in Lagrangian variables. 

PLASMA PHYSICS REPORTS Vol. 22 No. 10 1996 
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Since relabeling is a symmetry group, it is obvious 
that we can make a finite displacement from the equi­
librium point and remain on the same level set of W. 
This can be seen by iterating the above variational pro­
cedure. For example, the next variation of (44) gives 

03 W = f(O i[ 03 W[.q] .• 0 jJ. 0 k 
* *q 8 kO '8' q q 

D q q q 
(47) 

i 2 
_2ooq ~ jO W[q] . ~ k)d3 = 0 . u*a k . uq a - , 

oa' oq oq' . 

which when evaluated on qe yields 

This procedure is analogous to a Taylor expansion of 
a potential energy function about an equilibrium of 
a finite system that lies in a trough. This was worked 
out explicitly to all orders for the special case of toroi­
dal geometry in [19]. Although, in terms of Lagrangian 
variables, the equilibria that are connected by the rela~ 
beling transformation are distinct, it is evident by the 
definition of relabeling that in the Eulerian description 
these equilibria are identical. 

4. SYMMETRY OF THE EULERIAN VARIABLES 

We now consider the Hamiltonian formulation of 
hydrodynamics (e.g., [8]). Expressed in Lagrangian 
variables, the Hamiltonian has the form 

H[1t, q; a] = f~(1t, q, oq, a)d3a 
D 

= f PoG(:af + U(Po/.9', so) + cl>(q)]d
3 
a, 

D 

(49) 

which together with the canonical Poisson bracket, 

f[8F 00 00 O~ 3 [F a] = -. -, ""'-" . -, d a , oq 01t oq 01t 
(50) 

D 

produces the ideal fluid equations of motion. On mak- . 
ing the transformation a = a + Sa(a, t), Aq = q (a, t)­

q(a,t) = 0, and A1t = fc(a, t) -1t(a, t) = (Sa· VPo)(1t/Po) 
[so that A(1t(Po) = 0] it is seen that, up to first order, 

Cu,(A A ~A A) o(a)etP( :::I ) 
(7\, 1t, q, uq, a = o(a) (7\, 1t, q, uq, a 

(51) 

for the same relabeling symmetry, viz~, that given by 
(26). Thus, for the same form of the Poisson bracket in 
the new variables, the form of the equations of motion 
is left unaltered under such a relabeling. The existence 
of this symmetry of the Hamiltonian density indicates 
that one may be able to obtain an alternative fonnula­
tion of the dynamics in terms of variables that inher­
ently possess this symmetry. This is indeed the case for 
the reduction (see, e.g., [8], (9] and references therein) 
to Euledan variables, which is conveniently repre­
sented by the following: 

per, t) = f po(a)o(r - q(a, t»d3 a, 
D 

O'(r, t) = f po(a)so(a)o(r- q(a, t»d3 a, 
D 

(52) 

(53) 

M(r, t) = f 1t(a, r)o(r- qta, t»d'3 a. (54) 

D 

When one considers variations of the Eulerian variables 
p, 0', and M that are induced by relabeling, we see that 

op = f div(pooa)o(r- q(a, t»d3 a, 
D 

(55) 

00' = f [sodiv(pooa) + pooa V so] oCr - q(a, t»d3 a, 
D • .(56) 

oM = f2E..V(Pooa)0(r-q(a,t»d3a. (57) 
D

PO 

The conditions for vanishing of these variations, 
together with the constraint 1t = Poq, are the same as 
those of (25). Thus, the relabeling given by (26) is also 
a symmetry of the map from Lagrangian to Eulerian 
variables. . 

'. In the framework resulting from the reduction to 
Eulerian variables, we are naturally interested in func­
tionals that can be expressed in terms of the Eulerian 
variables F[q,1t] = F [p,O', M]. Evidently, this is not 

possible for all F[q, 1t]. But note that F [p, 0', M] has the 
relabeling symmetry mentioned above since p, 0', and 
M have it. Therefore, at the very least, one demands that 
F[q, 1t] display the same symmetry. This consideration 
gives rise to a scheme for obtaining Casimir invariants, 
special invariants that arise in the Eulerian framework, 
from the knowledge of the symmetry. Since the varia-

PLASMA PHYSICS REPORTS Vol. 22 No. 10 1996 
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tion of F must vanish when the variations oq and 01t 
arise from the relabeling symmetry Oa, we demand 

of = J[OF . oq + of . 07tJd3a = o. oq 01t 
(58) 

D 

It is clear that, if there exists a functional C such that 

. oC oe 
oq = -01t and 01t = oq' (59) 

its Poisson bracket with any F belonging to the class of 
functionals satisfying (58) vanishes. This will be the 
case when the Poisson bracket is expressed in terms of 
Eulerian, noncanonical variables [7]; therefore, by def­
inition, C is a Casimir invariant. Obviously, Casimir 
invariants are constants of motion for any dynamics 
with a Hamiltonian that can be expressed in terms of 
Eulerian variables. 

