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Abstract 

The problem of transition to chaos, i.e. the destruction of invariant circles or KAM (Kolmogorov-Amold-Moser) curves, 
in area preserving nontwist maps is studied within the renormalization group framework. Nontwist maps are maps for which 
the twist condition is violated along a curve known as the shearless curve. In renormalization language this problem is that 
of finding and studying the fixed points of the renormalization group operator 7~ that acts on the space of maps, A simple 
period-two fixed point of 7~, whose basin of attraction contains the nontwist maps for which the shearless curve exists, is 
found. Also, a critical period-12 fixed point of 7~, with two unstable eigenvalues, is found. The basin of attraction of this 
critical fixed point contains the nontwist maps for which the shearless curve is at the threshold of destruction. This basin 
defines a new universality class for the transition to chaos in area preserving maps. 

1. Introduction 

A fundamental problem of  Hamiltonian dynamics is to understand the behavior of an integrable Hamiltonian 

system when subject to perturbation. In terms of the act ion-angle  variables (J ,  0) of the integrable system, the 

Hamiltonian for the perturbed system in the case of one degree-of-freedom can be written as 

H = Ho(J)  + Hi (J, O, t), (i) 

where Ho is the Hamiltonian of  the integrable system and the perturbation is represented by Hi .  Since the pioneering 

work of  Poincarr,  it has been known that the dynamics for Hamiltonians of this form is far from trivial. Typically, the 

phase space consists of a complicated mixture of  integrable (confined to invariant tori) and nonintegrable (chaotic) 

trajectories. Thus, the problem of  the transition to chaos is to determine which trajectories of /40 remain integrable 

and which become chaotic under the effect of HI.  
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When the perturbation is periodic in time, i.e. H ( J ,  O, t + T) = H ( J ,  O, t), the essential aspects of the dynamics 

are captured by the so-called Poincar6 map, which is obtained by plotting the phase space coordinates of the 
trajectories at times t = T, 2T, 3T . . . . .  nT  . . . .  Since, in general, Hamilton's equations preserve the volume of 

phase space, the Poincar6 map is an area preserving map. Accordingly, the behavior of Hamiltonian systems can be 

understood by studying area preserving maps, which are relatively simpler mathematical objects than differential 
equations (see for example [1-3] and references therein). In particular, the transition to chaos for Hamiltonians of 
the form of Eq. (1) can be studied with area preserving maps of the form 

Xi+l = Xi + ,-('2(Yi+l) "q'- f (xi, Yi+I), Yi+l = Yi + g(xi,  Yi+I), (2) 

where the area preservation condition requires Of/Oxi + Og/Oyi+l = 0. The map variables (x, y) correspond to 

the action-angle coordinates (J, 8), the function ~ corresponds to the unperturbed frequency OHo/OJ, and the 

functions f and g correspond to the perturbation Hi. 
When f and g are zero the map is integrable: successive iterations of initial conditions lie on straight horizontal 

lines that wrap around the periodic x-domain. The rotation number of an orbit is defined, when it exists, by 

oJ := limi-~oo x i / i ,  where in this definition the x-coordinate is lifted to the real line (i.e. x is not taken to be 
periodic). Orbits with irrational rotation numbers fill one-dimensional dense sets called invariant tori (circles) or 

KAM (Kolmogorov-Arnold-Moser) curves. On the other hand, periodic orbits have rational rotation numbers. 

Under the effect of the perturbation some KAM curves are broken whereas others are merely deformed - they 
remain topologically equivalent to straight lines. The problem of the transition to chaos in area preserving maps is 

to determine which KAM curves persist and which are destroyed by a nonintegrable perturbation of the map. 

In the present paper we study the transition to chaos in the following area preserving map: 

Xi+l ~-Xi + a ( 1  -- y2+l ) (3) 

Yi+l = Yi -- b sin (27rxi), (4) 

where a and b are real numbers, and the domain of interest is D := {(x, y) l Y e ( - ~ ,  oo) and x ~ ( -½,  ½) 

mod 1 }. Following the terminology of [4], we call this map the standard nontwist map because it violates the twist 

condition, 

OXi+l ~ O, (5) 
Oyi 

which is the map analog of the nondegeneracy condition for Hamiltonian systems, 

02 H° 5~ O. (6) 
Oj2 

The point where the twist condition fails can be an extremum (if OXi+l/OYi changes sign), as in the case of 
the standard nontwist map, or an inflection point (if axi+l/Oyi does not change sign). The most interesting and 
challenging case, the one addressed here, is that of an extremum. 

The study of the transition to chaos in area preserving nontwist maps, and equivalently in degenerate Hamiltonian 
systems, is a problem of both theoretical and practical relevance. Mathematically the problem is of interest because 
many results in the theory of area preserving maps, including the KAM theorem [5], depend upon the twist condition. 
Recently there have been attempts to extend KAM theory to nontwist maps [6]. From a physics perspective, 
degenerate Hamiltoniau systems and nontwist maps are important because such systems naturally occur in a variety 
of problems of fluid dynamics, plasma physics, celestial mechanics, accelerator physics, condensed matter physics, 
and ray optics in wave guides, among others. (For a discussion of some of these applications see [7,8].) 
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For b --- 0 the standard nontwist map is integrable. In this case, the twist condition is violated along the line 

y -- 0, which we call the shearless curve because along it the shear, axi+l/OYi, vanishes. A precise and general (for 
a and b nonzero) definition of the shearless curve is given in Section 2. As a and b deviate from zero, the shearless 

curve bends and eventually breaks. The problem of transition to chaos in nontwist maps is to understand when and 

how this shearless curve breaks. Here we study this problem, restricting attention to the case in which the rotation 
number of the shearless curve is equal to the inverse golden-mean, 1 /y  := 1 (x/5 - 1). 

The transition to chaos in area preserving maps exhibits critical scaling behavior [9,10]. This means that at the 
threshold of its destruction (i.e. at criticality), a KAM curve possesses nontrivial scaling properties. In particular, 

critical KAM curves are fractals, well-known geometrical objects that remain invariant under appropriate successive 

spatial rescalings. These scaling properties are believed to be universal in the sense that they depend only on very 
general features of the map. In a way akin to what is done in the theory of phase transitions, one can introduce 

universality classes for classifying the fundamentally different ways in which the transition to chaos can take place. 

These universality classes group together all the maps that share the same scaling properties at criticality, even 

though the maps might "look" different. Thus, a fundamental problem is to determine the possible universality 
classes of the transition to chaos in area preserving maps. In [ 11-13] it was shown that this problem can be studied 

using renormalization group techniques. 

