Hamiltonian moment reduction for describing vortices in shear

S. P. Meacham
Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048

P. J. Morrison
Department of Physics and Institute for Fusion Studies, University of Texas, Austin, Texas 78712

G. R. Flierl
Center for Meteorology and Physical Oceanography, Massachussetts Institute of Technology, Cambridge,
Massachusetts 02139

(Received 27 December 1996; accepted 4 March 1997

This paper discusses a general method for approximating two-dimensional and quasigeostrophic
three-dimensional fluid flows that are dominated by coherent lumps of vorticity. The method is
based upon the noncanonical Hamiltonian structure of the ideal fluid and uses special functionals of
the vorticity as dynamical variables. It permits the extraction of exact or approximate finite
degree-of-freedom Hamiltonian systems from the partial differential equations that describe vortex
dynamics. We give examples in which the functionals are chosen to be spatial moments of the
vorticity. The method gives rise to constants of motion known as Casimir invariants and provides
a classification scheme for the global phase space structure of the reduced finite systems, based upon
Lie algebra theory. The method is illustrated by application to the Kida vd@eXida, J. Phys.

Soc. Jpn50, 3517(1981)] and to the problem of the quasigeostrophic evolution of an ellipsoid of
uniform vorticity, embedded in a background flow containing horizontal and vertical shear
[Meachamet al, Dyn. Atmos. Oceand4, 333 (1994]. The approach provides a simple way of
visualizing the structure of the phase space of the Kida problem that allows one to easily classify the
types of physical behavior that the vortex may undergo. The dynamics of the ellipsoidal vortex in
shear are shown to be Hamiltonian and are represewittthut further approximatiooeyond the
assumption of quasigeostrophy, by a finite degree-of-freedom system in canonical variables. The
derivation presented here is simpler and more complete than the previous derivation which led to a
finite degree-of-freedom system that governs the semi-axes and orientation of the ellipsoid. Using
the reduced Hamiltonian description, it is shown that one of the possible modes of evolution of the
ellipsoidal vortex is chaotic. These chaotic solutions are noteworthy in that they are exact chaotic
solutions of a continuum fluid governing equation, the quasigeostrophic potential vorticity equation.
© 1997 American Institute of Physids$1070-663197)00608-9

I. INTRODUCTION streamfunction, the ODEs did not yield their secrets so
gracefully. In the present paper, a systematic procedure,
An ubiquitous feature of fluid motion is the occurrence based upon the Hamiltonian structure of the ideal fluid equa-
of long-lived localized vorticies. Notable naturally occuring tions, is given for obtaining exact or approximate moment
examples are the recirculating vorticies generated at vorticityeductions where the resulting finite degree-of-freedom
fronts associated with western boundary currents in thenodel is manifestly Hamiltonian. We illustrate the procedure
ocean, Meddiessaline lenses that originate near the Strait ofby applying it to the problems of K and MPSZ.
Gibraltan, and Jupiter's Great Red Spot and White Ovals. In our application of the Hamiltonian reduction tech-
Since such vortices can exhibit relatively uncomplicated benique to the Kida problem, Sec. I, we obtain a simple way
havior, several authors have developed low degree-ofef classifying the possible types of phase space trajectory.
freedom models to describe their dynamics.Melander This consists of looking at different ways in which Hamil-
et al>®used moments of the vorticity as dynamical variablestonian and Casimir surfaces can intersect in the three-
and showed that their reduced model was Hamiltonian. Thdimensional phase space. The different types of intersection,
model of Kidd (K hereaftey is also Hamiltonian, but Mea- which are readily visualized, correspond to different types of
chamet al® (MPSZ hereafterhad some difficulty deciding physical behavior of the vortextumbling, nutation, and
whether their stratified quasigeostropHiQG) model was  stretching. Useful choices of variables with which to repre-
Hamiltonian in the most general case. MPSZ used a classicakent the Kida problem are already known, e.g., Ref. 2; we
Eulerian approach to determine a finite set of ordinary dif-will see that they arise naturally in the Hamiltonian approach
ferential equation$ODES that exactly described the motion once the problem has been couched in terms of normal co-
of a uniform ellipsoidal vortex in a shear flow given by a ordinates. We are led to similarly simplified sets of variables
streamfunction that was quadratic in the spatial variablesn the more complicated problem of the quasigeostrophic
For a restricted set of forms of this background shear, thegllipsoidal vortex in Sec. IV. The Hamiltonian reduction re-
were able to obtain an appropriate Hamiltonian by inspectiorsults in a much simpler set of equations for the three-
of the ODEs. For the case of a general quadratic backgroundimensional problem than those derived by MPSZ. We go on
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to use these equations to demonstrate that one type of behavheref andg are functions of the dynamical \'/.ariableis
ior that the quasigeostrophic ellipsoid can undergo is a chawvhich span the phase space, and the quantitjeare the
otic tumbling. Since solutions of the reduced Hamiltonianstructure constants for some Lie algebra. Repeated sum no-
equations for the quasigeostrophic ellipsoidal vortex are extation is used heréand henceforth
act solutions of the inviscid quasigeostrophic governing  Suppose now that a physically significant class of func-
equations and since these latter equations are continuutionalsF andG of (2) is comprised of those that depend on
equations, the chaotic solutions we observe correspond tgonly as functions of a finite set of simpler functionalsyof
chaotic behavior in a continuum model of a rotating stratifiedwe will call these simpler functionals, “moments f’ and
fluid. refer to the class ag. What we mean by moments can be
The Hamiltonian form possessed by the ideal fluid equateft fairly general, but we have in mind a procedure that
tions arises in many guises, because of the various variabl@svolves integration over the spatial variables. The number
that are used to describe fluid motion. The natural Hamil-of moment variables may be arbitrarily large. Since varia-
tonian structure of the ideal fluid equations is most clearlytions sy induce variations in the moments, the chain rule can
seen when the fluid is represented in terms of Lagrangiape applied to map the bracket () to one on the moments.
variables. One describes the fluid as a continuum of fluidrhis procedure results in a bracket where the inner bracket is
particles and it naturally inherits the Hamiltonian descriptiona filtered Lie algebra product®?! Significantly, it is possible
of particle mechanic8’ The Hamiltonian form of point vor-  to obtain reduced descriptions in terms of a finite number of
tex dynamic8 and the Hamiltonian form of the Euler equa- the moments where the Lie algebra product is closed. Details
tions in terms of Clebsch potentidlsan be shown to arise of the general mathematical structure will not be presented
from this underlying structure. However, in terms of Eule- here, rather we will demonstrate this by specific examples.
rian variables, the Hamiltonian nature of ideal fluids is less  The moment reduction described above does not give the
immediately evident. The degenerate Lagrange brackefhole story, since specification of the dynamics requires the
description,** the commutator descriptiorf,and the non-  Hamiltonian as well as the Poisson bracket. The above pro-
canonical Hamiltonian description in terms of a degenerateedure is only of interest if the Hamiltonian belongsoor
Poisson brackét can also be shown to arise from the under-can pe sufficiently closely approximated by an elemen#of
lying Lagrangian form. The same is true for the noncanonij e | if the Hamiltonian can be written in terms of these vari-
cal Hamiltonian description of vortex dynamics in thf&¥  apjes. In general, this is not possible. However, for a re-
and twd®~'" dimensions. It is this latter description that is stricted class of initial conditions it may be possible, which is
the starting point of this papeff-or review see the works by  the case for the examples presented here. Alternatively, there
Salmort® and Morrison™) We now briefly sketch this non-  may exist an expansion in terms of a small parameter that

canonical formalism. o o renders the Hamiltonian a function of the moments. This is
The noncanonical Hamiltonian description amounts tohe case for the Hamiltonian structure in terms of moments

writing the fluid equations in the form given by Melanderet al,? which has been generalized to
ax include background flow and worked out from first prin-
— =~ oHh (1) ciples by the methods presented h&&

The paper is organized as follows. In Sec. Il, we review
where x(x,t) is a shorthand for the set of fluid variables, the noncanonical Hamiltonian structure for a class of
e.g.,pu, p,..., andH[ x| is the Hamiltonian functional. The vorticity-like systems and sketch the general procedures of
noncanonical Poisson brackét, has the following form for  moment reduction. Then, in Sec. Ill, we illustrate this with

Eulerian media fields: the Kidd exact reduction. Kida obtained the equations of
SE G motion for an elliptical vortex patch in a background flow,
{F,G}=<X, il > (2)  where the dynamics involves time dependence of the ellipse
X oX aspect ratio and angle of orientation. Later, in aoh hoc

whereF andG are functionals{,) is (for the purposes here manner, Melandeet al? and Meacharet al* showed that
an integration over the volume corresponding to the spatidKida’'s equations were Hamiltonian. Here, we briefly review

variablex, and the functional derivative is defined by the Kida reduction and derive the Hamiltonian structure by
projecting the noncanonical Poisson bracket for the two-

5F[X;5x]=:< 5X,ﬁ>. (3y  dimensional Euler equation onto quadratic moments of the

8 vorticity. Constants of motion are described and related to

The bracket of(2) is a Lie algebra product for functionals, the underlying Lie algebra structure, where new and natural
i.e., is bilinear, antisymmetric, and satisfies the Jacobi idenS€ts Of canonical variables are obtained. A qualitative de-
tity, {F,{G,H}} + {G,{H,F}} + {H,{F,G}} = 0, provided the scription of the motioq is given by comparing the dynamics
“inner bracket” [,] is a Lie algebra product for functions. of the Kida vortex, which is shown to possess a phase space
Brackets of the form of2) are called Lie—Poisson brackets. described by the Lie group $21), to that of the free rigid

The analogous bracket in finite degree-of-freedom system@0dy, which posseses the phase spac&50 .
can be written out in coordinates as follows: As a model for an intrathermocline vortex in a shear

flow, Meachanet al® considered a blob of uniform potential

Lof o ici i i ifi
{f,g}:ZkCLJ —r—gj i ik=12,...N, ) vort|c_|ty embed_ded in an unbo_und_ed, uqurmly stratlfl_ed,
az' 9z quasigeostrophic flow. The motivation for this work, which
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is a generalization of the Kida reduction to an ellipsoid in the= (#/ax2 + #lay? + o). Multi-layer quasigeostrophic
quasigeostrophic flow, was to understand the conditions urpotential vorticity dynamics and other systems are given by
der which a shear flow might cause a vortex to break up. Irdifferent choices fol.

