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ABSTRACT: Reduction is a process that uses symmetry to lower the order of
a Hamiltonian system. The new variables in the reduced picture are often not
canonical: there are no clear variables representing positions and momenta,
and the Poisson bracket obtained is not of the canonical type. Specifically, we
give two examples that give rise to brackets of the noncanonical Lie–Poisson
form: the rigid body and the two-dimensional ideal fluid. From these simple
cases, we then use the semidirect product extension of algebras to describe more
complex physical systems. The Casimir invariants in these systems are exam-
ined, and some are shown to be linked to the recovery of information about the
configuration of the system. We discuss a case in which the extension is not a
semidirect product, namely compressible reduced MHD, and find for this case
that the Casimir invariants lend partial information about the configuration of
the system.

INTRODUCTION

This paper explores the Casimir invariants of Lie–Poisson brackets, which gen-
erate the dynamics of some discrete and continuous Hamiltonian systems. Lie–Pois-
son brackets are a type of noncanonical Poisson bracket and are ubiquitous in the
reduction of canonical Hamiltonian systems with symmetry. Casimir invariants are
constants of motion for all Hamiltonians; they are associated with the degeneracy of
noncanonical Poisson brackets. Finite-dimensional examples of systems described
by Lie–Poisson brackets include the heavy top and the moment reduction of the Kida
vortex, while infinite-dimensional examples include the 2D ideal fluid, reduced
magnetohydrodynamics (MHD), and the 1D Vlasov equation. (See Ref. [1] and ref-
erences therein for a full review.) The Casimir invariants determine the manifold on
which the system is kinematically constrained to evolve. Understanding the nature
of these constraints is thus of paramount importance.

In Section I we examine specific Lie–Poisson brackets, namely, those that arise
from the reduction to Eulerian variables of a Lagrangian system with relabeling
symmetry. We make use of two prototypical examples, the rigid body (finite-dimen-
sional) and the 2D ideal fluid (infinite-dimensional), and we interpret their Casimir
invariants. This is done to motivate the introduction of such brackets and to show
their physical relevance. In Section II we turn to building Lie–Poisson brackets di-
rectly from Lie algebras by the procedure of extension. We introduce the semidirect
product extension and illustrate it with two physical examples: the heavy top and
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low-beta reduced MHD. Finally, in Section III we look at a nonsemidirect example,
compressible reduced MHD, and discuss work in progress.

I. LIE–POISSON BRACKETS AND REDUCTION

For our purposes, a reduction is a mapping of the dynamical variables of a system
to a smaller set of variables, such that the transformed Hamiltonian and bracket de-
pend only on the smaller set of variables. (See, for example, Ref. [2] for a detailed
treatment.) The simplest example of a reduction is the case in which a cyclic variable
is eliminated, but more generally a reduction exists as a consequence of an underly-
ing symmetry of the system. We present two examples of reduction.

A. Reduction of the Free Rigid Body

The Hamiltonian for the free rigid body is an unwieldy function of three Euler
angles φ,ψ,θ and their conjugate momenta pφ,pψ,pθ. The motion is described by
Hamilton’s equations using the canonical bracket

.

Here we have 3 degrees of freedom (6 coordinates), the configuration space is the
rotation group SO(3), and the phase space is its contangent bundle T*SO(3).

A reduction is possible for this system. In terms of angular momenta �i about the
principal axes, we have

H(φ,ψ,θ,pφ,pψ,pθ) → H(�1,�2,�3) = .

Under this (noncanonical) mapping, the bracket obtains the Lie–Poisson form

.

The equations of motion generated by this bracket and H(�1,�2,�3) are Euler’s equa-
tions for the rigid body,

,

where i, j,k are cyclic permutations of 1,2,3. The energy is conserved, and so is the
quantity

C(�) = ,

which commutes with any function of �. Such functions are called Casimir invari-
ants (or Casimirs for short). Casimirs are conserved quantities for any Hamiltonian,
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so they tell us about the topology of the manifold on which the motion takes place.
For the simple case of the rigid body, the motion takes place on the two-sphere, S2

(not in physical space, but in angular momentum space). The symmetry that permits
the reduction is the invariance of the equations of motion for (φ,ψ,θ,pφ,pψ,pθ) under
rotations (elements of SO(3)). This symmetry amounts to the freedom of choosing
axes from which the Euler angles are measured. In that sense it is a relabeling sym-
metry, since the choice of axes amounts to making “marks,” or labels, on the rigid
body.

We shall say that the original system is a Lagrangian description (by analogy with
the fluid case below) because at any time the exact configuration of the system (in-
cluding orientation) is known, whereas the reduced system is Eulerian because only
the angular momentum of the body is known.

