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Strong echo effect and nonlinear transient growth in shear flows
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The nonlinear interaction of two disturbances excited successively in a two-dimensional Couette
flow is shown to lead to a transient energy growth. This phenomenon, which is called the echo effect
and exists in several other physical systems, is interesting because the energy growth appears long
after the energy associated with the original disturbances has decayed. Here, the echo effect is
studied analytically and numerically in a situation where the nonlinear response has the same order
of magnitude as the two excitations. A system of amplitude equations describing the nonlinear
interactions between three sheared modes is derived and employed to examine the physical
mechanism of the echo. The qualitative validity of this system is confirmed by numerical
simulations. The influence of viscous dissipation on the echo effect is also considered. ©1998
American Institute of Physics.@S1070-6631~98!01406-8#
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I. INTRODUCTION

It is now widely recognized that the kinetic energy of
infinitesimal disturbance in a shear flow can be significan
amplified even if the flow is spectrally stable. Such an a
plification, which is then followed by a decay in the lon
time limit and is generally referred to as transient grow
was originally identified by Orr1 in a two-dimensional Cou-
ette flow. In recent years, it has been studied in connec
with various problems in hydrodynamics stability2–7 and in
meteorology.8

The physical mechanism behind transient growth is p
ticularly transparent for two-dimensional incompressib
flows, which are governed by a vorticity equation. In su
flows, the disturbance vorticity is advected and sheared
the basic-flow velocity, and the disturbance energy crucia
depends on the phase mixing that appears when the str
function is derived from the vorticity. In the long-time limi
the scale of the vorticity field systematically decreases w
time, leading to an enhanced phase mixing and thus
decrease of the disturbance streamfunction and energy9—this
decrease is sometimes referred to as Landau damping
analogy with the similar phenomenon of decrease of elec
static energy in plasmas.10 However, if the initial disturbance
is dominated by vorticity lines tilted against the shear,
phase mixing does not evolve monotonically: it temporar
cancels when, after some time, the vorticity lines are perp
dicular to the shear, leading to a peak in the disturba
streamfunction and the disturbance energy~the analogue of
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the plasma electrostatic energy!, which is the mark of tran-
sient growth.

A crucial feature of~linear! transient growth is the fac
that it requires very specific initial conditions: the initial di
turbances must be coherent, have a very small scale a
specific orientation for the amplification to be significant11

In this paper, we discuss a different mechanism that a
leads to a transient amplification of the disturbance, but d
not require such a small-scale excitation of the flow. T
mechanism, called the echo effect, is essentially nonlinea
is characterized by a transient growth of the disturbance
ergy following two successive excitations, as illustrat
schematically in Fig. 1. The two successive~spatially-
periodic, impulsive! excitations, denoted bya and b, are
applied at times t5e21ta,0 and t50, respectively.
Through nonlinear interaction, they produce a delayed
sponse, denoted byc, the echo. The energy peak associa
with the echo is isolated, because it appears when the d
responses to the excitationsa and b have already decaye
away through Landau damping.

The echo effect is in fact common to a variety of phy
cal systems;12–14 in particular, as noted above, it has be
studied in plasmas modelled by the Vlasov–Poiss
equations.13,15 In view of the analogy between these equ
tions and the equations describing the evolution of dist
bances in two-dimensional shear flows, the existence o
echo effect in shear flows is not entirely surprising. It has
fact been previously studied by Lifschitz16 who considered a
two-dimensional Couette flow in a channel. Following t
plasma derivation, he assumed weak amplitudes for the
excitations and used a regular perturbation expansion to
culate the nonlinear response leading to the echo. When
treatment is valid, the amplitude of the energy peak cor
sponding to the echo is much smaller than the maxim

-
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amplitude of the forced responsesa and b ~although when
the echo appears the amplitude of these responses may
decayed sufficiently and be negligible!.