MPSZ it was conjectured, but not shown, that the equations The noncanonical Poisson bracket for this class of
which describe the ellipsoid are Hamiltonian. In Sec. IV thissysten®>?*is given by

is shown by beginning from the noncanonical Poisson

brackgt that describgs 'continuously stratified quasigeo- {F,G}zf Gl f E dx dy dz (10)
strophic flow and projecting onto moments. The resulting b |69’ &9

moment algebra is decomposed into the direct sum of Semi"rom which (5) is obtained in the form

simple and solvable components. The decomposition allows

one to obtain the Casimir constants of motion and points to  dq _ ~

natural sets of variables which can be used to classify the E:{Q*H}' (12)
dynamics. In the absence of vertical shear, the system is_ o ] )

integrable. Using the equations of motion based on the natith the Hamiltonian functional given by

ral variables, we consider the way in which phase trajectories _ 1 _

are perturbed by the addition of weak vertical shear. We H[q]=— > f qy dx dy dz 12

demonstrate empirically the presence of chaotic dynamics b

near homoclinic trajectories in the original system. The evolution equatiofiL1) can be verified by observing that
In Sec. V the paper is summarized, concluding remarkng/ga = — ¢, making use of the identity

are given, and generalizations are suggested.
f f[g, h] dx dy dz:—f g[f, h]dx dy dz (13
D D

Il. VORTEX DYNAMICS AND MOMENT REDUCTION from integration by parts and the neglect of surface terms
A Review of the noncanonical Hamiltonian (which is justifiable in the case of interest here whéreas
structure of vorticity-like systems compact support and by using the relation

Consider a class of vorticity-like systems with dynamics ~ 94(x",y’,2’,t) , , ,
Y Y Y =06(x=x")o(y—y")8(z—=2"),

governed by 54(x,y,z,t)
qg ~ _ which follows from(3).
EJF[W q]=0, (5) In the examples considered below, we wish to include
_ _ S _ stationary background flows with horizontally uniform vor-
whereq(x,y,z,t) is a vorticity-like variable, ticity, q(z) and streamfunction;s. The uniformity of q
of 99 ag of means that integrals such as thosg4h may not formally
(f,9li=————— (6)  converge. This is easily remedied as follows. We introduce

X dy  ox dy

_ the decomposition
is the normal Jacobian or Poisson bracket, afds a ~ —
=~ ~ = +
“streamfunction” that is related t@ by means ofg=L4, Y=y, 2+ gxy.z.0), o
where the linear operatdr is formally self-adjoint, i.e., G=q(2)+q(x,y,z,t), H=H+H[q],

f fLg dx dy dpf gLf dx dy dz (77 ~\Whereq=Lyand
D D

— 1
HereD, the domain of integration, can be taken toltfein H= _f aj ¥+ 2 'p)' (12)
the case of the two-dimensioné-D) Euler equation. The
conserved fieldj(x,y,t) is the scalar vorticity, antl: = V?

= 3%/9x? + 9%l 9y? sothat

We will make the restriction that the perturbation vorticity,
g, has compact support, although this could be relaxed a
little. Then, using the self-adjoint property bf we have that

. 8 oH _
5q

~_V2~_( (92 0-,2 o
e oy (.

For continuously stratified quasigeostrophic flow, the domai
is R3, G(x,y,z,t) is the potential vorticity, and

_ 02+(92+a?2(9~
=\t a2t zNg )Y

Trhe perturbation vorticity satisfies an evolution equation
similar to (5):

9 —
O Sl gal-o. (5)

wheref is the Coriolis parameter ardl(z) is the Brunt—  Defining a new Poisson bracket
Vaisda frequency. In the case of uniform stratification,

which we assume in Sec. I\¢,can be scaled byllf so that {F G}:f q{f f dx dy dz (10)
the potential vorticity relation becomes isotropid@ ' p |69 &9
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this becomes

aq ,
Z={a.H}. (1)

aj=Jijq dx dy dz (18)

If the set of functionsn’ is not complete, the transformation
In addition to the modified Hamiltoniafl2') (the “excess betweeng and thea’s is not invertible; however, the chain
energy”), the system5) conserves the Casimir invariant ~ rule can still be effected in “one direction.” To this end,
suppose that the functionals g@fthat we choose to deal with
C[q]::f 7(q) dx dy dz (14)  are restricted so that their dependence gproccurs only
D through functionsf, of the moments, i.e.,

¥yhere$§ is an arbitrary function. Casimir invariants are de- Flql="f(a), (19)
ined by

(C,F}=0, (15) and_ gonsi(_jer variations ia that are induced by arbitrary

variations inq:

for all functionalsF. This type of invariant is a property of
the noncanonical Poisson bracket and should be distin-
guished from invariants that depend upon the particular form
of the Hamiltonian, namely,

{P,H}=0. (16)

Of course{P}D{C}. The following linear momenta are ex- 5F[q'5q]=f oF 5q dx dy dz
amples of this latter type of invariant: b 49

5ai=fDm‘5q dx dy dz (20)

Variations inF andf are thus related according to

of oof :
P,=— dx dy dz P :f dx dy d 1 = : = Sal=—0 i
y fDXq xdy dz Py= | yqdxdy dz (17) 8f(a;02)= —— da'=— om 5q dx dy dz

and follow if H has spatial symmetriggnvariance with re- (21

spect to translations ig andx).
P 7 ) Since q is assumed to be arbitrary, comparison of the sec-

ond and last terms af1) results in
B. Reduction

1 of
There are physical situations in which parts of the fluid — m'. (22

are behaving coherently so that the number of “interesting” 5q  Ja

degrees of freedom is finite, at least over some limited timegypstitution of(22) and a counterpart for the function@l

Examples include the evolution of a vortex blob of finite sizejnto (10') yields

in an external shear flow and the interactions of multiple

blobs of vorticity. In the latter case, though, the vortex blobs g o

may eventually filament in a complicated way; if they are not {F.G}= ga oal J-Dq[m', m'] dx dy dz=:{f.g} (23

too close together, in the initial phase of their evolution the

blobs will behave qualitatively like point vortices. In this with

phase, the many internal degrees of freedom that correspond

to rearrangement of fluid parcels within each vortex may be _. ﬁ ij ‘9_9
: . . ; = "~ {fgl=io51 :

relatively unimportant. We are interested in obtaining a ki- Ja gal

nematic reduction that allows us to focus on the degrees ovahere the matrixJ, the cosymplectic form, is given by

freedom that dominate the dynamics when the vorticity field ' '

is distributed in coherent lumps. This amounts to finding a . o

particular set of reduced variables for describing the dynam-  J" :f qlm', m'] dx dy dz (25

ics that contain less information thaix,y,z,t). In general, °

this approach will yield low-ordeapproximationdo the full  The crucial closure property necessary for reduction is evi-

equations of motion. However, there are special cases fafent from(25), namely that) can be expressed in terms of

which the reduced equations are an exact representation gfe reduced variables, The moment reduction used below

the flow dynamics. We provide examples of exact reductions a special case of a more general situation where reduction
in Secs. Ill and IV. Since we would like the set of reduced|eads to Lie—Poisson form: if

variables to inherit a Hamiltonian structure, we begin with S .
the Poisson bracket afL0’). In actuality, we are seeking a [m', m]=c/mk, (26)
Lie subalgebra associated with this bracket; this amounts t
expressing the Poisson bracket in terms of projections, of
which will be seen to be an exercise in the chain rule for  jij_iigk (27)
. . . k

functional derivatives.

Suppose we have a set of functiongx,y,z) and define and the Poisson bracket takes the fa@nwith the a' vari-
the projections ofj on them ables serving as coordinates.