The goal of renormalization in area preserving maps is to provide a framework for the study of a KAM curve with a 
given rotation number. It is important to note that while KAM theory deals with the persistence of dense sets of invari- 

ant curves, the renormalization approach deals only with individual KAM curves of prescribed rotation numbers. This 

loss of generality is compensated for by a gain in precision: renormalization group estimates for the persistence of a 
KAM curve are considerably better than estimates provided by KAM theory, which are generally too conservative. 

The basic idea of renormalization is embodied in the renormalization group operator R, which maps the function 
space of area preserving maps into itself. Iteration of this operator, which takes an area preserving map into another 

such map, enables one to study a KAM curve on successively smaller spatial scales and successively longer time 

scales. From this "space-time zooming" the fate of the KAM curve can be determined. More formally, the destruction 
or persistence of the KAM curve of a map M is determined by the asymptotic behavior of 7~ acting repeatedly 

on M. As will be explained in Section 3, the asymptotic behavior of the operator 7~ is largely determined by its 
fixed points, which are maps invariant under renormalization. Thus, in renormalization language, the problem of 

transition to chaos corresponds to the problem of finding and studying critical fixed points of T~. Since the discovery 
of the critical period-one fixed point for twist maps [ 11,12], other fixed points have been found in standard twist 

maps [14-19]. In the present paper, we demonstrate the existence of a new, higher order, critical fixed point of 
the renormalization operator: the one associated with the transition to chaos of the 1/y KAM shearless curve that 

occurs in nontwist maps. This fixed point has two unstable eigenvalues. We also show that the simple fixed point 
for nontwist maps is a period-two fixed point of R.  

In Section 2, we review previous results on the transition to chaos in the standard nontwist map [7,8] and study 
the spatial scaling properties of the shearless curve at criticality. In Section 3, after reviewing the renormalization 
group formalism, we discuss the simple and critical fixed points corresponding to nontwist maps, and compute the 
two unstable eigenvalues of the critical fixed point. Section 4, contains the conclusions. The present work is based 
in part on [7]. 

2. Transition to chaos 

In this section we consider the destruction of the shearless curve. Section 2.1, contains the summary of previous 
results, while Section 2.2, contains the discussion of the spatial scaling properties of the shearless curve at criticality. 
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2.1. Summary of previous results 

The analysis of  the transition to chaos requires the use of  periodic orbits. Therefore, we review here our previous 
results on periodic orbits in the standard nontwist map [7,8]. 

A point x :=  (x, y) generates a periodic orbit of order n if after n iterations it returns to itself; i.e. Mnx = X. The 

rotation number associated with a periodic orbit is the rational number re~n, where n is the order of  the periodic 

orbit and m is the integer number of  times the orbit cycles through the x-domain before returning to its initial 

position. The standard nontwist map is reversible and accordingly can be decomposed into a product of involutions: 

M = Ii I0, where Iox : = ( - x ,  y - b sin(2~rx)) and l lx  : = ( - x  + a(1 - y2), y). The invariant sets of  the involution 

maps, 2-0,1 :=  {xl I0, ix = x}, form the symmetry lines of the map. For the standard nontwist map, 2-0 is the union of  
the following symmetry lines: 

Sl = {(x, y) I x = 0}, $2 = {(x, y) I x = 1}, (7) 

while the invariant set 2-1 is the union of  

s3 = {(x, y) I x = l a (1  -- y2)}, s4 = {(x, y) I x = l a (1  -- y2) + 1}. (8) 

Symmetry lines reduce the search for periodic orbits to a one-dimensional root finding problem, which is described 

further in [7,8]. 

Because of  the violation of  the twist condition, periodic orbits in the standard nontwist map come in pairs; that 

is, contrary to what happens typically in twist maps, there are two periodic orbits with the same rotation number on 

each symmetry line. This is evident when b = 0, in which case periodic orbits with rotation number m/n on sl, for 

example, are located at (0, :E~/1 - (m/n)/a) .  We call the periodic orbit with the larger y-coordinate the up orbit 

and that with the smaller y-coordinate the down orbit. As the map parameters are varied the up and down periodic 

orbits on a symmetry line can collide giving rise to a rich variety of  bifurcations including separatrix reconnection, 

a global bifurcation that changes the phase space topology in the vicinity of  the sbearless curve. At the collision 

point, the residue (cf. [20]) and the Poincar6 index of  the up and down periodic orbits vanish. 

Given a rational number r/s, the r/s bifurcation curve, b :=  ~r/s (a), is defined as the locus of  points (a, b) for 

which the r/s periodic orbits are at the point of  collision. Given an irrational number ~r, and a sequence of  rational 

numbers {ri/Si } such that l imi~ oo ri/Si = tT,  the tr bifurcation curve is defined by b = ~cr (a) :=  limi~oo ~ r i / s i  (a). 
By construction, for (a, b) values below ~/i all the periodic orbits with rotation numbers r/s < ~r are below their 

collision point and thus exist and can be found by using the symmetry line formalism. 

Given two integer numbers r and s, an r/s nontwist map is defined as a map satisfying the following two 

conditions: (i) The map has either no periodic orbits with rotation number greater than r/s, or it has no periodic 

orbits with rotation number less than r/s. (ii) The map does have periodic orbits with rotation number equal to r/s, 
and these orbits have zero residue and zero Poincarg index. The condition on the Poincar6 index is imposed to ensure 

that the zero residue periodic orbits are at the bifurcation point where the up and down periodic orbits have collided. 
Bifurcation curves can be used to construct tr nontwist maps, where tr is either a rational or an irrational number. 

In particular, the standard nontwist map with (a, b.) values restricted to the tr bifurcation curve is a one-parameter 
cr nontwist map. 