B. Reduction of the 2D Ideal Fluid

As our prototype for reduction in an infinite-dimensional system we take an ideal
2D fluid confined to some domain, D. The Lagrangian description involves fluid el-
ements labeled by some coordinate a, which is usually taken to be the initial position
of the fluid elements. These labels are analogous to the choice of axes in the rigid
body example above (the “marks” on the rigid body). The Hamiltonian functional is

H [q;π]  =  ,

where q(a, t ) is the position of the fluid element labeled by a and π(a, t ) is its mo-
mentum. The Jacobian of the transformation from the labels a to the position of the
fluid elements at a later time is |∂q/∂a|. The density ρ0 is taken to be constant, and
the pressure p(a, t ) appears here as a Lagrange multiplier that enforces the incom-
pressibility condition, |∂q/∂a| = 1 (see Ref. [3]). This Hamiltonian together with the
canonical bracket

generates the equations of motion for a fluid in Lagrangian variables. The informa-
tion about the position of every fluid element at any time is contained in the model.
The dynamical evolution of the system is independent of the particular choice of la-
bels for the fluid elements. This relabeling symmetry of the initial condition labels,
a, suggests a reduction.

We introduce the streamfunction φ defined by v(x, t ) = (−∂yφ,∂xφ), so that ∇ ⋅ v =
0 is automatically satisfied, and the vorticity ω(x, t ) = ∇2φ. The mapping from the
Lagrangian momentum to the Eulerian velocity field is 

ρ0v(x, t ) = . 

We take ρ0 = 1 for simplicity. Taking the curl of v and dotting with  gives 
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ω(x, t ) =  ⋅ ∇ × v(x, t )  = 

where repeated indices are summed, ∂i := ∂/∂xi , and the antisymmetric symbol �ij is
defined by �12 = 1. The variation of ω is 

δω(x, t ) = 

which we can insert into

to find

,

.

We then insert these two expressions into the canonical bracket. After some manip-
ulation involving integration by parts (we assume boundary terms vanish) we obtain
the Lie–Poisson bracket 

, 

where 

. 

Note that the incompressibility of the fluid (the fact that the Jacobian |∂q/∂a| is unity)
was not used in the derivation of this bracket. However, in order to write the Hamil-
tonian in terms of ω one must introduce the streamfunction φ, which is possible only
if ∇ ⋅ v = 0. The equation of motion generated by the bracket and the transformed
Hamiltonian

H[ω] =  

is just Euler’s equation for the ideal fluid

. 

This has a Casimir given by
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C[ω] = , 

where f is an arbitrary function. The interpretation of this invariant is given in detail
in Ref. [4]. It implies the preservation of contours of ω, so that the value ω0 on a con-
tour labels that contour for all times. This is a consequence of the dissipationless and
divergence-free nature of the system. Substituting f (ω)  =  ωn we also see that all the
moments of vorticity are conserved. By choosing f (ω) =  θ(ω(x) − ω0), a heavyside
function, it follows that the area inside of any ω-contour is conserved.

II. EXTENSIONS AND THE SEMIDIRECT PRODUCT

We now investigate systems involving Lie algebras by extension, a procedure for
combining two or more Lie algebras to make a new Lie algebra. There are a myriad
of ways to extend algebras, and we will only touch on a few here. All the extensions
discussed here have their equivalent for Lie groups, but we choose the algebra ap-
proach here because it leads more directly to a Lie–Poisson bracket. In this section
we let ��be an extension of the Lie algebra � by the algebra �. The elements of � are
written as 2-tuples, (ξ,η), where ξ ∈��and η ∈�.

The simplest extension is the direct product (or direct sum) of Lie algebras. Let
ξ and ξ′ be elements of a Lie algebra � and η and η′ be elements of a vector space �
(which is an Abelian Lie algebra under addition). The direct product of these two
algebras is an algebra � with bracket

[(ξ,η), (ξ′,η′)] := ([ξ,ξ′], [η,η′]).

Given the same � and � as above there is a less trivial way to make a new Lie algebra
called the semidirect product with an operation defined by 

[(ξ,η), (ξ′,η′)] := ([ξ,ξ′], [ξ,η′] + [η,ξ′]).

A simple example of a semidirect product structure is when � is the Lie algebra so(3)
associated with the rotation group SO(3) and � is �3. Their semidirect product is the
algebra of the 6-parameter Euclidean group of rotations and translations. Both the
elements of ��and � can then be represented by vectors in �3, with bracket [ξ,η] =
ξ × η, the cross product of vectors. Since � is itself a Lie algebra, it can be extended
again as needed to make an n-fold extension (an algebra of n-tuples).