(24)

%e cosymplectic form becomes
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I1l. QUADRATIC MOMENT REDUCTION—THE KIDA ) )
PROBLEM a'=J gm dx dy, i=1,2,3. (34
D

A. Kida review .
The closure property necessary for reducti@6), follows

The Kida reduction presupposes a two-dimensionaby examining the produc{tmi, mi:
(z-independentvelocity field composed of an elliptical patch 1 o1 m2 a1 1 o3 o,
of uniform vorticity in a background shear flow. It is as- [m*, m7]=2x"=2m",  [m", m*]=4xy=4m®,
sumed that the elliptical vortex patch has unit vorticity, and ~ [m2 m?3]=2y2=2mq. (35

that the background flow is given by a quadratic streamfunc- . ) .
tion Therefore, the matrix) can be written in terms of the mo-

ments as follows:
0 2al  4a?
J=| —2at 0 2ad | . (36)

¥=2o(x2+y?)+ le(x2—y?), (29
wherew is the background vorticity and the principal rates of

strain in the directiony = *=x are+ Ze. Kida! showed that
- intai —4a? -2a® 0
the subsequent evolution of the vortex patch maintains the

elliptical shape, though the semi-major and semi-minor axesinceJ is proportional toa, this has the Lie—Poisson form,
of the ellipse,a andb respectively, and the ellipse orienta- ¢ f. (4). In Sec. Il D we will discuss the corresponding Lie

tion, ¢, are time dependent and governed by algebra. Consequences of the form Dbfare discussed in
a Secs. Il C and Il D below. We postpone a consideration of
a= > e sin 2¢, H until Sec. Il E.
The closure property observed above occurs for qua-
. b . dratic and lower moments, but in general fails for collections
b=—7 esin 24, (29 containing higher moments. However, there do exist special

sets of higher moments that result in closure.
ab . 1 . 1 a’+b?
=—Q+= = € ——— CO0S 2p.
= @bz 20t 2 g p2 8%
Incorporating the constraint of area preservation, these equa- As observed in Sec. Il, associated with noncanonical
tions may be simplified, Poisson brackets are special invariants known as Casimir in-
. variants, which for the finite-dimensional bracket obtained

C. Casimir invariant of reduced system

A=—eh sin2p (30)  above satisfiy
: A o el+\? of . aC
¢_(1+>\)2+§+§1—)\2 cos 2, {f.Ch=- 3" —7=0, (37)
whereh: = b/a is the aspect ratio of the ellipse. _ wheref is an arbitrary function. Sinckis an arbitrary func-
The above equations can be expressed as a SiMPiRyn, the phase space gradient of a Casimir invariant corre-
Hamiltonian system with one degree of freedbff: sponds to a null eigenvector of Since
.1 N\ \oH 1 2
3 5 A T
(32) —2a 0 2a —Zla =0, (39
4m 1 A2 ) IH —4a®> -2a* 0 a
=2 |—= =,
2\1=2%) 9N it is seen that
where the Hamiltonian is given by C=ala®—(a?)? (39)
2 2 2
H=e 1-A oS 2+ 1+A 21n (1+M) (32) is a Casimir and hence_ a constant of the motion.
A A A In terms of the vorticity g,
Equationg31) are Hamiltonian and canonical up to the pref- 5 ) 2
actoriz?/(1 — A?), which is easily transformed away. Other ~ C= JDX q dxdy| ny q dxdy|— fDqu dxdy .

canonical variables are discussed in Sec. Il H. (40)

Observe that by Schwarz’s inequalitg=0 whengq is uni-
form. C has a simple physical interpretation whens uni-

B. Bracket quadratic moment reduction form within an elliptical area centered on the origkirch-
For ellipses, the quadratic moments completely charachoff's elliptical vortex. Then,
terize the orientation and aspect ratio. Therefore we shall 92
examine the projection af onto the functions C= 1672 (Area)?. (41
1_y2 2_ 3_,2 _ _ _
me=xs, me=xy, me=ys, (33 In this case, constancy €f is equivalent to constancy of the
with the moments given by vortex area.
2314 Phys. Fluids, Vol. 9, No. 8, August 1997 Meacham et al.
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We can make a related interpretation®in the case of 0 0 2
a spatially varying vorticity distribution with a Gaussian pro-
filep ially varying vorticity distribution wi ussian p _glo 1 ol (46)
' 2 00
VA1A, —(12(\XP+Npy?) ; ;
a(x,y)=Q e e 1 ), (42 The eigenvalues df6) are 8 and+16. There are two semi-

simple Lie algebras of dimension three, which are distin-

Contours of constant are ellipses with semi-major and guished by the signature of the eigenvalues: either all the
semi-minor axes in the ratio\g /\,)2. The area within the eigenvalues have the same sign or one sign is different. The
contour first case is s@®), the Lie algebra associated with the Lie
group S@3), the group of rotations, while the second case,
which applies to the algebra ¢8.9) that was obtained here
is by reduction of the noncanonical bracket, i%®), the al-
gebra associated with the group @), where the argu-
_ ments indicate the number of eigenvalues with positive and
SD ’ . . .

VAN, negative signs, respectively.

In terms of the Killing form, the Casimir invariant for
semi-simple algebras can be written as follows:

XZ)\1+y2)\2: 1

ko

and the value of the Casimir is

2
1 P
c=Q? 71T_e; NONZ C=gja'd, (47)
e where g;; is the inverse ofg'l. For the case herd47) is
Thus equivalent to(39). In order for the expressio7) to be a
Q2 Casimir it must satisfy
C=—=— (Asp)" (43
167 . . K
JV —=2c/g;a'a“=0. (48
Equation(43) remains true even when the orientation of the Ja

elliptical Gaussian is rotated around the origin. Again we segyjth a! = :g'?a, anda = :g°a,, (48) is equivalent to
that C is related to the fourth power of the area inside a i tar kb 2 kb oKl _bt

particular vorticity contour of the vorticity distribution. This Ci 0jt0 "@a0 "y = C §" "ap@a = Ci C; C| apaa=0, (49)
should remain true for any smooth vorticity distribution that,,here the first equality follows fromg;,g'*= & @ and the sec-
contains vorticity of only a single sign and has a single ex-yndq from (45), the definiton ofg®. To establish the last

tremum. However, it is unclear how to generalize this i”ter'equality we use the Jacobi identity for the structure con-
pretation ofC when the vorticity distribution is more com- giants

plicated. _— ki i
cled+cgel'+ce?=0, (50)
which results in
D. Lie algebra normal coordinates i i
9 ci2cePtaya,= —cli(cP'cd - cf'el)apa, =0, (51)

The matrix(36), being linear in the dynamical variables,

is of Lie—Poisson form and can be written as where the last equality is now evident because of the anti-

o symmetry ina andb of the term in parentheses.
Ji=c) ak, (44) One can defineormal coordinatess those in which the
Killing form is diagonal. For our present system normal co-

i]
where, as noted ab_ovek are t_he structure constants _for .ordinates can be obtained by the following orthogonal trans-
some Lie algebra. Since the indices range over 1,2,3, this L'?ormation'

algebra is of dimension three. It is knoffrthat all Lie alge-
bras of dimension three belong to one of nine equivalence z'=(al+a3/\2, z2=a? Zz3=(al-a%/y?2,
classes, where equivalence is defined by identification under

. . . . or equivalentl
real coordinate transformations. It remains to determine q y

which algebra is associated wit86). This is an easy task, 1 0 1

which can be based upon a quantity called the Killing form, J— A A i 02 0

and leads to natural sets of coordinates, both for the algebra ™ a - 2

and for the dynamics of the Kida problem. 1 0 -1
The Killing form, for the purposes here, is defined by  1he associated cosymplectic matrix transforms according to
gl:=cilclk. (45) 0 22 -4z

Sinceg'! is symmetric under the interchange iond j, it J=AJAT=| —222 0 -27

possesses three real eigenvalues. If none of these eigenvalues
vanish, i.e.,g" is nondegenerate, then the algebra is called _ )
semi-simpleThis is the case for the algebra associated withand can be expressed®s= :C | Z, which defines the struc-
(36) for which the Killing form is ture constants in terms of the normal coordinates.

42 222 0
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In what follows, we will use a nonorthogonal transfor- vortex centroid remains fixed. In the case of two or more
mation to an alternative set of normal coordinates which hasortex patches with dynamics as described in Refs. 2, 22,
the advantage of making the Casimir symmetric with respecand 23, the linear moments possess time dependence.
to z2 andz® and simplifying the cosymplectic matrix, i.e., Relative to the fixed coordinate fran@xy, the principal

1,1, .3 > 2 3 1 .3 axes of the ellipse are determined by the time-dependent ori-

z'=(a+a’)/4, z°=a“l2, z’=(a —a’)/4 2 . . . - .