For acr  nontwist map, a shearless curve is defined as a curve with rotation number equal to tr. Throughout 
this (and the previous [8]) paper we concentrate on the study of  the l / y  shearless curve. This curve, when it 

exists, can be found approximately as follows: First, construct an approximation to the ~/il/y bifurcation curve; this 
was done by computing ~F,/Fi+~ for Fibonacci ratios Fi/Fi+l up to 75 ,025/121,393,  and by using the scaling 
relation of  Eq. (41). Using this, the 1 /y  shearless curve can be approximated for an (a, b) value on ~l/~, by the 
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set of up and down periodic orbits with rotation numbers {F2i_ 1/F2i }; we considered rational approximants up to 

46,368/75,025. 
To compute the critical (a, b) values for the destruction of the shearless curve we used the residue criterion 

[20], according to which a KAM curve exists (does not exist) if the residues of the periodic orbits approximating 

it converge to zero (infinity). The parameter value(s) at which the residues exhibit a nontrivial convergence (i.e. 
y~ 0, oo) defines the critical point. Employing the residue criterion, we found in [7,8] that the critical point for the 

destruction of the 1/y shearless curve in the standard nontwist map is: 

(ac, bc) = (0,686049, 0.742493131039). (9) 

At this critical value, the residues of the down periodic orbits on sL and $4, as well as the residues of the up periodic 

orbits on s2 and s3 converge to the six-cycle {H1, H2, H3, H4, 145, H6} where: 

HI = 2.325 4- 0.002, 

H3 = -0 .599  4- 0.010, 

145 = 2.575 4- 0.020, 

H2 = 2.575 + 0.020, 

H4 = -1 .283 ± 0.001, 

H6 = 1.548 4- 0.037. 

(10) 

( l l )  

(12) 

On the other hand, the residues of the up periodic orbits on st and $4, as well as the residues of the down periodic 

orbits on s2 and s3 converge to the six-cycle {Hi, - /42,  H6, H4, -145, H3}. 

2.2. Spatial scaling at criticality 

Now consider the spatial scaling of the shearless curve at criticality. To this end it is convenient to introduce 
symmetry line coordinates, 

:= x - ½a(l - y2) ,  Y :---- Y - Ys, (13) 

where Ys is the y-coordinate of the point where the shearless curve intersects the s3 symmetry line. In these 
coordinates, the s3 symmetry line becomes a straight line that intersects the shearless curve at the origin. 

Fig. 1 (a) shows, in symmetry line coordinates, a portion of the 1/y shearless curve at criticality. Fig. 1 (b) shows 
a magnification, centered at the origin, of Fig. l(a); the x-coordinate is scaled by a factor of 321.92 and the y- 

coordinate is scaled by a factor of 463.82. The spatial self-similar (fractal) structure of the l / y  shearless curve at 

criticality is displayed by the remarkable similarity between Figs. l(a) and (b). To understand the origin of this self- 
similarity, up periodic orbits with rotation numbers 55/89 and 17 711/28 657 are shown in Fig. 2(a), again using 

symmetry line coordinates. (Equivalent results are obtained for down periodic orbits.) In this figure, the circles 
denote the coordinates of the 55/89 up periodic orbit, while the crosses denote the coordinates of the 17 711/28 657 
up periodic orbit after the spatial rescaling (J, ~) ~ (321.92 J ,  463.82 ~). A similar plot is presented in Fig. 2(b), 
where the 144/233 up periodic orbit (circles) is plotted along with the spatially rescaled 46 368/75 025 up periodic 
orbit (crosses). From Fig. 2(a) ((Fig. 2(b)) it is seen that if the spatial coordinates are rescaled then, close to 

(2, ~) --- (0, 0), a periodic orbit with rotation number F21/F22 = 17 711/28 657 (F23/F24 = 46 368/75 025) is 
transformed into a periodic orbit with rotation number F9/FIo = 55/89 (Fl l /F12 = 144/233). 

Thus, at criticality, in the vicinity of (2, ~) = (0, 0) the map is invariant under a simultaneous rescaling of 
spatial coordinates and rotation numbers. Since the rescaling of rotation numbers amounts to shifting the Fibonacci 
sequence by 12, F2k+12-l/F2k+12 --+ F2k-l/Fzk, it is convenient to write the spatial scaling using factors that are 
powers of 12; namely, (2, ~) ~ (ct 12 2, fl12 ~), where ct = t ~ ,  /3 = ~ .  In this way, the map at 

criticality remains invariant after 12 successive shiftings of rotation numbers Fi / t~ + l ~ F i -  1 / Fi and 12 successive 
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Fig. 1. Self-similar structure of  the 1/F shearless curve at criticality. In case (a) the shearless curve has been plotted in symmetry-line 
coordinates. Case (b) is a magnification of  (a) by a factor of  321.92 in the x-direction and 463.82 in the y-direction. 

spatial rescalings (~, ~) ~ (a J, fl ~). In Section 3, it will be shown that this is equivalent to saying that the map 
at criticality is invariant under the 12th iterate of the renormalization group operator. 

To formalize the previous ideas, let (Ji, Yi) denote the symmetry line coordinates of the up Fi-l/Fi periodic 
orbit closest to (0, 0) (similar results are obtained using the down-periodic orbit), i.e. closest to the point where the 
shearless curve intersects the s3 symmetry line. Then, in the limit n ---> ~ ,  it is observed numerically that periodic 
orbits approach the shearless curve (i.e. ~ and ~ converge to zero) according to the power laws 

X2n = X ( n )  ~ - 2 n ,  Y2n = y ( n )  fl-2n, (14) 

where X, y are the period-six functions (Az'(n + 6) = X(n) and y(n + 6) = y(n)) shown in Table 1. Note that only 
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Fig. 2. Self-similar structure of periodic orbits in the standard nontwist map at criticality. In (a) the circles denote the F9/FIo = 55/89 
down periodic orbit in symmetry line coordinates, and the crosses denote the F2!/F22 = 17 711/28 657 down periodic orbits in rescaled, 
( j ,  ~) _., (u 12j,/~ 12~), symmetry line coordinates. In (b) the FI1/FI2 = 144/233 down periodic orbits are plotted with circles along 
with the spatially rescaled down F23/F24 = 46 368/75 025 periodic orbit denoted by the crosses. These two plots show that, at criticality, 
the periodic orbits near the symmetry line remain invariant under a simultaneous spatial rescaling and shifting of rotation numbers. 



318 

Table 1 
Spatial scaling functions 2( and Y for up-periodic orbits 

D. del-Castillo-Negrete et al./Physica D 100 (1997) 311-329 

n X(n) y(n) 

1 1.303 1.387 
2 1.363 2.925 
3 1.306 1.073 
4 1.262 1.052 
5 1.516 1.105 
6 2.109 0.783 

coordinates (2~i, Yi) with i = 2n have been considered. This is because only periodic orbits with rotation numbers 
{ ~ - l / F i }  where i = 2n exist. For this same reason, the exponent of a and/~ is - 2 n ,  and functions 2( and 3; are 

period six, rather than period 12. 

