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Abstract

A new method for predicting the statistical properties of fluid turbulence,

called Spectral Reduction, is described. Collections of Fourier wavenumbers

are represented by certain nonuniformly spaced sample modes that interact

via enhanced coupling coefficients. The approximation reduces to the exact

Navier–Stokes equation as a control parameter, the number of fundamental

wavenumbers associated with each sample mode, tends to unity. Even at

large values of this parameter, the time-averaged predictions of the theory

can be shown to recover the statistics of the exact dynamics to high accuracy.

Preliminary results from the numerical implementation of Spectral Reduc-

tion for two-dimensional homogeneous turbulence are very encouraging; for

example, the method is used to illustrate a recent modification to Kraichnan’s

logarithmically corrected two-dimensional enstrophy cascade.

I. INTRODUCTION

Much of the computational effort in conventional turbulence simulations is devoted to

resolving the high wavenumbers. The fact that most of the modes are concentrated at the
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smallest scales seems incongruous with the observation that the energy balances at the large

scales are often of greater interest in many applications than are the precise details of the

dissipation dynamics.

For the purpose of computing transport coefficients, it may be necessary to resolve only

the low wavenumbers accurately. It is possible that the high wavenumbers could be rep-

resented by certain nonuniformly spaced sample Fourier modes that interact via enhanced

coupling coefficients. In other words, it would seem that finite computational resources could

be best utilized by judiciously distributing the evolved modes throughout the wavenumber

spectrum, concentrating them in the regions of physical interest. It is the goal of this work to

introduce a general wavenumber reduction scheme that enjoys precisely this kind of freedom.

In the next two sections we discuss the method we have developed. In IV, we proceed to

apply it in two dimensions to the enstrophy inertial range. We conclude with a discussion

of the new technique and compare it to existing methods in V.

II. SPECTRAL REDUCTION

Although the ideas in this work can be generalized to more realistic situations, we restrict

our focus to homogeneous and isotropic incompressible turbulence in two dimensions. The

idealization of homogeneous turbulence strictly makes sense only in the limit of an infinite

domain, where there are no walls to interfere with translational invariance. The appropriate

spectral transform in this limit is the integral Fourier transform, under which the two-

dimensional Navier–Stokes vorticity equation takes the form

∂

∂t
ωk + νkωk =

∫

D

dp

∫

D

dq
1

p2
εkpq ω∗p ω∗q , (1)

where νk
..= ν0k

2 represents time-independent linear dissipation (or forcing via linear insta-

bilities) and the interaction coefficient

εkpq
..= (ẑ · p×q) δ(k + p + q) (2)
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is antisymmetric under permutation of any two indices. (A stirring force could also be

added to the right-hand side of Eq. (1) without changing any of the following discussion.)

We restrict the integration to a finite wavenumber domain D that excludes a neighbourhood

of both the origin and infinity. This truncation, which is invariably required by spectral

methods, preserves the lowest two (quadratic) nonlinear invariants, energy and enstrophy,

but not the higher-order Casimir1 invariants of the inviscid dynamics. The effect of this

truncation will not be discussed here further since it is widely believed that only the energy

and enstrophy play fundamental roles in the turbulent cascade dynamics.

Let us introduce some coarse-grained grid on D that partitions the wavenumber space

into connected regions that we will call bins. The (coarse-grained) bins will be labeled by

capital letters (such as K) to distinguish them from the continuum wavenumbers, which we

are representing by small letters (such as k).

To this grid, let us associate new variables

ΩK
..=

1

∆K

∫

∆K

ωk dk =.. 〈ωk〉K , (3)

where ∆K is the k-space area of bin K. If the true vorticity is a continuous function of

wavenumber, the Mean Value Theorem for integrals implies that there exists a wavenumber

k′ in bin K such that ΩK = ω(k′). That is, the bin-averaged vorticity ΩK will always be

the vorticity of some mode in the bin.