( )4, 2, ( )4, (52) entation¢(t), as described in Sec. lll A. We define coordi-

or equivalently natesX:=(X,y) in the frame instantaneously co-rotating
1 0 1 with the ellipse:
1 -~ T
z=Aa, A= Z 0 2 0 . (53 X=_7"X, (56)
1 0 -1 where
The corresponding cosymplectic matrix transforms as /%T:( cos¢  sin ¢) 57
0 £ _7z 7\ —sing cos¢)

JopJAT=| -2 0 - (54) Using (56), moments in the co-rotating frame can be related
) 1 to those relative to the nonrotating frame.

z 0 The Hamiltonian is the excess energy for the system,
and can be expressed 3di=-7T iz, which defines the i.e., with the logarithmic divergence subtracted off, and has
structure constants in terms of the normal coordinates.  tWo parts, one associated with the background (2@ and

In the normal coordinates, the Casimir invariant pos-& contribution due to the elliptical vortex patch:
sesses the following diagonal form: f

==149
D

C=4[(zH)%-(z%*-(2)?]. (59

The surfaces of constant Casimir are hyperboloids of revowhereq = V2 is unity inside the ellipse and zero outside,
lution with the Oz axis the axis of symmetry. Since these andH' describes the self-interaction.

surfaces extend to infinity, the algebra(zd), although From (28) we have

semi-simple, is not compact. We note ti@tis a homoge- — 1

neous polynomial iz'. We can rescale any positive value of ¥~ #©@1€) m'+ 3w —e)m’. (59

C simply by applying a uniform rescaling to t# without ~ Recall thatw is the background vorticity and is the back-
affecting the nature of the kinematical constraint imposed byground strain. Fron59) the first term of the Hamiltonian is
the Casimir. Similarly we can rescale any negattvénto  readily calculated:

any other _negativé:. V\/_hethe_r or not this rescaling affegts T=—Yo+e)al-{w—e)as.

the dynamicsof the motion will depend on how the Hamil- ) ) )
tonian is affected by the rescaling. In the particular case of © evaluate the self-interaction term we use the expression
the Kida ellipse, we kno® that the dynamics are insensitive for the streamfunction due to an elliptical vortex patch,
to the area of the vortex and so inspectiori4® tells us that Which can be found in the work by Lanfart. 159,

the way in which trajectories on any single positive Casimir

surface vary ag andw are variedand so as the positions of

z

— 1
1/;+§ ¢) dxdy=:7+H’, (58

constantH surfaces varywill provide a representative pic- } NX 24y 2_ }Jr £<i

ture of all of the possible behavior of the elliptical vortex in 2 1rn  at¥o o

shear. In Sec. Il E, we will choose to fix the area of the ~ 1 1a—1 (60)
elliptical vortex atw which means tha€= 7?/16. s (E—d)- 7557 e 2678 cos 2+ iy, E>&p,

where¢ is an elliptical coordinate,

Now we return to the remaining task of reduction, writ- x=V(1=A7)/h coshf cos ¢, (62)
ing the Hamiltoniar(32) in terms of the moments. It is at this Y=V(1=\*)/\ sinh ¢ sin ¢,
point of the reduction process that we introduce the assumpynq tanhg,=\. Here we have normalized the area of the
tion that the initial condition for the vortex dynamics is an ellipse to so that the semi-major and semi-minor axes are
elliptical vortex patch. Since, as Kitlhas shown, an initially A~ Y2 and\ Y2 respectively. Note that this fixes the value of
elliptical vortex remains elliptical in background flows of the e casimir surface, on which the motion lies, to Be
form of (28), the reduction is exact. The crucial reason for — _2/16 The quantityl, is necessary for obtaining the cor-
this is that the Hamiltonian can be written exactly in terms of ot pehavior at infinity® This quantity is not trivial since it
the quadratic momenta, which in turn determine the semi- depends upon the time-dependent ellipse aspect natito

axes and orientation of the ellipse. - _ see this, we writeys in terms of the Green’s function as
The centroid position is determined by the linear mo-¢qjows:

ments, which together with the quadratic moments form a
closed algebra. However, for the Kida problem these mo- (p:j G(|x—x')a(x") dxdy, (62)
ments are not needed, since in the background &8y the D ’

E. Hamiltonian moment reduction
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and observe that this expression asymptotes to 1
—+A
A

1
:,0~G(r)f g dx dy——zG’(r)x~f x'q dx'dy’. (63
D r D 1 3_’77 1
a-—a ——(——A)cos?q&,

The terms of63) are, respectively, the monopole and dipole 4r (71)
terms of the two-dimensional multipole expansion. The im- L g T
portant point here is that this representation of the stream- a‘a’—(a’) ~ 16’
function has only a Ir§ term, with no constant term. Requir- 5
ing the same of expressidb0) selectsy,. Since o a1+a3+g _ (117‘) _
T

. 1 _
§=&~In(r)+ z In(A) =In(1+X1) +In(2), 64 Using the last of Eqs(71), Q can be expressed in terms of

the asymptotic form off, according ta(60), is the moments as follows:

4 T
Y~ 30+ [N A=2In(1+N\)]+ 2 In(2) + . Q7 =—lat+a’t ). (72
(65)
The remaining equations @¥1) are recorded for later use.
Thus The HamiltonianH, is then given by
1 N 1 1 11 3
—_— T — _Z H(a)=— - (w+e)a — - (w—e)a
o 7 In (1+)\)2+const: 7 In Q+const, (66) 4 4
where: = /(1 + \)? is the natural rotation rate of the T nlatea3e T ) (73)
Kirchhoff ellipse. The constant terms do not depend on the 8 2

time-dependent ellipse parameters and therefore can Rgnhere we have dropped a constant term. Making use of
dropped from the Hamiltonian.

We can now evaluate the self-interaction energy. First, al=2(z'+2%, a’=2(z'-2°), a’=27, (74)
the part of the streamfunction that depends upoandy  the Hamiltonian in terms of the coordinatesof Sec. Il D
yields becomes

1 [ \X2%4y? T A+1 T T T
_Z- | 22 Tr - - -__ H(z)=—wz!—eZ— < In| z'+ < |+ const 75
4 fD 1 XY= 6 D=-o 8 8 (79

which is constant and can be dropped. The integral of thé”md is =716 times the quantity3?).

— X term likewise is not important. This leaves only the con-
tribution from ¢,. Using Eqg.(67) and the fact that the area

of the vortex has been set togives F. Equations of motion
- The equations of motion, either in terms afor z, are
H = 3 In Q. (68)  given in a straightforward manner. Using
The complete Hamiltonian is thus a'={a',H}=J" Nk (76)
1 . 1 3 T with (36) implies
H=——-(w+e)a— - (w—e)a’+ = In Q. (69
4 4 8 JH JH
51 1 2
X . . a-=2a —2+4a ,
In (69) H still depends upor in addition to the moments Ja Ja
al anda®. It remains for us to express the rotation frequency 9H 9H
Q(\) in terms of the moments. The moments are seen to be a%=2a3 P 2al Zal’ (77)
12T 1 i oH oH
al=— (N1 cod ¢+ sir? ¢), 3 4290, 31
4 a 4a 7ol 2a prvs
, T ] where, with(73), we arrive at the noncanonical Hamiltonian
a'=, (N""=N\)sin ¢ cos ¢, (70 system
o
at=_ (A" si? ¢+ cos @) : 2
4 ’ al=—a’{ w—e+ :
al+ad+ -
Equations(70) imply
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T
5 (al-a’)
e(a1+a3)+w(a1—a3)+—w :
1 3
al+a’+
2

NI

N3 2<

a=a w+e+

v
1 3
al+ad+ -

2

\

Similarly, using(54) and (75) in

7={7 H}=Ji il (79
' 0z

yields
7l=e?,

z

I8
o+ 2L+ 7/8
I8
2+ /8|’

?=e+7° , (80)

53— 2

Z=—ZVwt+

As a check, we show that Eq§.8) imply (30), the equations
derived by Kida. Differentiating71) yields

: T
)\(1—)\‘2)Z=(a1+a3)=2ea2

ar
=-2 ex(1—-N"?)sin2p, (81)

where the last equality follows fror¥0). Therefore

A= —e\ sin 2¢. (82
Similarly, from (71),
. .4 d
(al—ad) —=q 1—\) cos 2
= —N\"2+1)cos 2
—2(\"1=\)sin 26, (83

while from (78) and (70)

(al—ad %: —(N"1=\)sin 2¢

2\
w+ m’ . (84

Equating the terms of83) to (84) and making use 0f82)
yields

A ®w el1+\?

¢=W+E+Emcos%. (85

Equations(82) and (85) are the equations of Kida.

G. A geometric characterization of dynamics:
Comparison to rigid body

FIG. 1. An isosurface of the Casimig, for the rigid body problem(86)—

(88). The value of the Hamiltonian on this surface is shown by the shading.
Trajectories are constrained to follow lines of constant shadihamil-
tonian on the Casimir surface.

form of the Hamiltonian and the “kinematics” represented
by the algebraic properties of the underlying cosymplectic
structure. In the case of three-dimensional systems like that
of the Kida problem, the kinematics implies that the system
is integrable, i.e., that one can use the Hamiltonian and the
Casimir invariant to write down a quadrature that determines
the dynamics. For systems of this type there is a geometrical
way to understand the qualitative nature of the solutions. To
demonstrate this, we now compare the Kida problem to the
free rigid body.(This should be compared to the character-
izations given by Meacharat al* and Baylyet al ).