Eqs. (13), (14), and the periodicity condition on y imply 

Ys = lim Yn+lYn+6 -- Yn Yn+7 ~ 0.2225230 (15) 
n--,~ (Yn+l -- Yn) -- (Y~+7 -- Yn+6) 

and 

ot lim X2n 1/12 Y 2 n  1 /12  1.668, (16) 
= - -  ~ 1.618, fl = l i m  Y2n+12 n--~ o¢ -~2n+12 n 

where in the calculation we have used periodic orbits with rotation numbers up to 46 368/75 025. Note that, as 
expected, ct 12 = 321.92, and/~12 = 463.82 are the scaling factors used in Fig. 1. 

3. Renormalization 

In Section 2, it was shown that after a spatial rescaling, at criticality, orbits with high period are mapped into orbits 
of lower period (as shown e.g. in Fig. 2). In this section the renormalization group formalism is used to explore this 

invariance in greater detail. 

3.1. Renormalization group operator 

Following [ 11-13] we define the renormalization operator for the 1/F KAM curve in terms of pairs of commuting 
maps. A pair of commuting maps is an ordered pair of maps, (U, T), such that UT = TU. The orbit of a point 
x generated by (U, T) is the set of points {UqTPx}, where q and p are integers. Given the set of periodic orbits 

{xi} of M with rotation numbers {mi/ni }, the commuting map pair (U, T) associated with M is defined by the 
condition U mi Tnixi = xi. Commuting map pairs are useful because they provide a simple way for defining the 
renormalization group operator. 

For the 1/F KAM curve, the renormalization group operator is defined as follows [ 11,12]: 

This operator contains both time and space renormalization. The space renormalization is represented by the operator 
B, which rescales the (x, y) coordinates, i.e. (x, y) --~ B(x, y) where 
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(18) 

The values of ~ and fl are chosen to give the appropriate magnification of the phase space in the vicinity of the 1/F 

KAM curve. 
The idea of time renormalization is to transform periodic orbits with large periods into periodic orbits with smaller 

periods, which amounts to a rescaling of time. To understand how Eq. (17) accomplishes this, note that: 
I f x  is a periodic orbit of (U, T) with rotation number Fj_I /F j ,  then x is a periodic orbit of (/(1, 7 ~) = (T, TU)  

with rotation number Fj_2/Fj_  I. 
The proof of this result is straightforward: ~--] Fj-2 ~ "Fj-I = T Fj-2 ( T U )  F)-I = T Fj-2+F) I u F j  i = U p) I T F j ,  where 

the commutation relation TU = U T  and the definition of the Fibonacci sequence, Fj = Fj- I  + Fj-2, have been 
used. Hence, if x is a periodic orbit of (U, T) with rotation number Fj_ I /F j ,  then uFj -~ TFj X = x, and since 
uFj_~ TFj = (jFj_2~.Fj ~, it is concluded thatx is a periodic orbit of (/], 7") with rotation number F j - 2 / F j - I .  By 

induction it is apparent that an orbit with rotation number Fj -1 /F j  under (U, T) is transformed into an orbit with 

rotation number Fj_ ,_  l / Fj_n under ~ "  (U, T). Evidently 7~ shifts the rotation number of the periodic orbits, an 

operation that is equivalent to rescaling time. 

To better understand the action of ~ on the space of maps it is convenient to introduce coordinates for this domain. 

This is done by using the residues. A map M will be assigned coordinates (RIj I, R[2] . . . . .  R[il . . . .  ), where R[i] 
is the residue of the Fi/Fi+l periodic orbit of M that approximates the 1/F KAM curve. Since the residues of a 

map are independent of the coordinates used, maps related by coordinate changes of the (x, y) space will have the 
same coordinates in the space of maps. In fact, using the residues as coordinates amounts to dividing the space 
of maps into equivalence classes that contain maps with the same values of the residues for the periodic orbits 

approximating the KAM curve under consideration. This is advantageous because the destruction of a given KAM 

curve only depends upon the values of the residues. Let (Rill, R[21 . . . .  R/il . . . .  ) denote the coordinates of 7~(M). 
Since a periodic orbit of M with rotation number Fi- l  /Fi is transformed into a periodic orbit of 7~(M) with rotation 

number F i - z / F i - l ,  R[i] = R[i+I] for i = 1,2 . . . .  Hence in residue coordinates, the renormalization operator acts 
simply as a shift (or translation of coordinates). 

One can view the operator 7~ as defining a dynamical system in the space of maps. The existence of the 1/y 

KAM curve in a map M is then determined by the asymptotic behavior of 7~ acting repeatedly on M. For example, 

if the coordinates of a map M have a tail of zeroes, i.e. if M = (Rli I . . . . .  Rill, O, O, 0 . . . .  ), then the sequence 
{M, 7~M, ~2M,  7~3M . . . .  } will converge to the map T = (0, 0 . . . .  0 . . . .  ). Since the residues of T are all zero, the 

1/y  KAM curve exists in T and therefore it exists in M, which is, from a renormalization point of view, equivalent 

to T. This is the renormalization group interpretation of the residue criterion. 
Thefixed points of "R., which are maps invariant under the renormalization, play a crucial role in the asymptotic 

behavior of ~ .  In particular, if a map M is in the basin of attraction of a fixed point P, then ~n  M --+ P as n --~ c~. 
From the renormalization point of view, all the maps located in the basin of attraction of a fixed point are equivalent 

to the fixed point. 
There are two kinds of fixed points: simple fixed points and critical fixed points. A simple fixed point is an 

integrable map, and its basin of attraction contains all the maps for which the KAM curve under study exists. The 
problem of KAM theory, namely the study of the persistence of invariant circles under perturbation, is translated 
in renormalization language as the problem of showing that the simple fixed point is an attractor of all maps in 
its vicinity. The critical fixed point is the map for which the KAM curve under consideration is at the threshold 
of its destruction, i.e. at criticality. All the maps in the basin of attraction of the critical fixed point are, from the 
renormalization point of view, equivalent to the fixed point and thus exhibit the same universal transition to chaos. 