As might be expected, from (28) and is easily 
checked, the functional C defined by 

C[q,1tJ = J coCa) 'V(;J . 'V qi X 'V sod
3 
a 

D 

(60) 

is the generator of the symmetry, i.e., it satisfies 

[C, qiJ = _~C = -Oa . 'V qi = oqi (61) 
u7ti 

and 

oC 
[C,1t;J = -. = .11t; - oa . 'V7t; = 07t i . (62) 

oq' . 

The Eulerian expression for the Casimir invariants C 
yields 

C[p, s, vJ = J pJ(Qs)iq, (63) 

D 

whereJis arbitrary and (q, r)=cr(q,t)/p(q,t) =so[a(q, t)J. 

Evidently, the Poisson bracket of a functional C 
with any F also vanishes if 

(64) 

This is true when the integrand of C is an arbitrary 
function of the labels and independent of q and 1t. There 

exists no Eulerian representation for most such C '5; 
however, 

C[Po, so] ~ J poi<so)ia, 
D 

(65) 

PLASMA PHYSICS REPORTS Vol. 22 No. 10 1996 

does survive the Euierianization, where 1 is arbitrary. 
A general expression for the Casimir invariants in Eule­
rian form is then given by 

C[p, s, vJ = J crCf6(s, Q)d
3
q, (66) 

D 

where Cf6 is an arbitrary function of both arguments. 

In the noncanonical Hamiltonian fonnulation of the 
fluid, a Casimir has to s'atisfy the following conditions: 

- ( BC) BC - (cr)' div P oM = 0 and oM 'V P = 0 (67) 

The equivalence of these conditions to the symme.try 
conditions (25) is seen when om'~notes that, if C can be 
expressed as a functional of p, cr, and M, then 

BC = BC and 
01t oM, 

oC [- oC - oC - BC]' oq = jJ B'V ~p + cr'V ocr + M;'V BM; . 

(69) 

The use of (61) and (62) then leads to (67) and (68), 
when Oa satisfies (25) and vice versa. Note that, for 
Casimirs satisfying (64), the conditions reduce to 

For barotropic flow, (40) is true for any advected 'to ' 
Therefore, one can use Qt to generate yet another 

advected quantity, QQ, and so on; from one advected 

quantity, we can generate an infinite family of advected 
quantities. Thus, the Casimir has the fonn 

C[p,'t, v] = JpJ('t,Q'OQQ" ... )d3
q, (71) 

D 

where J(t, Qt, QQ,' ... ) is an arbitrary function of the 

arguments. 

5. RELABELING SYMMETRY IN MHD 

The Lagrangian density for MHD [15] is given by 

CD CD 1 ':\ ia . j Bk 
oLMHD = oL-

2
s>0jq kqiBO 0; (72) 
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where ;:e is the ftuidLagrangian density given by (19), 

and B~ (a) are components of the magnetic field as a func­
tion of the labels, e.g., the initial magnetic field. 

Thus, the MHD counterpart to (24) has the follow­
ing additional terms due to a relabeling transformation: 

It can be verified that the above expression vanishes if 
oa is any function of th~ labels multiplying Bo. But, we 
also require that the conditions obtained previously (25) 
be satisfied; this leads to overspecification, and conse­
quently there is no relabeling symmetry Oa iliat satisfies 
all the requirements. (It is for this reason that the poten­
tial energy functional for MHD does not exhibit spon­
taneous symmetry breaking, unlike the fluid case dis­
cussed in Section 3, and is thus reminiscent of the 
Higgs mechanism in quantum field theory.) 

A solution can, however, be found if one eliminates 
the second of (25) by considering a barotropic flow, i.e., 
V and, hence, p depend only on the density p. (A s,olu­
tion can also be found without imposing the restriction 
ofbarotropicity in the case where the entropy So is a flux 
label, i.e., Bo V So = 0.) Then, one has the symmetry , 

Bo 
oa = E(Xo, Yo)-, 

Po 
(73) 

where xo(a) and yo(a) are flux labels. In other words, the 
initial magnetic field is expressible as VXo x VYo. How­
ever, the existence of flux labels Xo(a) and yo(a) is not 
crucial; if they do not exist, one simply thinks of E as an 
infinitesimal constant parameter. 