The free rigid body is governed by Euler's equations,
which is the statement of zero torque in the rotating principal
axes frame of reference. They can be written as follows:

~oH
/i:{/ivH}:_Eijk/kT/jv (86)
where/ is the angular momentum, and
1(72 /%2 /3
g R o
1 2 3

with 14, I,, andl; being the three principal moments of
inertia. The structure constants;, , are represented by the
Levi—Civita symbol for the completely antisymmetric tensor.
(Note, since the structure constant is completely antisymmet-
ric all the indices have been written in the down position.
Repeated indices are still summedhe algebra associated
with the cosymplectic form in this case is(8band the Ca-
simir invariant is the square of the magnitude of the angular
momentum,

C(N=/5+/5+75 (88)

Conventionally, the qualitative description of the rigid body
dynamics is given by examining the intersection of the Ca-
simir sphere with the Hamiltonian ellipsoid. This is depicted

From the preceding sections it is evident that in thein Fig. 1, where we have selected a value@and then used
Hamiltonian description of a dynamical system, one can disa grey scale to show the valuestéfon the Casimir surface.
tinguish two aspects: the “dynamics” as embodied in theLines of constant shading correspond to the curves along
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which the Hamiltonian ellipsoids intersect the Casimir
sphere. The principal moments of inertia are assumed to b
distinct. AsH increases, we first observe a point of tangency,
which corresponds to the equilibrium point of rotation about
the axis of the dominant principal moment of inertia. The
nearby ellipses of intersection, for larger valuesof indi-
cate that this equilibrium point is stable. Ab is increased
further the point of tangency corresponding to the equilib-
rium point of rotation about the intermediate principal axis is
observed. Nearby locally hyperbolic intersections indicate
that this equilibrium point is unstable. Finally, for still larger
values ofH the point of tangency corresponding to stable
rotations about the smallest principal axis is seen. Hence, a
examination of the intersection has characterized the equilib
rium points and qualitative nature of the solutions of this
system.

For the Kida problem in normal coordinates,the Ca-
simir surfaces are hyperboloids of revolution and g
axis is an axis of symmetry. Frorf%l), we see that, on
physical grounds, we are restricted to the sh€etg). These
fall into two groups—those wholly above the plang=0
and those wholly below. Sin@g + a; must be=0, we have
that z;=|z;| and so we are restricted to the sheets in
z,>0. These surfaces are depicted in Fig. 2. A simplification
occurs in the Kida problem because, in terms of ztmoor-
dinates, the Hamiltonian has a symmetry direction; i.e., it is
independent of?. Surfaces of constami are curved sheets
with symmetry in thez? direction and these sheets can inter-
sect the Casimir hyperboloid in various ways depending or
the parameters ande. Because of the symmetry we need
only examine these intersections in ttfe® plane in order to
understand the motion. In Fig. 2 the various kinds of inter-
sections are depicted. Ca&® of the figure shows intersec-
tions of the Hamiltonian surface with the Casimir hyperbo-
loid that correspond to two types of trajectory. One is a curve
that extends to infinity and is topologically equivalent to a
hyperbola.(The reader must imagine the continuation of the
intersection in thez? coordinate. This type of intersection
represents a continual elongation of the elliptical vortex

e=15o0om=-1c=1

e=05om=-1¢c=1

e
patch; it typically occurs when the background strains (b) 28 ° z1

large. The second corresponds to an intersection that is topo-
logically circular but does not enclose the axis. The mo-  FIG. 2. Each plot shows an isosurface of the Casi@jrfor the Kida vortex
tion in this case corresponds to nutation of the elliptical vor-in shear. The shading corresponds to values of the Hamiltokiamt dif-

tex patch. Caseb) of the figure represents an intersection ferent points on the Casimir surface. Trajectories are constrained to follow
p ’ 9 p intersections of the constaht andC surfaces(Because of the? indepen-

that corresponds to a closed curve, topologically equivalenfence ofH, surfaces of constamt are sheets parallel ©72.) The projec-
to a circle thatdoesenclose thez! axis. This type of inter- tion of the Casimir surface on the'z® plane is indicated by the dotted
section represents a rotation of the elliptical vortex patctfurves; the intersections of various sheets of congtawith the z'z® plane
with periodic dependence in the aspect ratio From Egs are shown with solid curvega) Case:C=1, e=1.5, o=—1 includes two

. ' . . types of trajectory(i) open(hyperbola-like¢ and(ii) closed trajectories that
(52)' (70)' and (71) we see that motion around the circle is do not circle theOZz* axis. (b) Case:C=1, e=0.5, w=—1 exhibits closed

related to rotation of the patch according to trajectories that circle th@z* axis.
tan ¢: =22 /23=tan 24, (89

and similarly sincez'=(/16)(1A + \), excursion in the H. Reduction of order using a Casimir—canonical
z! coordinate corresponds to variation in the aspect ratiogoordinates
Warping th rdin iel ion-angle variables. A .
arping these coordinates yields action-angle variables We can use the Casin@i=4[ ()2 — ()% — (22)?] [see

further case.(not'shown relies on the eﬁect of the Io'garlthm (55)] to reduce the systerf80) as follows. We introduce
in the Hamiltonian to produce two regions of nutation delin- . .
coordinatedy defined by

eated by a “figure-8” separatrix(For details, see Refs. 4
and 25) bl=7%, b?=2z%, b3=C=4[(H?—(>)?—(»?]. (90
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Then in an unbounded, uniformly stratified, quasigeostrophic flow.
The background flow of this model is given by a streamfunc-

dH dH :
o 1,2 2212 21 tion of the form
1 =8[Cla+(bY)?+ (6222 s, of
=10 +y%) +ze(x’—y?) —1yz. (94)
ﬁ: '9_Hl_ 1 ’9_1 a_F;: (9_H2_ 2 &_FL In MPSZ it was shown that an initially ellipsoidal blob of
9z° b b ZA b potential vorticity will remain ellipsoidal for all future times,
where, (80) becomes which is clearly a generalization of the Kida result of Sec.
I A.

In the MPSZ model, the motion of the ellipsoid is de-
scribed by the three variables that describe the shape of the
ellipsoid—the semiaxis lengtha(t), b(t), c(t)—and three
y dH that describe its orientation— the Euler angte&), 6(t)

2_ 1y2 2y2q12 710 , ,
b=8[Cla+(b)"+(b)7] abt’ (92) #(t). The equations that govern these variables are given in
) the Appendix. These equations are rather complicated, a fact
b3=0. which limits their utility and makes it difficult to classify all
lﬂ the modes of behavior of the vortex. It was noted in
one degree of freedofvhich is therefore integrable—phase PSZ. .thét the equationl) a_md (AZ.) possess conserved

gquantities: vortex volume, particle height, and excess energy.

trajectories are just contours bf over the p*,b?) pland. Volume conservation can be exploited quite readily to re-
The use of the Casimir as a coordinate brought about twog P q y

O . _ duce the system from sixth order to fifth order, but it is
simplifications that follow directly from the defining prop- : o ' :
erty of a Casimir[F, C]=0 for arbitrary functionals: (i) cumbersome, without the insight afforded by the Hamil-

one coordinateb®—the Casimir, is a constanti) oH/ob tonian structure, to achieve any further reduction of order by

does not appear on the right-hand side. We will employ Aising the other integrals of motion. The Hamiltonian mo-

similar technique to reduce the ellipsoidal vortex problem inment approach leads to a considerably simpler formulation
Sec. IV. of the problem.

Given the normal form of the algebra asociated with the
Poisson bracket, we can deduce two natural families of caB. Moment reduction
nonical variables that are near to action-angle variables. The

first set of variables, which is appropriate for bounded mo- . The state (shape and orlentatl())an an eII|p50|d' IS
S 1 uniguely determined by the values of its six quadratic mo-
tion, is given by ¢*,¢,C), where

ments defined by

¢T= tan” 1(22/23). (92 mt=x2, mzzxy, m3= y2, m*= yz,

: JH
b*=—8[C/a+ (bh)*+(b?)’]2 —,

Thus we reduce the problem to a Hamiltonian system wit

Herez! is the coordinate along the symmetry axis, wthTe m°=zx, m®=22 (95)
is the angle around the closed curve defined by the intersec-
tion of the planez!=const with the hyperboloi€ = const.

Action-angle variables would be obtained by warping these : :
coordinates so that the intersection is a circle. a= fqu dx dy dz (96)
The second set, which is appropriate for motion that as-
ymptotes, is given by,Z 2,C), where (Expressions for tha's in terms of axis lengths and Euler
PP angles can be found in the Appendi¥or this selection of
y=tanh Y(z'/2 %), (93)  them's, closure is achieved: in light of the above and Sec.
Here theOZ 2 andOZ 2 axes are given by a rotation of the II B, the cosymplectic matrix is seen to be
0Zz? and OZ axes through an arbitrary fixed angle around 0 2al  4a? 2a° 0 0
0Zz'. Now OZ ? is a coordinate direction normal to the sym- a1 3 4 .5
. o ) 2a 0 2a®> a a> 0
metry axis and lying in a plane that includes the symmetry ) s 4
axis. ) is a pseudo-angle denoting position along one of the | _ —4a° —-2a> 0 0 -—2a" 0 @7
two hyperbolae that result from the intersection of the plane | —2a° -—-a* 0 0 —-a% o’
. —~ 2 . .
perpendlcular_ tdDz - that includes the symmetry axis, and 0 25 224 b 0 0
the hyperboloidC = const.
0 0 0 0 0 0

which, being linear in th&'’s is of Lie—Poisson form.