This is the renormalization interpretation of universality. 
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3.2. Simple fixed point 

For twist maps, the simple fixed point is a period-one orbit of the renormalization operator [12]. For nontwist 
maps, no period-one fixed points exist. However, a period-two orbit of the renormalization operator that corresponds 
to the simple fixed point does exist. This period-two fixed point is given explicitly by 

U + ( y ) = (  x-Y+y2/Y)y T + ( ; ) = ( x + l + y 2 y  ) 
(19) 

and 

U - ( y ) = (  x-Y-y2/Y)y T_(y)=( x+l-y2 
y )"  (20) 

It is easy to check that g (U± ,  T±) = (U:~, T:F), and thus 7~2(U±, T±) = (U±, T±) with 

B = ( - Y  ? y ) 0  " (21) 

I f x  is a periodic orbit of (U+, T~) with rotation number w± = m/n,  then by definition U~T~x = x which, 
upon using Eqs. (19) and (20), implies n(1 4- y2) + m ( - y  4- y2/y) = 0. This last equation gives the following 

expression for the rotation number as a function of y: 

y (1 4- y2) (22) 
w+(y) -- y,2 q: y2 " 

Accordingly, the map pairs of the period-two fixed point correspond to the following integrable nontwist maps: 

T+) ~. ?, [ Xi+l = xi + w+(Yi+l) (u+, 
I Yi+l = Yi. 

(23) 

Observe that at y = 0, as expected, Ow+/Oyi = 0 and w± = 1/y. Therefore, (U+, T±) are nontwist maps with a 
shearless curve of rotation number equal to 1/y at y = 0. Upon a change of coordinates the standard nontwist map 
of Eqs. (3) and (4) with b = 0 is equivalent to the map (U_, T_). On the other hand, for y close to zero, the map 
(U+, T+) is equivalent, up to a coordinate change, to a standard nontwist map with an "inverted shear"; i.e., to the 
map: xi+l = xi + a(1 + y2+l ), Yi+l = Yi. Because of this, the map (U+, T+) ((U_, T_)) only possesses periodic 
orbits with rotation numbers greater (less) than 1/y. As said before, the simple fixed point is important because its 
basin of attraction contains all the nontwist maps for which the 1/y shearless curve exists. In particular, the standard 
nontwist map, with (a, b) values on the b = ~l / r  (a) bifurcation curve and with a < ac, defines a one-parameter 
family of nontwist maps that is in the basin of attraction of the simple fixed point. 

To illustrate the invariance properties of the period-two fixed point, up and down periodic orbits of (U_, T_) 
with rotation numbers Fs/F6 = 8/13 and Fv/F8 = 21/34 are shown in Fig. 3. In this figure, the circles denote the 
coordinates of the 8/13 periodic orbits, while the crosses denote the coordinates of the 21/34 periodic orbits after the 
spatial rescaling (x, y) ~ (yZx, y2y). Tile figure shows that (U_, T_) remains invariant under the simultaneous 
rescalingofspatialcoordinates (x, y)--> (yZx, y2 y ) and of rotation numbers Fk + 2 / Fk + 2 + l ~ Fk / Fk + l. Evidently, 
(U-,  T_) is invariant under 7~ 2, since 7~ rescales the rotation numbers as Fk+l/Fk+l+l ~ Fk/Fk+l, and the matrix 
B in Eq. (21) rescales the coordinates by - y .  
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Fig. 3. Trivial self-similar structure of the integrable nontwist map. The circles denote the F5 / F6 = 8/13 up and down periodic orbits, and 
the crosses the spatialy rescaled, (x, y) ~ (y2x, y2y),  F7/F 8 = 21/34 up and down periodic orbits. The plot shows that the integrable 
map is invariant under a simultaneous spatial rescaling and shifting of rotation numbers. 

3.3. Critical fixed point 

As stated before, in residue coordinates, the nth coordinate of  a map M is given by the value of the residue of  the 

periodic orbit with rotation number Fn/Fn+]. However, when dealing with nontwist maps, one must keep in mind 

that only half of  the Fibonacci sequence exists; and, therefore, only half of the coordinates are available. Consider 

the following nontwist map 

A = (Hi,  - ,  H2, - ,  H3, - ,  H4, - , / - /5 ,  - ,  H6, - ,  HI, - ,  H 2 , - ,  H3 . . . .  ), (24) 

w h e r e  Hi are the elements of  the six-cycle in Eqs. (10)-(12) and the " -"  denote the missing elements of  the Fibonacci 

sequence. By construction, this map is a period-12 fixed point of  the renormalization operator, i.e. 

7-~12A = A. (25) 

Let Me denote the standard nontwist map at criticality, i.e. (a, b) = (ac, be) as given in Eq. (9). In Section 2, 

it was described how the residues of  Mc converge asymptotically to the six-cycle {HI, H2, H3, H4, Hs, H6}. In 

renormalization language this means that 

lim T'gnMc = A; (26) 
n-- -~  O@ 

that is, the standard nontwist map at criticality is in the basin of  attraction of  the period- 12 fixed point of  R.  

To gain some intuition about the dynamics of  7~, consider the projection onto a two-dimensional plane/7 in the 

space of maps. Without loss of generality,/7 will be taken to be the (Rii l, RiTi)-plane, where Rin I is the residue 

of the [n] = F,/Fn+I periodic orbit of M. Accordingly, a map with coordinates (RIll, RI31, R151 . . . . .  Rlnl . . . .  ) is 
projected o n t o / 7  as a "point" with coordinates (Ril l, RIT]). We denote the coordinates of  M restricted t o / 7  by 
MIn .  The analysis is simplified if instead of  studying an orbit of ~ one considers an orbit of 7~ 6. Under 7~ 6 the 

critical point becomes a period-two fixed point, which is easier to visualize than the period-12 fixed point of  ~ .  
Consider the residue coordinates of Me that correspond to the down orbits on sl. The coordinates of  McLrr 

are (2.778, -1 .325) ,  which are the residues of  the periodic orbits of  Mc with rotation numbers I /2  and 21/34, 
respectively. Under the action of  ~6,  the coordinate corresponding to the periodic orbit with rotation number 1/2 
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Fig. 4. Iterations of the sixth power of the renormalization group operator, 7"~ 6, projected onto the (R[I], R[7]) plane in the space of 
maps. For visualization purposes the iterations are shown in two separate panels. The stars denote the orbit of "Y'~ 6 acting on Mc, the 
standard nontwist map at criticality. Since Mc is in the basin of attraction of the critical period- 12 fixed point of 7"~, the stars converge to 
the period-two cycle {(H l , H4), (H4, HI )}. The circles and crosses denote orbits of 7~ 6 acting on the standard nontwist map below and 
above criticality, respectively. 

is transformed into that with rotation number 21/34, and the coordinate corresponding to the periodic orbit with 
rotation number 21/34 is transformed into that with 377/610; accordingly, T~6MclH = ( -1 .325,  2.328), where 
2.328 is the residue of the orbit with rotation number 377/610. Repeating this procedure produces a set of points 
of H generated by Mc under the action of ~6;  namely, 