We can build Lie–Poisson brackets from these algebras by extension [6]. For an
n-fold extension � of the Lie algebra �, we define

where µ ∈ �*, the dual of � under the pairing 〈 ,  〉 : �* × ��→ �. The dynamical vari-
ables of the system are the elements of the n-tuple µ = µ(t ). These elements may be
fields or variables, so the Lie–Poisson bracket derived from an algebra by extension
generates the dynamics for a system involving several dynamical quantities. The
functions (or functionals) F and G are maps from �* to �. Here δ/δµ is a derivative
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or a functional derivative, depending on the dimensionality of the algebra (finite or
infinite). For n = 1, � = so(3), we have µ := � and we recover the bracket for the free
rigid body (Section IA). The overall sign of the Lie–Poisson bracket has to do with
left- or right-invariance of vector fields and will not be discussed here (see Ref. [2]).

Using this procedure to make a Lie–Poisson bracket from a direct product of al-
gebras leads to a sum of n independent brackets. This will not interest us further,
since the coupling between dynamical variables can only come from the Hamilto-
nian. However, there are interesting physical examples of a direct product structure.
(This is the case for the model in Ref. [5], although a coordinate transformation is
needed to exhibit the structure.)

We illustrate the process of building a Lie–Poisson bracket from a semidirect
product of algebras by two examples, which are extensions of the rigid body and
ideal fluid examples of Section I.

A. The Heavy Top

The Lie–Poisson bracket for the semidirect product of the rotation group SO(3)
and the vector space �3 is

 

where α denotes a 3-vector. By using 

H(�,α)  =  

where c is a vector representing the position of the center-of-mass, we get the pro-
totypical example of a semidirect product system, the heavy rigid body (in the body
frame):

, ,

where i, j,k are cyclic permutations of 1,2,3. The vector α rotates rigidly with the
body, which is always true for a Hamiltonian quadratic in �. The Casimirs for this
bracket are 

C1 = α2, C2 = � ⋅ α.

Looking at the bracket as derived by reduction of the heavy top in Euler angles (as
we did in Section IA, but here with gravity), the Casimir C2 expresses conservation
of pφ, since φ is cyclic. Knowing α does not lead to a determination of the orientation
of the rigid body: there is still a symmetry of rotation about α. Taking the semidirect
product has led to the recovery of some of the Lagrangian (configuration) informa-
tion. 
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B. Low-Beta Reduced MHD

The semidirect product bracket for two fields ω and ψ is

.

If ω = ∇2φ, where φ is the electric potential, ψ is the magnetic flux, and J = ∇2ψ is
the current, then the Hamiltonian 

H[ω;ψ] = 

with the above bracket gives us

, ,

a model for low-beta reduced MHD [7]. (Reference [8] contains a system with a sim-
ilar structure, but for waves in a density-stratified fluid.)

The bracket has two Casimir invariants, 

, . 

The first has the form of the Casimir for 2D Euler of Section IB and has the same
interpretation. To understand the second one we let g(ψ) = θ(ψ − ψ0), a heavyside
function. In this case we have 

C2[ω;ψ]  =  , 

where Ψ0 represents the (not necessarily connected) region of D enclosed by the
contour ψ = ψ0, and ∂Ψ0 is its boundary. The contour ∂Ψ0 moves with the fluid, so
this just expresses Kelvin’s circulation theorem: the circulation around a closed ma-
terial loop is conserved.

This theorem is true for any ψ-contour, therefore it holds in the region between
two contours ψ = ψ0 and ψ = ψ0 + δ. Letting δ�→ 0 we see that the two contours
delineate a “line” of fluid elements with value ψ0 of the magnetic flux. Knowledge
of the value of ψ on a fluid element thus only determines which contour it is on, but
not its location on the contour. Therefore, there is still a relabeling symmetry: the
fluid elements can be shifted around the contour without changing the Casimirs C1
and C2. As with the heavy top, the semidirect product has led to the recovery of
some, but not all, of the Lagrangian information.

C. Putting Labels on a Rigid Body

Remember that taking a semidirect product restricted the symmetry group of the
body to rotations about α. If we take another semidirect product to get
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where β is a 3-vector, we have a bracket that can model a rigid body with two forces
acting on it, for example, a charged, rigid insulator in an electric field. The new
bracket has Casimirs 

C1  =  α2, C2  =  β2, C3  =  α ⋅ β.