In this paper, we shall be concerned with a somew
different—and more spectacular—phenomenon, which
refer to as thestrongecho and which arises when the thr
energy peaks in the energy have comparable amplitu
This is possible provided that the amplitude of the two ex
tations isO(e), with e!1, while the time-lag between them
is O(e21) (ta and tc introduced in Fig. 1 are thenO(1)
quantities!. However, in that case, the perturbative treatm
of Ref. 16 is not strictly valid; we therefore employ nume
cal simulations to demonstrate the existence of a strong e
We also considerably simplify the problem by dealing with
Couette flow in an unbounded domain as opposed to a c
nel. We note, however, that the physical mechanism at w
is one of generality. With the simplified Couette geomet
the disturbance vorticity and streamfunction can be expan
in terms of sheared modes~the exact solutions originally
discovered by Kelvin17! whose form is very simple; the ech
effect may then be interpreted as the nonlinear interac
between three sheared modes. Exploiting this, we deriv
system of three amplitude equations~analogous to the three
wave equations for wave triads! which capture the essence
the echo effect. Although these amplitude equations can
be obtained completely rigorously, they provide resu
which compare fairly well with numerical simulations. A
will be seen, the echo effect involves disturbances with sm
spatial scales, and hence may be expected to be signific
affected by viscous dissipation. We investigate this influe
by deriving an estimate for the viscous damping of the e
and confirm our findings numerically.

II. SHEARED MODES IN COUETTE FLOW

The nonlinear evolution of disturbances in a tw
dimensional Couette flowU5Ly is governed by the vortic-
ity equation

S ]

]t
1y

]

]xDv1
]~c,v!

]~x,y!
5m¹2v, with ¹2c5v,

~1!

wherec is the streamfunction andm the inverse of a Rey-
nolds number. This equation has been rendered dimens
less usingL21 as a timescale and a reference lengthL as a
lengthscale. The dimensional viscosityn is thus related tom

FIG. 1. Schematic representation of the echo effect showing the time
lution of the disturbance energy. Att5e21ta and t50, the shear flow is
disturbed by spatially periodic excitations. The energy of the respons
those excitations decays through Landau damping, but because of non
effects, a third peak—the echo—appears in the energy after a timt
5e21tc .
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throughm5n/(LL2). A standard procedure to study Couet
flows is to introduce the convected coordinates~the impor-
tance of which was noted, e.g., in Ref. 18 for this problem!,

X:5x2yt, Y:5y, T:5t,

which transform~1! into

]v

]T
1

]~c,v!

]~X,Y!
5m¹2v, ~2!

and give the form

¹25~11T2!
]2

]X2
22T

]2

]X]Y
1

]2

]Y2
,

for the Laplacian. Considering a periodic domain inX andY,
we can expand the vorticity and the streamfunction in F
rier series according to

v5e (
ka52`

1`

(
l a52`

1`

Aa~T!exp@ i~kaX1 l aY!#,

~3!

c5e (
ka52`

1`

(
l a52`

1`
2Aa~T!

ka
21~ l a2kaT!2

exp@ i~kaX1 l aY!#,

where the subscripta of Aa designates the pair (ka ,l a) and
A2a5(Aa)* . Here, we have introduced a formal parame
e!1 as we are concerned with weak amplitude disturban
Note that the extension of~3! to an unbounded domain i
immediately obtained by replacing the summations by in
grals. Introducing~3! into ~2! leads to the amplitude equa
tions

dAa

dT
5

e

2 (
kb52`

1`

(
l b52`

1`

3F 1

kb
21~ l b2kbT!2

2
1

kc
21~ l c2kcT!2G

3~kcl b2kbl c! Ab* Ac* 2m@ka
21~ l a2kaT!2#Aa ,

~4!

wherec is defined by the interaction conditions

ka1kb1kc50, l a1 l b1 l c50. ~5!

~We consider sum interactions only, allowing for both po
tive and negative values of the wavenumbers.!