( _ ~ c  . . sjd := {(2.778, --1.325), (--1.325, 2.328), (2.328, --1.283), .}. (27) 

Alternatively, one can consider the residues of the up periodic orbits of Mc on s3 and construct the set O~ u. 
The stars of Fig. 4 denote the points of OCs~d and Os3u . c  For convenience we have plotted these points on two 
separate panels that depict separate regions of the H-plane. Observe the convergence to the period-two orbit with 
coordinates { ( -  1.283, 2.325), (2.325, - 1.283)}, which is precisely the orbit defined by the elements of the six-cycle 
H4 = -1 .283  and H1 = 2.325. Thus, the set of points Ocd U Oc3u lies on the stable manifold of the fixed point. In 

a similar way, the unstable manifold of the fixed point can be visualized by iterating 7~ 6 on  the standard nontwist 
map below and above criticality. The circles in Fig. 4 denote the orbits below criticality, while the crosses denote 
the orbits above criticality. These orbits were constructed by computing the residues for (a, b) values slightly below 
and slightly above (ac, bc). Observe that, as expected, below criticality iterations of the renormalization operator 
show a tendency towards the simple fixed point (0, 0), whereas above criticality the residues converge to ( ~ ,  ~ ) ,  
which can be viewed as another simple fixed point of ~ .  

3.4. Eigenvalues 

Now we study the renormalization group operator 7~ in the vicinity of the critical fixed point A. In particular, we 
compute the eigenvalues that govern the rate of departure from A. Fig. 6 shows a cartoon of the infinite-dimensional 
space of maps in the neighborhood of A. The axes in the figure label the residues coordinates, S is the stable 
manifold, and/4 is the unstable manifold. That is, iterations of a map on S asymptotically approach A, whereas 
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iterations of a map on Lt depart from A. Orbits nearby S, like those starting at PI and P2 in Fig. 6, initially follow 

the stable manifold and then depart from A along the unstable manifold. 
It will prove convenient to work with the 12th iterate of 7~, rather than with 7~ itself. Accordingly, we define 

7~ := 7-~ 12. (28) 

The critical fixed point A is then a period-one fixed point of 7~. Close to A the renormalization operator can be 

linearized: 

7~(A + 6A) ~ A + OT~(A) • aA,  (29) 

and if {~pi} are the eigenvectors of DT~ with eigenvalues {/zi }, then 

7~"(A + 6A) .~ A + ,~iCitl~nlpi, (30) 

where ci is the projection o fgA  along 7ti. If I#il > 1, #~' --+ e~ as n --+ ~ ,  and the eigenvalue is called unstable. On 
the other hand, if I#il < 1,/z~' --+ 0 as n --+ ~ and the eigenvalue is called stable. Following the terminology used in 

the theory of critical phenomena we refer to the eigenvectors with unstable eigenvalues as relevant eigenvectors, and 
to the eigenvectors with stable eigenvalues as irrelevant eigenvectors. Thus, only perturbations ~ A with components 

along the relevant eigenvectors lead to departures from criticality. Since the relevant eigenvectors span the tangent 
space of L,/at A, the dimension of H equals the number of relevant eigenvectors. This number is closely related to 

the number of independent control parameters necessary to put the system at criticality. In particular, if criticality 

is observed at an isolated point in parameter space, then the number of relevant eigenvectors equals the number of 
control parameters. In the simplest case, e.g. the standard map, there is only one control parameter. However, as we 

have seen before, for the standard nontwist map we have to adjust two parameters in order to achieve criticality, 

which occurs at the isolated point (ac, be). Thus, in this case, there are two relevant eigenvectors, and the unstable 
manifold H is two-dimensional as shown in Fig. 6. All maps on $ are, upon renormalization, equivalent to A and 

therefore share all the scaling properties of A. For example, the spatial scaling properties of the 1/y shearless curve 
in the standard nontwist map at criticality are shared by A, and all the maps on $. Departures from criticality also 

exhibit universal scaling behavior because all the departures are governed by the same relevant eigenvectors. 
The main difficulty in computing the relevant (i.e. unstable) eigenvalues of 7~ is that the space of maps is infinite- 

dimensional whereas the (a, b) parameter space has only two dimensions. Obviously, with only two parameters the 

space of maps cannot be completely explored. However, the two-dimensional unstable manifold Lt in the vicinity 
of A can be explored using (a, b) values close to (ac, be). In order to do this, we define a renormalization operator 

in (a, b) space, P(an, bn) = (an+l ,  bn+l ) ,  such that for (a, b) close to (ac, bc): 

lim p"(a, b) = (ac, bc), 
r / ~  f)G 

and 

p (ac, bc) = (ac, bc), 

7~ (M(p(a,  b))) = M(a, b). 

(31) 

(32) 

(33) 

Conditions (31) and (32) mean that (ac, bc) is an attracting fixed point of p, and (33) means that p acting on the 
space of parameters is the inverse of 7~ acting on the space of maps. This last condition is the key property that will 
be used to compute the eigenvalues of 7~ from the eigenvalues of p. 

Near (ac, be), the operator p can be linearized: 

p(ac + 3a, bc + 3b) ~ (ac, bc) + Dp(ac, bc) - (3a, 3b), (34) 



324 D. del-Castillo-Negrete et al./Physica D 100 (1997) 311-329 

(ac, bci 

O, 
f 

Fig. 5. Paths in (a, b) parameter space used to compute the relevant (i.e. unstable) eigenvalues. (ac, bc) is the critical value, and • 1/~, 
denotes the 1/y bifurcation curve, i.e. the set of (a, b) values for which the rotation number of the shearless curve is 1/y. ~±, which 
approaches (ac, bc) in a direction tranverse to ~1/~,, yields the dominant unstable eigenvalue 81. In the limit (a, b) ~ (ac, bc), ~11 
approaches (ac, bc) along ~1/×, and yields the second unstable eigenvalue ~2. Maps M(a, b) for (a, b) values on 27± and ,UII, follow 
paths in the space of maps like the ones in Fig. 6 starting on PI and P2, respectively. 

and if ~i, i = 1,2, are the eigenvectors of  Dp with eigenvalues Pi, then 

p ((ac, bc) 4"-~i) "~ (ac, bc)-I-vi~i .  (35) 

In the limit n -~ oo, M(pn(a ,  b)) is on the unstable manifold H and, because of  (33), there is a one-to-one 

correspondence between paths in (a, b) space generated by p, and paths in/.4 generated by ~ - 1 .  This implies that 

the unstable eigenvalues of  7~ are the inverses of  the stable eigenvalues of  p, that is/zi = 1/vi. Denoting the unstable 

eigenvalues of  7~ by 61 and 82, it is concluded from (28) that 

8 i = ( l / v i )  1/12. (36) 

To compute the eigenvalues 1)i, we will study the linear behavior of  p along two directions in (a, b) space: one 

transverse and the other tangent to the 1 /y  bifurcation curve at (ac, bc) as shown in Fig. 5. 