The exact evolution of ΩK is given by

∂

∂t
ΩK + 〈νkωk〉K =

∑

P ,Q

∆P ∆Q

〈

1

p2
εkpq ω∗p ω∗q

〉

KPQ

, (4)

where

〈f〉KP Q =
1

∆K∆P ∆Q

∫

∆K

dk

∫

∆P

dp

∫

∆Q

dq f (5)

is a six-dimensional integral that depends only on the geometry and the mode-coupling

coefficients f . Although the computation of the weight factors 〈f〉KPQ is typically quite

challenging, this calculation has already been performed for a variety of geometries, using a
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combination of analytical and computational techniques.2–4 Since this is a time-independent

calculation, it can be carried out as part of the initial computational overhead. These factors

do not depend on the initial conditions, so they need only be computed once for each new

wavenumber partition.

Unfortunately, the resulting system of equations, Eq. (4), is not closed. To proceed

further, some type of approximation is clearly required. One rather obvious solution would

be to approximate ωk, ωp, and ωq by their bin-averaged values ΩK , ΩP , and ΩQ, respectively.

This would lead to the following closed set of equations for the bin-averaged vorticities:

∂

∂t
ΩK + νKΩK =

∑

P ,Q

∆P ∆Q

〈

1

p2
εkpq

〉

KP Q

Ω∗P Ω∗Q, (6)

where νK
..= 〈νk〉K is the bin-averaged viscosity. It could be argued that this approximation

should be reasonable if the bins are small enough so that within each bin the modal vorticities

vary slowly with respect to wavenumber. However, for a wavenumber reduction scheme to be

useful, presumably at least some bins must be quite large, encompassing many fundamental

modes. It might be unclear to the reader what relevance Eq. (6) could possibly have to the

bin-averaged dynamics of a highly turbulent flow, where the individual vorticities within

each bin deviate wildly from their bin-averaged values. Nevertheless, there is a sense in

which equations similar to Eq. (6) can be justified, as we will discuss shortly. For now, let us

proceed to consider the conservation properties of Eq. (6), comforted by the knowledge that

at least in the limit of small bin size (e.g., in a discrete version of equation Eq. (1), the limit

where there is exactly one mode per bin), it reduces to the exact dynamical equation, (1).

It is widely held that inertial-range behaviour is intimately connected to the conservation

properties of the nonlinear terms in the Navier–Stokes equation. The dimensional arguments

of Kolmogorov and Kraichnan suggest that the quadratic nonlinear invariants, energy and

enstrophy, are fundamental to the phenomenology of the turbulent cascade. Consequently,

it would seem advisable that any proposed reduction of the full equations preserve all of the

quadratic invariants.

In the absence of forcing or dissipation, Eq. (1) conserves the energy E and enstrophy Z,
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E ..= 1

2

∫

dk
1

k2
|ωk|

2, Z ..= 1

2

∫

dk |ωk|
2, (7)

as a consequence of the following symmetries of εkpq, respectively:

1

k2

1

p2
εkpq antisymmetric in k ↔ p,

1

p2
εkpq antisymmetric in k ↔ q. (8)

A problem with closure is again encountered when we try to express these invariants on

the coarse grid. We define the coarse-grained energy Ē and enstrophy Z̄ to be

Ē ..= 1

2

∑

K

1

K2
|ΩK |2, Z̄ ..= 1

2

∑

K

|ΩK |2. (9)

As it stands, there is some arbitrariness in these formulae, particularly in the choice of the

characteristic wavenumber in each bin K, which (without any ambiguity) we also label K.

We leave the actual definition of K quite arbitrary, except that we require K to be the value

of some wavenumber from bin K. There are many definitions, such as ∆−1

K

∫

∆K
k dk and

∆−1

K

∫

∆K
k2 dk that satisfy this restriction, as can be seen from the Mean Value Theorem

for integrals. This condition guarantees that the coarse-grained invariants reduce to the

corresponding continuum invariants in the limit of small bin size.

Recognizing that there is no general time-independent definition of the wavenumber K

for which the coarse-grained quantities reduce to the corresponding continuum values for all

time, we would be content with a definition that leads to exact conservation of Ē and Z̄.

However, we now show that even this is not possible.