The angular momentum � has disappeared from the Casimirs. This is because know-
ing α and β completely specifies the orientation of the rigid body (unless the two are
colinear). In other words, by taking semidirect products we have reintroduced the
Lagrangian information into the bracket. Note that taking more than two semidirect
products is redundant as far as the Lagrangian information is concerned: knowing
the orientation of more than two vectors does not add new information. This is re-
flected by the fact that the number of variables minus the number of Casimirs is six
for two or more “advected” quantities. This is the dimension of T*SO(3), the original
phase space (before reduction).

D. Advection in an Ideal Fluid

We now take a second semidirect product for the ideal fluid, say low-beta MHD
with a second advected quantity, the pressure p. In that case we get a model for high-
beta reduced MHD [9]. The Casimir is 

C[ψ;p]  =  , f arbitrary. 

This Casimir amounts to being able to label two contours. Locally, this permits a
unique labeling of the fluid elements as long as p and ψ are not constant in some re-
gion. However, globally there is some ambiguity, because contours can cross in sev-
eral places. Thus, in the infinite-dimensional case the semidirect product is not
equivalent to recovering the full Lagrangian information, unless the contours do not
close, are monotonic, and nonparallel (∇ψ × ∇p does not vanish). A third advected
quantity will in general break this degeneracy. Note that if the advected quantities
label the fluid elements unambiguously at t = 0 then they will do so for all times.

III. BEYOND THE SEMIDIRECT PRODUCT: COCYCLES

In general there are other ways to extend Lie algebras besides the semidirect
product. One example is the model derived in references [10] and [11] for 2D com-
pressible reduced MHD. The model has four fields, and is obtained from an expan-
sion in the inverse aspect ratio of the tokamak. The Hamiltonian is 

H[ω,v,p,ψ] = ,
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where v is the parallel velocity, p is the pressure, and β is a parameter that measures
compressibility. The bracket is

The term proportional to β is an obstruction to the semidirect product structure, and
it cannot be removed by a coordinate transformation.

The theory that deals with the classification of extensions is Lie algebra cohomol-
ogy. In general the way to extend a bracket is by adding a nontrivial cocycle. Though
a priori there are an infinite number of ways to make an extension, for low dimen-
sions, after allowing for coordinate transformations, very few possibilities remain;
we have classified these in Ref. [12]. We have also found all the Casimir invariants
for the low-dimensional brackets (five fields or less).

The Casimirs of the above bracket are

C1[ψ]  =  (ψ) d2x, C2[p;ψ]  = (ψ) d2x,

C3[v; ψ]  = (ψ) d2x, C4[ω,v,p,ψ]  = d2x.

Finding the invariant C4 directly from the equations of motion would be tedious, but
is straightforward from the bracket. These Casimirs do not allow a labeling of the
fluid elements. The meaning of invariants of the form of C1, C2, and C3 was
discussed in Sections IB and IIB: the total magnetic flux, pressure, and parallel ve-
locity inside of any ψ-contour are preserved. To understand C4 we use the fact that
ω = ∇2φ and then integrate by parts to obtain

C4[ω,v,p,ψ]  = d2x.

The quantity in parentheses is thus invariant inside of any ψ-contour. It can be
shown that this is a remnant of the conservation in the full MHD model of the cross
helicity, 

V = ,

at second order in the inverse aspect ratio, while C3 is a consequence of preservation
of this quantity at first order. Here B is the magnetic field. As for C1 and C2 they are,
respectively, the first- and second-order remnants of the preservation of helicity, 
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W  = , 

where A is the magnetic vector potential.

IV. CONCLUSIONS

We gave an introduction to the reduction of physical systems based on their sym-
metries. The prototypical examples were shown, the rigid body and the 2D ideal flu-
id. For these two cases some information about the configuration of the system was
lost after reduction, correponding to the symmetry used to reduce the system.

The semidirect product allowed us to build larger brackets from a “base” algebra
in a systematic manner. We were thus able to describe the heavy top and low-beta
reduced MHD. Examining the invariants, we concluded that the semidirect product
had recovered some or all of the Lagrangian information.

For general extensions (not necessarily semidirect) things are different: the
Lagrangian information is not necessarily a consequence of the Casimirs. However,
for compressible reduced MHD the Casimirs represent constraints that are remnants
of invariants of the full MHD equations from which the model is derived asymptot-
ically.

As mentioned in Section III, when considering a general extension, all brackets
can be reduced to a small number of normal forms, at least for low-dimensional ex-
tensions. It will be interesting to see if physical systems can be found that are real-
ized by these brackets, both in the finite and infinite degree-of-freedom cases. We
are currently investigating a toy model that we call the Leibniz top, which is one of
the simplest non-semidirect system one can build. It is a straightforward generaliza-
tion of the Lagrange top (a heavy top with I1 = I2). The Lagrange top is integrable,
and we have found that so is the Leibniz top.
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