3.4.1. Computation o f  6l 
To compute the first eigenvalue consider the following sequence of  parameter values: 

,U± = {(ac, bl2]), (ac, b13 ]) . . . .  (ac, b[nl) . . . .  }, (37) 

where b[nl :=  ~[n] (ac). (Recall [n] = Fn/Fn+l.)  This sequence approaches the critical point (ac, bc) in a direction 
"perpendicular" to the ~/il/× bifurcation curve as shown in Fig. 5. The action of  the renormalization operator p on 
this sequence is defined as 

p (ac, b[n]) :=  (ac, bln+121). (38) 

By construction, this definition satisfies conditions (31) and (32). Condition (33) will be satisfied provided 

~ ( M ( a c ,  b[2n+121)) ---- M(ac,  bI2n]). (39) 
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Table 2 
Residue invariance for 31 

m R[2m-l](ac, b[121) R[2rn-l+12l(ac, b[24]) 
1 2.778 2.328 
2 2.652 2.596 
3 -0.759 -0.609 
4 -1.334 -1.292 
5 2.673 2.674 
6 1.572 1.510 

Table 3 
Scaling function B± (n) 

n B±(n) n B±(n) 

I 1.2337 7 1.1295 
2 -2.0434 8 -1.6287 
3 1.8613 9 1.8445 
4 -1.3599 10 -2.3512 
5 1.6866 11 1.6863 
6 -1.3433 12 0.3038 

Denoting by Rim I (a, b) the residue of  the Fm/ Fm+l down periodic orbit of  the standard nontwist map at (a, b), and 

remembering that 7~ shifts the rotation number by 12, (39) becomes 

R[2m-ll(ac,  b[zn]) = R[zm-l+lz](ac, b[2n+12])- (40) 

Table 2 shows the values of R[2m- 1] (ac, b[i 2]) and R[2m- 1 + 12] (ac, b[24]) for down periodic orbits for m = 1, 2 . . . . .  6. 
These values show that in the limit n ~ ~x~, n - m finite, (40) is satisfied and thus O, as defined in (38), satisfies 

condition (33). 

Having defined p on the sequence Z'±, let us study the linear behavior of  p along this sequence. It is observed 

numerically that in the limit n ~ ~x~, 

b[,,+ll = be + B ± ( n )  Vl/12, (41) 

a result that is accurate, for n > 20, to 11 significant figures. In Eq. (41 ) B± (n) is the period- 12 function, B± (n + 12) = 

B±(n) ,  given in Table 3, bc is the critical b-coordinate of  (9) and 

vl = lim (b ln+12]- - -bc~ .  (42) 
n---~c~ ~ b[nl - be / 

From Eq. (42) we have that for large n, 

bln+12 ] ~ be -I- Vl (b[n] - be). (43) 

Using this expression in (38) yields 

p(ac, b[nl) ~ (ac, bc) + vl (0, b[nl - bc), (44) 

thus, according to (35), (0, bin] - be) is an eigenvector of  p with eigenvalue vj. From (42) with n = 12, and (36) 

the following estimate for the first unstable eigenvalue of  7~ is obtained: 

61 ~ 2.683. (45) 

This eigenvalue gives the rate of departure from A for (a, b) values off the 1 /y  bifurcation curve. Next we compute 

the second eigenvalue giving the rate of  departure from (ac, be) for (a, b) values along the 1/~, curve. 
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Fig. 6. Cartoon illustrating the dynamics of the twelfth iterate of the renormalization group operator, 7~, in the neighborhood of the 
critical fixed point, A, in the infinite-dimensional space of maps. The axes label the residue coordinates. L,/is the two-dimensional 
unstable manifold, whose tangent space at A is spanned by the two relevant eigenvectors with unstable eigenvalues 61, and 32. ,S is 
a codimension-two manifold containing all the nontwist maps for which the l /y shearless curve is critical. This infinite-dimensional 
manifold defines a universality class for the transition to chaos in nontwist maps. Maps near ,5', like P] and P2, initially follow S and 
then depart from A along U.  

3.4.2. Computation of 8 2 

To compute the second eigenvalue we have to approach (ac, bc) following a sequence of (a, b) parameter values 

such that the corresponding path, M(a, b), in the space of maps, leaves A along the direction of the second 
eigenvector as, for example, the trajectory that starts a t / '2  in Fig. 6. It is natural to expect that parameter values 
approaching (ac, be) along the 1/y bifurcation curve, b = ~l /×(a) ,  satisfy this condition. That is, as a --~ ac, 
M (a, ~1/× (a)) leaves A along the direction of the second eigenvector. In terms of the operator p this means that the 
tangent of the 1/y bifurcation curve at (ac, bc) is an eigenvector of p, and that there is a correspondence between 
(a, b) points on ~1/× close to (ac, bc), and points on the unstable manifold generated by the second eigenvector. 

Thus, following a similar approach to the one used before, we compute the second eigenvalue 32 by studying 

the standard nontwist map for (a, b) values on ~/ij/y close to (ac, bc). However, in this case the problem is much 
harder because in practice it is necessary to compute the l / y  bifurcation curve to extreme accuracy, otherwise the 
first eigenvalue dominates the result. That is, if the (a, b) values are not close enough to the l / y  bifurcation curve, 
the departure of M(a, b) from A under the renormalization operator will have a dominant component along the 
direction of the first eigenvector. The strong effect of the first eigenvalue is one of the reasons why it is so difficult 
to compute the critical parameter value (ac, bc). In fact for (ac, b) with b ----- ~[241 (ac) ([24] = 75,025/121,393, 
[[24] - 1/y[ ~ I 0-1]) the evolution of M (ac, b) under 7~ is dominated by the first eigenvalue, even though (ac, b) 
is very close to the 1/y bifurcation curve. This is the reason why, as explained in [8], to compute (ac, bc), that is to 
have M(ac, bc) on the stable manifold S, it is necessary to compute bc to 12 digit accuracy. 
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Table 4 
Residue invariance for (~2 