IV. ELLIPSOIDAL VORTEX IN CONTINUOUSLY
STRATIFIED QUASIGEOSTROPHIC FLOW

A. MPSZ review

C. Casimirs of reduced system
We search for Casimirs as in Sec. Il C, which amounts
The intrathermocline vortex model of MPSZ consideredto finding null eigenvectors of the cosymplectic matdx

an ellipsoidal blob of uniform potential vorticity embedded The characteristic equation of this matrix has the form

2320 Phys. Fluids, Vol. 9, No. 8, August 1997 Meacham et al.
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N2(\*+AN?+B)=0, o 22 -z2 0 0 O

where\ is an eigenvalue; since there are only two zero roots, -2 0 -2 0 0 O

there are only two independent Casimirs. The first Casimiris  _ 22 240 0 0 O

seen immediately to be J= O 0 0 0 -£ 0 (102
C,=a5, (98) o o o 2 0

while the second Casimir, which is found by calculating the 0 0 0 0 0

second null eigenvector and then integrating, is the quantit%_he transformatiod 3 has evidently split the algebra into
_

C,=4[2a%a"a"+a'a%a’~a'(a*)*—a%(a")? two blocks, i.e., into the direct sum of twox® algebras.
—a8(a?)2]. (99) The algebra of the upper diagonal block is identical to the
semi-simple algebra of Sec. Ill, while that of the lower diag-

A discussion similar to that of Sec. Ill C reveals that theseonal block issolvable An algebra is solvable if its sequence

invariants correspond to an effective height and volume obf derived algebras, i.e., the algebras of products, eventually

the ellipsoid. For the case of a uniform blob of vorticity it reduces td0}. In this case

was shown in MPSZ that, corresponds to the conservation .

of particle height in the quasigeostrophic system Gadvas 7={ 27 {2 {2 2 ={~ 200, (103

seen to be proportional to the fifth power of the ellipsoidal s r={0}.

volume. (In quasigeostrophic flows, fluid parcels maintain

their z coordinate, even though horizontal velocities @are The Casimir for the upper algebra is clearly the same as that

dependent. Vertical velocity is relegated to a higher order irof Sec. Ill,

the quasigeostrophic approximatith. Cu=A[(2— (22— (7] (104

while that of the lower algebra is
D. Lie algebra splitting—normal coordinates C =2
It is well known that Lie algebras can be split into the

sum of a semi-simple part plus a part that is cabetlzable
(see, e.g., Ref. 26We will not go into the details of how to

To see that104) is equivalent tq99) we substitute the trans-
formation for thea'’s into (104), and obtain

effect this in the general case, but simply present the follow- 1 b ods . 136 1 a2 3 52
ing transformation to normal coordinates: Cu=3s (2a“a’a>+a‘a’a’—a’(a’)*—a’(a’)
4\2 5\2
Aty ) @) —(a%)2a). (105
4 a® a’> )’

The normal coordinates have a relatively simple form when

2 1, a4§5 expressed in terms of spatial integrals:
2 a® )’ 2 2
W0 a2 oo [yl ([ |
Cz=— z X“+ye)— zZ| — zZX| |,
o1 (al_a3+ (34)2_@ L2 =7 (x*+y%) y
4 a® a® )’
1
Aoat  S=as =ab CL22=§ fzzf xy—fyzj zx],
which has the inverse transformation 1 2 2
3_T 2 2_\,2 _
2 ety [2] oeye{ [y ([ ]|

al=2(2'+2%+ —5

E. Moment Hamiltonian

5,4
a’=272+ %, In a manner analogous to Sec. lll E, we turn to the task
z (101 of writing the excess energy, the Hamiltonian, in terms of the
7%)2 moments. Since MPSZ have shown that an initially ellipsoi-
a’=2(z'-2%+ 55 dal vortex remains ellipsoidal in the background flow of
(94), the reduction is exact; the Hamiltonian can be written
at=z% a®=27% ab=7f. exactly in terms of the moments, which uniquely determine

. . ) . the shape and orientation of the ellipsoid.
The cosymplectic form in the normal coordinates is conve- As in Sec. IIl E, the excess energy is again the Hamil-

niently obtained by calculating 1 ={z',z'}, e.g., tonian and is given by

':]‘12:{21,22}:23’ Y
Hz—fq :,/1+—1,/;) dx dy dz=:7Z+H', (106

whence D 2
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but now ¢ is the contribution of the background flow, as . 7 A\3—[al+a®+ab]\2+[a’a®+afal+ala’
given by(94), ¢ is due to the uniform ellipsoidal vortex, and 22 2 502 2 4.5, 1.3.6
q = (9%19x% + 3%19y? + 9°19z%) s unity inside the ellipsoid —{@)"+ (@) (@)} -[2a%a’a’+aa’a

and zero outside. The integral involving the background flow  _31(534)2—33(a%)2— a5(a?)2]=0,

is readily seen to be B (111
A N3=V[a%+b%+c?\%+ V[ b%c?+c?a®

+a”b?]\ —V3[a?b?c?]=0.

H=-Yote)al-w—e)a®+ ra*. (107

From Chandrasekh¥ror Ref. 5,
This allows us to evaluate the coefficients of the various

powers ofs in the expressiori108) for K(s)

2 ®
[ 2
H 15 (abo) JO ds K(s), In terms of the moments, the vortex Hamiltonian is

K(s)=[(a’+s)(b?+s)(c?+s)] 2, (108 H— % (CLCu)mFdSR(S), (112
0
wherea, b, andc are the principal axes lengths and the
qguantityabc is proportional to the volume and is fixed. where

To write this in terms of moments, we will use two

K(a)—2—a3 1, 234 4672 3,64 46514 2143
Cartesian coordinate systen@®xyz which is fixed with re- K(s) "=s’+[a’+a’+a’]s"+[a’a’+a’a*+aa

spect to the underlying-plane andOXy Z, which moves —{(a?)2+ (a%)?+ (%% ]s+[2a%a%a®
with the principal axes of the ellipsoid. In both cases, the L6 14 352 6 22
origin coincides with the center of the ellipsoid. The trans- +ata’a’—a(a’) —a’(a’) —a’(a’)].

formation between the fixed and co-rotating reference frameg, ;orms of the normal coordinates of Sec. IV D the Hamil-

is given by the following expression in term of the Euler- tonian takes the form

angles:
~ 1 Z4 2+ ZS 2
X=_/"x (109) H=—wo 21+Z<( )Z( ) )}
h
wnere e Z3_E ((24)2_(25)2 +TZ4
cosy sing 0\ /cosd 0O —siné 4 z°
W= —sinyg cosy O 0 1 0 1 o
0 0 1/ \sin6 0 cosh T35 (CLCy) fo ds K(s) (113
cos¢ sing O where
x| —sin¢g cos¢ O 110 N -
0 0o 1 (110 K(s)=[$+pys®+pis+pol 2

and
Equation (109 will be used to relate moments in the co-

rotating frame to those in the nonrotating frame for evalua- ~ P2=[4z'2°+(z*)?+(2%)*+(2°)?]/2%,
tion of the Hamiltonian.

: : . 2
First define a matrix of moments p1=>5 [Z42(25)2+ (24)2+(25) 2} + 22{(24)2— (%))
1 2 5
a- a° a
2 s .4 —22°2' 2]+ 4[(2)°~ (22— (2%)?),
/Z”:f quX]-: a a a
? a5 a' af po=42° ()2~ (22>~ (2)?].
Now, F. Moment equations of motion
A =.,//zip./zjq.,72pq, As in Sec. lll, the equations of motion are given by
where Al ijﬂ—ll_
a'={a'\H}=J ol

va? 0 0

~ | ~~_ 2 As noted above, we use the chain rule to evaluate the equa-
Apg= fqupxq— 0 Vb O

tions of motion, which means we need to calculate

2 f .
0 0 Ve dH’/9al. First note that
whereV=47mabcd/15 is proportional to the volume of the JH’ , -
ellipsoid and will be normalized to unity. The eigenvalues of  Zrrzy= H;+(b“+c*)H +Dbc"Hy, (114
# and.# will be the same so we may identify the coeffi-
cients in the respective characteristic equations where
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1 -
Hi=——(C.Cy™| sK¥(s) ds
] 4 o

anddgH'/9b% andgH'/9c? are given by expressions similar

to (114 with {a?,b?,c?} cyclically permuted. Thus

oH’ , J 2 2 2 ,
W:Hzg,—(a +b +C)+Hl
x—a— (b?c?+c?a’+a%b?) + Hy < (a®b?c?)
sa' 0 sa' '

dimensional space, zf,2%,2,2°), decomposes relatively
naturally into a product of two two-dimensional spaces,
(z2,2%) and (%,2°). The latter two are associated with the
upper and lower algebras, respectively, in the decomposition
of the algebra associated with the Poisson bracket. When
there is no vertical shear=0, the spacez?,z°) is an invari-

ant subset of the full phase space in that if bftandz® are
initially zero (one axis of the ellipsoid is initially verticgl
they remain zero. The structure of the (z°) phase space is
then similar to the phase space of the Kida problem, as
proven explicitly in the next section.

The partial derivatives occurring on the right-hand side can

be evaluated fairly simply fron§111). The resulting equa-

tions of motion are

al=—(w—e)a’+27a°-2{[a%a’—a*a’]H;+a’H,},

a’=Hw+e)al-j(w—e)a’+ra*+{[a’al-ad
+[(a%)?=(a®)?]IH1+ (a'—a®)Hy},
a’=(w+e)a’+2{[a%a®—a%a®|H;+a%H,},
a*=3Hw+e)a®+{[a*a®—a*a?]H;+a%H}},
a’=—3(w—e)a*+ra®—{[a’a’—a®a?]H;+a’H}},

a®=o0.