For this symmetry, Noether's (first) theorem gives 

a, n j n[B (f/ dV m)] -(qjBo ' vq)+v o' --V-p--"I! = O. at 2 dp (74) 

Integrating over the domain and passing over to the 

Eulerian form using the relation B~ ak = 9 B; a;, we get 
the conservation law 

d dI 3 dt C[ v, B] = dt v· Bd q = 0, (75) 

D 

where C[ v, B] is commonly referred to as cross helicity .. 
Prior to this work, conservation of cross helicity was 
derived from a Lagrangian symmetry involving Clebsch 
potentials and the polarization in [6]. (See also [20].) 

The discussion in the previous section leads us to 
expect the existence of Casimirs, in the Hamiltonian 
formulation, which satisfy (64) and which may be 
expressible in terms of p, s, V, and B. It is easily verified 
that B ' V'C/p = Bo . V'Co/Po, where 'C(q, t) = 'Co(a) is an 

arbitrary advected quantity, and leads to the Eulerian 
expression 

- - -
J ( B. V S B . V(B . V S) ) 3 C[p,s,B] = pg, S,--,-- --- , ... d'q, 
D' P P P (76) 

where g is an arbitrary function of its arguments, This 
form for the Casimlrs is given in [21]; we obtain a more 
general expression next. 

The Lagrange-Euler map for the magnetic field, 

. I J aq; 3 B'(r, t) = Bo(a)-.o(r- q(a, t»d a, 
aa' 

D 

(77) 

and its corresponding vector potential representation, 

lead to the conclusion that AB / p = AOBo/ Po within 
a gauge restriction. We note that, in (78), one may add 
to Ao(a); the gradient of a gauge $o(a" t), which leads to 
a corresponding gauge choice $(r, t) = $o[q-l(r, t), t] for 
A(r, t). But, for the Validity of AB / p = AOBo/ Po, we must 
restrict the gauge to be advected $(r, t) = $o[q-J(r, t)], 
which is equivalent to demanding that all explicit time 
dependence be removed from Ao. With this choice, it 
can be seen that the vector potential in Eulerian coordi-
nates satisfies the equation ' 

aA ' -at '= vxB- V(Av). (79) 

(This gauge choice and the corresponding invariant is 
discussed by Gordin and Petviashvili [22].) Thus, more 
generally, the Casimir invariants are expressed by 

C[p, s, A] 

- .... - -_ J ( AB BV s BV(BV s) BV(AB) )d3 
- pg s, " , , ... q, 

D P p, P P P P (80) 

where B is understood to be an abbreviation for V x A. 
Operating within the restrictea choice of gauges men­
tioned earlier, we note that the addition of a gauge 

A -.-. A + V $ changes AB/pby the term BV $/p, 
Which is also advected. The numerical value of C[p, s, A] 
thus depends on the gauge, but, after the initial choice 
of the gauge has been made, it nevertheless is a con­
stant of the motion. It is clear that magnetic helicity 

J A . Bd3 a is a special case of this fanuly of inva­
riants. 
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For the barotropic case, the Casimir is written most 
generally as 

C[p, v, A] 

- f [VB f(~ !!...:..J.(~) . )Jd3 - P +, , ... q, 
p p p P 

(81) 

D 

where f is an arbitrary function of its argument. In the 
case where flux labels exist globally, the Casimir is 
given by 

'f 3' C[v,x,y] = f(x,y)v· VxxVyd q; (82) 
D 

where fis an arbitrary function of the flux labels x(q, t) = 
xo[a(q, t)] and y(q, t) = yo[a(q, t)). 

6. CONCLUSION 

We have described the consequences of Noether's 
theorems associated with the relabeling transfonnation 
for an ideal fluid and MHD. The action and Hamilto­
nian were seen to be invariant under such a transfon:na­
tion, and it was seen that the same transfonnation was 
required for the invariance of Eulerian variables. Con­
sequently, the Hamiltonian is expressible entirely in 
tenns of Eulerian variables, as is the Poisson bracket. 
This provides a way to understand the reduced Hamil­
tonian description of the fluid, in tenns of the Eulerian. 
variables, from the viewpoint of symmetries of the 
action. In addition Ertel's theorem, the Kelvin circula­
tion theorem, cross and magnetic helicity, and other 
Casimir invariants, including a little-known family of 
invariants in MHD, were discussed. 

The fonnalism described is quite general and applies 
to a large class of ideal fluid models. More exotic fluids 
such as the Chew-Goldberger-Low model and gyrovis­
cous fluids [2] possess a similar development. 
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