It is readily seen that Eq. (6) conserves enstrophy since
〈

1

p2
εkpq

〉

KP Q

(10)

is antisymmetric in K ↔ Q. However, energy conservation has been lost since

1

K2

〈

1

p2
εkpq

〉

KP Q

(11)

is not antisymmetric in K ↔ P . The origin of the problem lies in the fact that K 〈p〉KP Q 6=

P 〈k〉KP Q. The resulting violation of energy conservation is really a consequence of the

assumption that the vorticity varies slowly over a bin.
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However, both of the desired energy and enstrophy symmetries can be reinstated by

replacing the weight factor

〈

1

p2
εkpq

〉

KP Q

(12)

in Eq. (6) with the slightly modified coefficient

K2Q2

〈

1

k2p2q2
εkpq

〉

KP Q

. (13)

This modification introduces negligible error in the limit of small bin size, so that the

resulting equation

∂

∂t
ΩK + νKΩK =

∑

P ,Q

∆P ∆Q K2Q2

〈

1

k2p2q2
εkpq

〉

KP Q

Ω∗P Ω∗Q. (14)

is a more acceptable alternative to Eq. (6) as a closure of Eq. (4): not only does it reduce

to the exact dynamics in this limit, but it conserves both energy and enstrophy even when

the bins are large. The final modification leading to Eq. (14) may be viewed as a partial

compensation for the error introduced by the slowly varying approximation. The resulting

reduced dynamical equation has the same general structure and symmetries as Eq. (1) and

in this sense may be thought of as a renormalization of the original equation.

III. TIME-AVERAGED JUSTIFICATION

Let us now examine the validity of Eq. (14) as an approximation to the exact turbulent

dynamics. If the bins are large, the true vorticity will vary rapidly with wavenumber within

each bin and it is unlikely that Eq. (14) could yield a reasonable description of the instanta-

neous dynamics. However, on a time-averaged basis the situation is much more encouraging;

the time-averaged (or ensemble-averaged) spectrum predicted by Eq. (14) corresponds very

closely to the exact bin-averaged statistics, as we now show.

Upon time averaging the bin-averaged enstrophy equation derived from Eq. (1), one

obtains
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∂

∂t

〈

|ωk|
2
〉

K
+

〈

νk|ωk|
2

〉

K
=

∑

P ,Q

∆P ∆Q

〈

1

p2
εkpq ω∗k ω∗p ω∗q

〉

KPQ

, (15)

where the over-bar denotes a time average. (The first term will vanish upon time-averaging

far into a statistically steady state; the saturated turbulent state will then reflect a balance

between linear forcing/dissipation and nonlinear equilibration.)

Time-averaged quantities such as |ωk|
2 and ω∗k ω∗p ω∗q are generally smooth functions of the

wavenumbers k, p, q. Strictly speaking, for homogeneous turbulence, the triplet correlation

ω∗k ω∗p ω∗q is smooth in these variables only on the four-dimensional surface defined by the

triad condition k +p +q = 0; however, the integration in Eq. (5) is already confined to this

surface by the δ(k + p + q) factor in εkpq. To good accuracy these statistical averages may

therefore be evaluated at the characteristic wavenumbers K, P , Q of each bin, yielding

∂

∂t
|ΩK |2 + 〈νk〉K |ΩK |2 =

∑

P ,Q

∆P ∆Q

〈

1

p2
εkpq

〉

KP Q

Ω∗KΩ∗P Ω∗Q. (16)

Moreover, to the extent that the (nonstochastic) wavenumber magnitudes k, p, and q vary

slowly over a bin, Eq. (15) may equally well be reduced to the conservative approximation

∂

∂t
|ΩK |2 + 〈νk〉K |ΩK |2 =

∑

P ,Q

∆P ∆Q K2Q2

〈

1

k2p2q2
εkpq

〉

KP Q

Ω∗KΩ∗P Ω∗Q. (17)

This is precisely the equation for the time-averaged enstrophy that is obtained from Eq. (14).

Thus, if we solve Eq. (14) and compute the mean-squared vorticity (enstrophy) spectrum,

the result should be close to the spectrum computed from Eq. (1). Furthermore, as the

wavenumber partition is refined, one expects the solutions of Eq. (17) to converge to the

those of Eq. (15). The same arguments apply to the computation of the mean-squared

velocity (energy) spectrum.