(115

G. Canonical coordinates

One of thea coordinatesa®=C, , is already a Casimir.
We can reduce the dimension of the active dynamical vari-
ables to four if we change to a new set of variables in which
the second CasimiC,, is also used as a variable. Further
simplification ensues if we use variables deduced from the
normal coordinates. We therefore use the varialitesa,

S, B, Cy, C, defined by

7'=3R, 7*=3R*-Cy)"*sin 2,
22={R?-Cy)¥? cos v,

Z*=(2C. 9 sinB, z°=(2C S92 cosp,

(117)

These equations can be verified by using the expressions for

b, ¥, 0, (32), (b?), (¢?) obtained by Meacharet al® (see
the Appendix to independently comput@ as a “function”

of e, w, 7, Hy, andH,;.

26: CL .

In the new variables, the Hamiltonian takes the form

In terms of the normal coordinates, we can take advan- @ €
S : =——={R+S}— 5 {Wcos 2x+ S cos
tage of the constancy of the Casimirs and obtain the follow- 2 { ) 2 { »}
ing fourth-order system:
) 1
Cy 12 +7(2C.S)"?sin B+ 5 (CLCy)*™*
'Zzze T+(22)2+(23)2
[(2)2+ (2] ><J {s®+[2R+2S+C |s?*+[2R(C_ +S)
+Z3[w+ 2CL+C— H1+2H§] 0
- —2WScos Za—B)+Cyls+C Cyl 12
CU 1/2 [(24)2_ (25)2] ) o . ) )
+|—+(H?%+(®?| ————H], whereW=(R“—Cy)"'“. Note that for an ellipsoid enclosing
4 Co uniform vorticity, R>>C,. The equations of motion in the
_ [(2%2+(25)?] new variables are
3__ 52 ’ ’
z Z[w—l— 2CL+—CL Hi+2H, dR_oH da  dH
Cu 12 44,5 dt Jda’ dt JR’
1ol 2V L2210 (22 2oy
1 Cy 12 dt 98’ dt  4S’ (118
A_ ]~ ’ ~u 2\2 3\2 5
"= 2(e+w)+H2+2 7 +(z°)°+(2°) ]z dc, dc,
' ' at % Tar o
—2(22*+2°2°)H7,
i 12 The new variables constitute a set of canonical coordinates
S5 E (e—w)—H,—2 &Jr(zz)zﬂza)z ]24 for the system, with a form similar to action-angle variables.
2 274 ] Two of these« and 83, are effectively angles. When there is

+2(222°-22ZYH |+ 7C, .

no vertical shear in the background flqw=0), the system
depends ona and B8 modulo 7. When vertical shear is

This form has several appealing features. It is a simple set giresent, the system depends @modulo 2.
equations to integrate numerically and, unliz4.8) below, it When one axis of the ellipsoid is verticds=0 (f zx
does not contain any artificial singularities. The four-and [ yz vanish. If there is no vertical shear, the® will

Phys. Fluids, Vol. 9, No. 8, August 1997 Meacham et al. 2323

Downloaded-16-Jul-=2007-t0-129.215.49.133.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



remain zero and one of the axes will remain vertical. The 75.73 PHASE PLANE

system then reduces to a simple two-dimensional form 10 ' ‘
dR_H da  oH a
dt  de’ dt 4R o
4‘
and o |
H=— 2 R— = (R*~Cy)"? cos 2 3 ’
=~ 5 R=5 (R°=Cy)*" cos o
1 » 1
ts5 (CLCU)llzfo {s®+[2R+C]s? -6 |
-8_
+[2RC_+Cyls+C,Cy} Y2 e e :
. 12 10 -8 -6 -4 -2 0 2 4 6
If we write 2°Z3

FIG. 3. Contours of the Hamiltonian for the QG ellipsoidal vortex with
=7°=0, in a background flow wittr=0, on the{z?,z°} plane for the case

1 0
QR)=3 (chU)”?f (s*+CL9){s’+[2R+C]s?
0 w=-0.1, e=—-0.01, C,=0.25, andC,=12.0. (Contours are unequally

+[2RC_+Cy]s+C.Cyl 2 spaced.
then
15) e R 2
— 2 1/2 ' ’ 2 ~ 8
H=—-2R-3 (R°~Cy) coth—J Q(R") dR R:?p()\—l+)\), a=, andCU=C—pz7\,
and and (119 reduces to
dR
_ 2_ 12 o dx
E_G(R Cy)™¢sin 2, — =—e\ sin 2,
(119 dt
da _ 21omR) +2 R cos v da_( el+)’
at |2 2 (RB—Cy)™? ' at 2Tt ces &y

Here Q(R) is the rate at which the ellipsoid rotates around,,hich should be compared 180).
the vertical axis when no background flow is present, and in
the presence of horizontal shear and strain the system be-
haves like the Kida ellipse with the rotation rate of the 2-D
ellipse,A/(1+\)?, replaced byQ.

To see this explicitly, we normalize the volume of the  The system(116) is four-dimensional and, with the ex-
ellipsoid to be 473 (the dynamics are independent of the ception of the Hamiltonian itself, we have used all of the
volume and note that when one axis of the ellipsoid is ver-jnyariants that we may anticipate on physical grounds in or-
tical, say thec axis, then the normal coordinates,, z;,  der to reduce the dimension of the system to four. This sug-
z3, become gests that the system is likely to be nonintegrable and we
anticipate the occurrence of chaotic solutions. This is intrigu-
ing because the systefi16) is an exactreduction of the

H. Chaotic motion

z,=p(a®+b?),

zp=p(a%=b?)sin A ¢+ ),

z3=p(a’—b?)cos 2+ ),
wherep=/15. Defining a horizontal aspect ratio=b/a,

leg (ATHEN),

2,=2 (\71=0) sin A+ ),

zszg (N"1=\)cos 2o+ o).

In Euler angles, whem®=0 (the ¢ axis vertical, ’(;: =¢+y

original quasigeostrophic problem. Solutions of it are exact
solutions of the continuum quasigeostrophic equations of
motion.

We can use the form of the equations of motion given in
(116 to verify nonintegrability by looking for an example of
chaotic motion in this system. We first note that whet0,
(116 admits an invariant manifold,, = z5 = 0. Physically
this corresponds to one of the principal axes of the ellipsoid
being aligned with th®©z axis. In the absence of any vertical
variation in the background flow, such an axis, if initially
vertical, will remain so. Note also that, whe#-0, there is a
negative threshold value @b, w. say, a function ofe/w|,
such that when|e/w|<1 and 0>w>w, this invariant
plane, with coordinate$z,,z;}, contains a homoclinic tra-

is just the total angle through which the coordinate frame hagectory that begins and ends on a saddle point and encloses a

rotated about the vertical axis. Thus,

2324 Phys. Fluids, Vol. 9, No. 8, August 1997
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P. SECT. 14-A Z2-Z3 PLANE TAU=1.D-5 P. SECT. 15-A Z2-Z3 PLANE TAU=1.D-4
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/—\
81 / | 81 /\ )
6r 1 6 / ]
4t s : at / ]
| / - 2| / -
N 0 N 0
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) _\ B 2t i
AN J 4 J
a L \\\ A _6 L \ N
6 e
-8 | 4 8 \_/
_10 ! 1 1 1 L L 1 _10 1 1 I 1 1 1 L
12 10 8 6 4 2 0 2 4 6 12 10 -8 -6 -4 -2 2 4 8
(a) 2*Z3 (©) 2*73
P. SECT. 14-A Z2-Z3 PLANE TAU=1.D-5 P. SECT. 15-A Z2-Z3 PLANE TAU=1.D-4
0.8 | . 0.8 i -
% iy
06 | %%» . 0.6 1
04 ' . 04 .
02t 1 0.2 1
[aV) o
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04 | & ; -0.4 .
0.6 f 1 -0.6 1
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-1 L I s L L 1 L 1 L 1 L s L L AW 1 L L
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(b) 273 (d) 2*23

FIG. 4. Poincaresections for trajectories started close to the hyperbolic point in Fig. 3. Values ef C,, andC, are as in Fig. 3(a) =105, (b)
7=10"5—expanded view near the hyperbolic poift) 7=10"*, (d) 7=10 *—expanded view near the hyperbolic point.

shows the contours of the HamiltoniaH:(z,,z5;2,=0,z5 recording the successive points of intersection of the trajec-
=0) over the coordinate plafe,,zs} for the cases=—0.1, tories with the hyperplanes=0 (z5 increasing and then
e=—0.01,C,=0.25, andC,=12.0. projecting these points onto thi,,z;} plane. Fig. 4a)

A second result that guides our thinking is the observashows the Poincarsection forr=10"°. An expanded view
tion that when the background flow is absent, an ellipsoidabf the region around the location of the original hyperbolic
vortex with one axis vertical is not unstable to small pertur-point [Fig. 4(b)] shows the island structure characteristic of
bations that tilt that axis slightly away from the vertical pro- invariant tori delimiting chaotic regions. This remains true
vided the axis in question is not the axis of intermediatewhenr= 10 *[Figs. 4c) and 4d)]. Further evidence for the
length. The near-vertical axis just wobbles around the vertichaotic nature of the solution can be seen in the power spec-
cal. When a background, horizontally sheared flow withtrum of a time series of the variable(t) taken along a
le/lw|<1 and 0>w>w, is present, we anticipate similar trajectory whenr=10 * (Fig. 5. There are several domi-
wobbles when the vertical axis is tilted slightlgrovided it  nant peaks but broad-band noise is also present at a level
is the longest or shortest axighese wobbles produce oscil- several orders of magnitude greater than the noise associated
lations on the right-hand side of th#z,/dt and dz;/dt  with the numerical integrator. This allows us to distinguish
equations. We wish to see if these oscillations can producthe time series as chaotic rather than quasiperiodic.
chaotic motion(One possibile way in which this might oc-
cur is if the wobbles remain s_mall and simply produce Sp“t'v. CONCLUDING REMARKS
ting and transverse intersections of the stable and unstable
manifolds of the saddle point on tRe,,z;} plane) In the work we have presented above, we have been