R[m](a~4J,b~4]) . [16] b~16]) m R[m+12](a c , 
5 0.5435 0.5241 
6 0.1479 0.1474 
7 0.3397 0.3165 
8 0.2083 0.1938 
9 0.2799 0.2429 

10 0.2340 0.1887 
II 0.2610 0.1820 

Since finding a sequence of (a, b) parameter values that are exactly on ~1 /y  is difficult, we will use an approximate 

sequence, namely (a, b) values on Fzn / Fzn + 1 bifurcation curves for n = 1, 2 . . . .  In the limit n --~ cx~, this sequence 
approaches (ac, be) along ~ l / y  as shown in Fig. 5. Note that for these parameter values, there are two 1/y  KAM 
curves, the so-called up and down curves. Thus we will consider the sequence 

Z, II {(a~2l b~2l), ~ [4l .}, (46) = (a c , b~ 4]) . . . . .  (a~ 2n], b~2n]),.. 

[2nl b~2,]) is the point on the F2n/F2n+l bifurcation curve at which the up (and down) where for n = 1, 2 . . . . .  ~ac , 

1/V KAM curve is critical. The renormalization operator p acting on this sequence is defined as 

_[2n+12] h[2n+12]]  p(a~ 2n], b~ 2n]) :---- (u c , v  c . .  (47 )  

This definition clearly satisfies (3 l) and (32), and condition (33) will be fulfilled provided 

R[ml(a~ 2nt, b~ 2nl) ---- RIm+12](a~ 2n+121, b~2n+121). (48) 

Table 4 shows numerical evidence that support the validity of  this relation. 

Having defined p we turn now to the problem of studying the behavior of  p near (ac, bc). In the limit n --> oc, 
the {a[2,,1} sequence satisfies the scaling relation 

a12n] c = ac + A II (n) v~/6, (49) 

where All (n) is a period-six function, A H (n + 6) = All (n), ac is the critical a-coordinate of (9), and 

{ a~ 2n+12l - ac ~ 
v2 = n l im ~ a ~ 2 , l _ a c  ] '  (50) 

Thus. for large n 

a~. 2"+121 ~ ac + v2 (a~ 2nl - ac). (51) 

On the other hand, the b values scale as 

b~. 2"1 = ~)l/y(a~ 2hI) + BII (n)171 n/6, (52) 

where Bql is a period-six function, and 

(b~2n+12] - ~ l / y ( a ~ 2 n + ' 2 ] ) )  

t T , -  l i m  k b [ ~  ~1/×(a~2nl) " (53) 
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Accordingly, for large n 

b[2n+12] ~ bc + vl (bc - ~/il/r (ac[2nl)). (54) c 

From (51) and (54), we then conclude that for large n 

p(a~Zn], [2n] b c ) ~ (ac, bc) + Vl (0, bc - ~ l / y  (a~2n])) h- v2(a~ 2hI ac, 0). (55) 

As discussed before, the eigenvalues of T~ are related to those o fp  by (36). The approximate value of ~1 as determined 

from (53) gives, using (36), ~ ~ 2.748, which within numerical error equals 61. Thus, the second term on the right- 
hand side of (55) is the component along the previously found eigenvector. This component is not zero in this case 

because the sequence Elf is not exactly on ~/il/×. On the other hand, the third term of (55) gives the projection of 
the departure from A along the second eigenvector, whose eigenvalue according to (50) has the approximate value 

$2 ~ 1.511. (56) 

4. Conclusions 

In this paper we have presented a renormalization group study of the transition to chaos in area preserving nontwist 

maps, maps that violate the twist condition. These maps represent a type of degenerate Hamiltonian system. They 
occur in many applications: chaotic transport in fluid dynamics, reversed shear discharges in tokamak plasmas, and 

trajectories about oblate planets in celestial mechanics, to name a few. From a mathematical point of view, nontwist 
maps are interesting because, as mentioned before, most of the theorems (including the KAM theorem) assume the 

twist condition; many well-known and powerful results for area preserving maps remain to be proved for nontwist 

maps. 
The present work was based on the study of the standard nontwist map, a prototype nontwist map that violates 

the twist condition along a curve called the shearless curve. In [7,8] the critical parameter values for the destruction 

of the shearless curve with rotation number equal to the inverse golden mean 1/y = 1 (1 - V'-5) were computed, 

and it was shown that, at criticality, the residues converge to a period-six cycle. The objective of the present paper 
was to analyze these results in the renormalization group framework. 

Following a review of our previous results, the spatial scaling properties of the 1/y shearless curve were studied. 
It was shown that, at criticality, the shearless curve is invariant under the spatial rescaling (J, ~) ~ (a12~, fl12~) 

where u ~ 1.618, and fl ~ 1.668. It was also shown that periodic orbits (in the vicinity of the symmetry line) 
remain invariant under the simultaneous spatial rescaling, (~, ~) --~ (u 12 ~, f112 ~), and shifting of rotation numbers, 

Fz~+12-j/F2~+12 ~ F2k-1/F2~.  

Two fixed points of the renormalization group operator, associated with the transition to chaos in nontwist maps, 
were obtained: the simple period-two fixed point and the critical period-12 fixed point. An explicit expression for 
the simple fixed point was presented. This fixed point corresponds to integrable nontwist maps and its basin of 
attraction contains all those maps for which the shearless curve exists. The critical fixed point corresponds to a 
nontwist map at criticality, and its basin of attraction defines a new universality class for the transition to chaos. The 
standard nontwist map at the critical parameter values is in the basin of attraction of this critical fixed point and is 
thus representative of the new universality class. Finally, the unstable eigenvalues of the period- 12 fixed point were 
computed. Since the parameter space is two-dimensional, there are two different directions available for departure 
from criticality, and therefore, there are the two unstable eigenvalues: 61 ~ 2.683 and 32 ~ 1.511. 

We note that other high-order critical fixed points are likely to exist. In particular, for nontwist maps with xi+l = 

xi -+- a(1 - YP+I ), P 5 ~ 2, different transition scenarios and thus other critical fixed points are expected. Also, as in 
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the case of twist maps [ 15,19,21], it is expected that perturbation functions other than sin (27rxi) will yield different 

results. In critical phenomena, there are general geometric criteria, like dimension and symmetry, that allow the 

classification of the different universality classes. Unfortunately, in maps the problem is more complicated, and the 

criteria that go into the classification of the different universality classes are not known in general. 
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