It thus appears that the technique underlying Eq. (14), which we call Spectral

Reduction,
∗

can provide an accurate statistical description of turbulence, even in the case

∗
The name Spectral Reduction reflects the fact that the method does not rely on specific properties

of the Fourier transform.
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where each bin contains many statistically independent modes. In the next section, we

present preliminary results in support of this conclusion.

IV. TWO-DIMENSIONAL ENSTROPHY RANGE

Let us apply Spectral Reduction to illustrate the Kolmogorov-Kraichnan scaling for the

two-dimensional enstrophy range, including some recently derived modifications to Kraich-

nan’s result.

Based on Kolmogorov’s5 idea of self-similar energy transfer in the inertial range,

Kraichnan6 proposed an asymptotic form for the energy spectrum of the enstrophy iner-

tial range,

E(k) ∼ k−3

[

ln

(

k

k1

)]−1/3

(k � k1), (18)

where k1 is the smallest wavenumber in the inertial range. The logarithmic correction in

this result prevents the formation of an infinite amount of enstrophy in the inertial range.

Recently, Eq. (18) was extended to the entire inertial range (k ≥ k1):
7

E(k) ∼ k−3χ−1/3(k) (k ≥ k1), (19)

where

χ(k) ..= ln

(

k

k1

)

+ χ1. (20)

The new positive constant χ1, which removes the divergence from Kraichnan’s expression at

the injection wavenumber k1, is set by the large-scale dynamics and cannot be determined

by dimensional reasoning.

To demonstrate Eq. (19), we applied Eq. (14) using a polar partition with a logarithmi-

cally spaced radial grid spanning k = 1 to k = 1024 and a uniformly spaced angular grid.

We evolved a thermal equilibrium spectrum (with both inverse temperatures set to unity)

to a statistically steady state for 16×8 (radial × angular) and 32×8 geometries. The linear

forcing and dissipation were given by
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νk
..= νLH(k0 − k)km + νHH(k − kd)kn

+

{

−
γf

∆f

if kf −
1

2
∆f < k < kf + 1

2
∆f ,

0 otherwise.

(21)

The Heaviside function H was introduced in this pedagogical study to allow the formation

of a pristine inertial range. The parameters used were

νL = 0.2, k0 = 2.378, m = 0, (22)

νH = 1.0 × 10−17, kd = 664, n = 6, (23)

γf = 1.492, ∆f = 1.290, kf = 3.023. (24)

The saturated energy spectra for the two partitions are compared in Fig. 1. We see that

the convergence of the spectra as the partition is refined, while not perfect, is quite good even

at this low resolution. The evolution of Ē, Z̄, and the palinstrophy P̄ ..= 1

2

∑

K K2|ΩK |2 to

this statistically stationary state is depicted in Fig. 2 for the 32 × 8 geometry.

We illustrate Eq. (19) by graphing the logarithmic slope ln E(k)/ ln k in Fig. 3. We

verify in Fig. 4 the linear behaviour of [k3E(k)]−3 with respect to ln(k/k1) as predicted by

Eq. (19), using the values k1 = 14.3 and χ1 = 0.39 determined by a least-squares fit (for

details, see Ref. 7). Note the excellent agreement with Eq. (19); the average energies at 14

radial wavenumbers (out of 32) are perfectly described by the logarithmic correction, even

after dividing out the overall k−3 dependence.

To obtain these results, we employed a new integration algorithm that in the inviscid

limit conserves the energy and enstrophy to all orders in the time step.8 This algorithm was

extended to solve for the evolution on the linear time scale exactly, allowing it to be applied

to forced-dissipative turbulence, which possesses both linear and nonlinear time scales. The

resulting algorithm ensures that the energy evolves in a manner consistent with the equations

of motion.
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V. DISCUSSION

In this work we proposed a new technique for computational fluid dynamics that dra-

matically decreases the number of degrees of freedom required to simulate turbulent flow.