The formal Melnikov analysis of the perturbed system isguided by the observatidrihat the two-dimensional ellipti-
difficult so instead we resort to direct numerical simulation.cal vortex in shear is a finite-dimensional Hamiltonian sys-
Picking initial conditions close to the saddle point in Fig. 3,tem together with the observatidnthat the three-
we follow the resulting trajectories for small nonzero valuesdimensional, quasigeostrophic ellipsoidal vortex in
of the vertical sliear. Poincareections are made by first horizontal shear is Hamiltonian and the conjecture that this
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POWER SPECTRUM: Z2 TAU=0.0001 successfully by Ngaet al?® in the study of two interacting

0.45 vortices in a shear flow.
04 r 1 Also, in the stratified algebra of Sec. IV B, the variable
035 L | z plays the role of a constant. Settimg- 1 gives the algebra
ol of Ngan???3 In the two-dimensional setting examined by
' Ngan et al,?>?% the transformation(100) is equivalent to,
: 025 r I first, transforming the quadratic moments based on a fixed
& 02| - origin to their counterparts based on the centroid of a vortex
015 | | patch, and then, applying the transformation to normal coor-
dinates used in the Kida proble(62). Note thatz can be
ol r replaced by a set of functions af f,(2),...,fy(2), and one
0.05 1 may still obtain closure. Consider
o i . .
@ 0 500 1000 152% EéOL?IgN ggoo 3000 3500 4000 mi=x2, m?=xy, mi=y?

POWER SPECTRUM: Z2 TAU=0.0001 together with
1 T T T T T T T

m*=yfi(z), m=xf(z), 1<is<N,
and

mevi‘j:fi(z)fj(z)’ 1<i,j=N.
Observe that

i {m!,m*}=2xf;=2m®,

{m¥ mPi}=ff=m®, etc,

0 500 1000 1500 2000 2500 3000 3500 4000 o : : .
(b) FREQUENCY Therefore, it is possible to generalize the approach described

in this paper to different classes of moments which may
FIG. 5. Power spectrum of long time seriesz{t) from atrajectorYAStarted prove more appropriate in different situations. For example,
near the hyperbolic point in Fig. 3»=-0.1, e=-001, 7=10"%, C.  gne can represent three-dimensional quasigeostrophic vorti-
=0.25, andCy=12.0. (a) Linear—linear plot andb) log—linear plot. . . . L . .

ces in which the potential vorticity is horizontally uniform,

but varies withz in an arbitrary manner, by considering a set

remains true when vertical shear is added. In the two®f fi that form a basis.

dimensional case, an explicit Hamiltonian form can be

readily obtained from the standard Eulerian equations of mo-

tion, but for the three-dimensional problem the task is muchlACKNOWLEDGMENTS

more difficult. The equations of motion for the ellipsoidal

vortex derived by MPSZ are unwieldy. In this paper we have  This paper had its genesis at the GFD Summer Program
shown that, by beginning from a description of the continu-in Woods Hole in 1993 and much of the work herein has

ous Euler and quasigeostrophic equatiémsioncanonical been continued over succegding summers at the GFD Pro-
Hamiltonian form one can obtain a much simpler set of gam. The authors would like to thank the Woods Hole

equations for the motion of the three-dimensional vortex. Oceanographic Institution and the National Science Founda-
We have then used the equations of motion for the e||ip.ti0n for making this interaction possible. S.P.M. has been
soidal vortex to show that the ellipsoidal vortex in shear carsupported by NSF Contract No. OCE 94-01977, P.J.M. by
exhibit chaotic motion. This is unusual for the following rea- the Department of Energy under Contract No. DE-FGO5-
son. The majority of mathematical examples of chaos in fluiBOET-53088. S.P.M. and P.J.M. would like to thank the In-
flow involve approximations in the form of finite truncations. stitute for Fusion Studies at the University of Texasistin)
Though our final system, e_g_llzl), is of finite dimension and the Geophysical Fluid Dynamics Institute at Florida
we have not made any truncation; our solutions exact ~ State University, respectively, for their hospitality and sup-
solutions of the inviscid quasigeostrophic equations for goort of visits by S.P.M. to Austin and P.J.M. to Tallahassee.
stratified fluid. However, one must recall that our solutions
are “weak solutions” of the QG problem in the sense that

the vorticity field contains discontinuities. APPENDIX
We note, in closing, some generalizations. The technique
we have described can also be used as a methabfmoxi- An ellipsoid can be described by the lengths of its three

mating the interaction between more than one vortex. Thisprincipal semi-axesa(t), b(t), c(t) and three Euler angles,
idea is in the spirit of Melandegt al? and has been applied ¢(t), 6(t), ¥(t), that specify its orientation relative to a
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fixed reference frame. For an ellipsoidal vortex in a shear  (p2)— —eR?{cos ¢ sin 2y cos 2
flow such as that given b§4), the equations of motion for

these variables are +[cos 2+ sir* 6 sir? y]sin 2}
(a%)=ea?{cos @ sin 2/ cos 2 — 7b? sin 6{sin 2 sin ¢
+[cos 2/—sir? § cog ]sin 2¢} +2 cosé sir? ¢ cos ¢}, (A1)
+ ra? sin #{sin 24 sin ¢ (c?)=c? sin 6{e sin 6 sin 24+ 27 cos 6 cos ¢},
—2cos# cog i cos ¢}, and
|
b= 2 (040 + 2 (0,-0 RN | P - i i
Rk A I | B Py el f e Py
" _ _ 1 7 c? c? _
(cos 2/ cos 2p—cos 6 sin 2 sin 2¢) | + > 01 -2 + . cos @ sin ¢
c? c?
i Py W)(cosa sin ¢ cos 24+ cos X sin 2 cos¢)],
5= 2 sin 6 sin 26(Q,— 0~ = e sin 6| 1+ C2+C2 0 sin 2+ i ¢
—Esm sin 24(Q,— 1)—§esm W 52—_02 COs f sin 2¢ 52—_02_52—_02
1 C2 2
X (cos @ sin 2¢ cos 2h+sin 24 cos Zp) | + 57 2sirt §—cos m(er EZ_—CZ) Ccos ¢
c? c?
Py W) (cos @ sin 24 sin ¢—cos X cos 2) cos qb)}, (A2)
: 1 1 1 c? c?
y=cos i Q3— E(Ql+92)_ > (Q,—0Q5) cos 24 + > el |1+ W'F bZ—c2 COs 6 cos 2p

c? c?
+ Py W)(cos2 0 sin 2y sin 2¢p—cos 6 cos 2 cos 2p)
+a2+b2 ; 11+ 2 o)s _ 1 7 ([ ¢ . c?
2702 Cos 6 cos 2 cos 2¢—§( cos 6)sin 24 sin 2¢ ~3sn 0{ 22 o2
c? c?
X cos 6 sinqﬁ—(m— m)(cos2 6 cos 2 sin ¢+ cos @ cos P sin 2y cos ¢) —sirf 6 sin ¢
a’+b? [ P S .
~ 22 p? sin’ 6 cos 24 sin ¢>+§sm 6 sin 20 sin 2y cos¢ | ;.

The Qs are the principal rotation rates of the ellipsoid, i.e., al=cog ¢[cog 6(a? co y+b? sir? ) +c? sir? 4]
the rate at which it would rotate around a given principal

axis, in the absence of any background flow, if that axis were +sir? ¢(a sin’ y+b? cos’ y)
vertig:al. These are elliptic functions of the lengths of the — Ya2—Db?)cos 6 sin 2 sin 2,
semi-axes:

a’=1sin 2¢[cog #(a® coS Y+ b? sir? ) +c? sir? 6

(A3) —(a? si? y+b? cog ¢)]+ X(a2—b?)
I;% abc f “si{(a2+9)(b?+9)(cP+5)} Vs, X cos 6 sin 2 sin 2¢,
0
i=1.2. a’=sir? ¢[cos 6(a? cog Y+ b? sir? ¢)+c? sir? 0]

+cos ¢(a? sirt y+b? cos )+ 3(a2—b?
The moments can be expressed in terms of the semi-axis cos' (a” sim ¢ Y)+ o )

lengths and the Euler angles as follows: X €os 6 sin 2¢ sin 2, (A4)
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a*=—sin g[sin ¢ cos 6(a? cog +b? sir? y—c?)
+ X(a2—b?)cos ¢ sin 2],
a®=—sin g[cos ¢ cos f(a? cog y+b? sir? y—c?)

—L(a?—b?sin ¢ sin 2],
ab=(a? cog y+b? sir? y)si? 6+c? cos 4.
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