For example, a problem that would conventionally require 2048×2048 modes was accurately

modelled with only 32 × 8 bins. One of the advantages of using such a reduced description

is that one can then easily evolve the system for thousands of eddy turnover times to obtain

extremely smooth energy spectra and transport coefficients, which can then be compared

with known theoretical results.

Over the past forty years, much research effort has been spent trying to develop a sat-

isfactory statistical theory of turbulence. Until relatively recently, statistical closures were

widely studied as approximate but quantitative descriptions of turbulence. These analyti-

cal theories attempt to find closed expressions for the unknown triplet correlation function

appearing in Eq. (15). A familiar example of a statistical closure is Kraichnan’s direct-

interaction approximation (DIA).9–13 Unfortunately, there is considerable arbitrariness in

the formulation of statistical closures and it is generally believed that low-order statistical

theories are simply not capable of capturing the effects of coherent structures.14,15 But prob-

ably the greatest weakness of these methods is that there exists neither an error estimate

nor a control parameter that can be varied to increase the accuracy of the solution.

The existence of a control parameter (bin size) is an important feature of Spectral Re-

duction that thus distinguishes it from other statistical theories. Moreover, it does not make

a closure assumption on the (time-averaged) triplet correlation appearing in Eq. (17). It

circumvents the closure problem entirely by reducing the number of triplet correlations to a

tractable number, rather than by eliminating them in favour of lower order statistical vari-

ables. Unlike statistical closures, Spectral Reduction does not destroy the phase information

embodied in the triple product Ω∗
KΩ∗P Ω∗Q in Eq. (17).

There is one minor drawback to the method. It suffers from being formulated entirely in

a spectral domain, with a nonlinearity more complicated than a simple convolution, so that a
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pseudospectral (collocation) technique is no longer applicable. Consequently, there can be a

tradeoff between the discrete version of Spectral Reduction and conventional pseudospectral

methods: if there are only one or two discrete modes per bin, Spectral Reduction will surely

lose in any competition with pseudospectral methods. However, this handicap is quickly

offset as soon as the number of modes per bin increases.

The idea of wavenumber reduction is certainly not new. Constrained decimation16–18

consists of a reduction in which the effect of the deleted modes on the retained modes is

accounted for through the introduction of an additive stochastic forcing to the right-hand

side of Eq. (1). She and Jackson19 have proposed an alternative reduction scheme in which

the linearity in Eq. (1) is enhanced to account partially for the implicitly evolved modes.

In Spectral Reduction, a third alternative is chosen: it is the nonlinearity that is enhanced

to account for the effect of the discarded modes. There have been a few other more direct

attempts at wavenumber reduction,20–23 none of which appear to account for the effect of

the neglected modes on the retained dynamics in a systematic manner. Moreover, these

methods typically neglect very nonlocal triad interactions, which play an important role in

two-dimensional turbulence.

It is also worthwhile to compare Spectral Reduction to the renormalization group

(RNG)24 theory. This approach retains only the large-scale modes, but attempts to ex-

press the effect of the small-scale modes on the large scales using a self-similarity ansatz. In

contrast, Spectral Reduction effectively retains certain modes from all scales and discards

other modes from these same scales. Moreover, the generality of the formulation allows one

to refine the partition wherever necessary.

In this work, Spectral Reduction was used to verify the logarithmically corrected two-

dimensional enstrophy law to a remarkably high accuracy. This approximation appears to be

a promising candidate as a statistical description of turbulence. However, while it provides

an accurate technique for computing turbulent statistics, it does not provide further insight

into the underlying dynamical processes. Consequently, it should be thought of more as a

computational tool than as a real analytical theory of turbulence. The latter is a challenge
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that still awaits us.
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FIGURES

FIG. 1. Saturated energy spectrum predicted by Spectral Reduction.

FIG. 2. Evolution of the nonlinear invariants for the 32 × 8-bin geometry.

FIG. 3. Logarithmic slope of the energy spectrum in Fig. 1.

FIG. 4. Linearity of [k3E(k)]−3 with respect to ln(k/k1) for k ≥ k1 = 14.3. The solid triangles

are the predictions of Spectral Reduction.
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