We now concentrate on a strictly inviscid fluid withm
50. As is well known, a single mode with constant amp
tude Aa(T)5Aa(0) is then an exact solution of~4!. In the
original variables (x,y,t), this solution consists of a sheare
mode whose vorticity

v5eAa~0!exp$ i@kax1~ l a2kat !y#% ~6!

behaves like a passive tracer: it is constant along stra
lines that are simply tilted by the shear—the slope of th
lines evolves as 1/(t2 l a /ka). The time evolution of the dis-
turbance kinetic energy12** u¹cu2dxdy of a sheared mode is
given by

o-

to
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Ea~ t !5
e2uAa~0!u2

ka
21~ l a2kat !2

5
ka

21 l a
2

ka
21~ l a2kat !2

Ea~0!.

Although in the long-time limit this energy decays liket22,
it can be temporarily amplified ifka / l a.0, i.e., if the vor-
ticity lines are initially tilted against the shear. It is this tra
sient growth, identified originally by Orr,1 that has motivated
much of the literature on sheared modes.2–7

III. ECHO EFFECT

A superposition of sheared modes is generally not
exact solution of the nonlinear equation~1!. Analyzing spec-
tral equations analogous to~4!, Tung19 nevertheless con
cluded that it represents anO(e) approximation to an exac
solution and is uniformly valid in time, because of the e
plicit decrease of the nonlinear terms. However, as poin
out by Haynes20 in his study of the stability of sheare
modes, this conclusion assumes that all the wavenumbel a

are O(1). If at least one wavenumberl a is O(e21), i.e., if
initially the disturbance partly consists of strongly tilted vo
ticity lines, the nonlinearity can have nontrivial cons
quences at leading order that cannot be captured by a re
perturbation expansion. The echo effect which we now
scribe relies on this fact and requires the simultaneous p
ence of two modes: a modea with l a5O(e21) and a mode
b with l b5O(1). A natural way to achieve this configuratio
is to force the two modes at two successive instants sepa
by a time ofO(e21). Successive excitations have been t
ditionally considered to study other echo effects both th
retically and experimentally;12–16 however, in these studies
the time lag is assumed to be much smaller thane21, leading
to an echo amplitude much smaller than the maximum a
plitudes of the forced responses.

Consider modea forced at t5e21ta,0, ta5O(1),
with vorticity lines initially perpendicular to the shear an
initial amplitudeAa(e21ta). The subsequent evolution of th
vorticity is given by~6!, with

l a5e21kata , Aa~0!5Aa~e21ta!, ~7!

while the energy decays according to

Ea~ t !5
e2uAa~e21ta!u2

ka
2@11~ t2e21ta!2#

5
1

11~ t2e21ta!2
Ea~e21ta!.

At t50, when modea has vorticity lines strongly tilted in
the direction of the shear~their slope is2eta

21.0) and a
very small energy@Ea(0)'e2Ea(e21ta)/ta

2#, we excite the
second modeb, with kbÞka and l b5O(1). It is only essen-
tial that l b!e21, and for simplicity we takel b50 in what
follows. The linear evolution of this mode is again a simp
tilt of the vorticity lines, with a decay of the energy. How
ever, the nonlinear interaction ofa and b generate a third
modec, whose wavenumbers satisfy~5!. Defining,

e21tc :5
l c

kc
5e21

kata

ka1kb
, ~8!

wheretc is O(1), it can beseen that the vorticity ofc takes
the form
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vc5eAc~ t !exp$ i@kcx1~ l c2kct !y#%

5eAc~ t !exp$ ikc@x1~e21tc2t !y#%,

where the amplitudeAc(t) is determined by the nonlinea
interactions. Correspondingly, the energy ofc is given by

Ec~ t !5
e2uAc~ t !u2

kc
2@11~ t2e21tc!

2#
.

If tc.0, which is achieved if

kata

ka1kb
.0, i.e., if kakb,0 and ukau,ukbu, ~9!

one can expect the appearance of a peak inEc for t
'e21tc . At that time, bothEa and Eb have decreased to
O(e4) while Ec is O(e2) since, as shown below
Ac(e

21tc)5O(1). Thepeak inEc can thus be viewed as th
echo of two modes which have already damped away~see
Fig. 1!. Note that, because sheared modes are exact nonl
solutions of~1! ~with m50), we can treat the generation o
the echo as an initial-value problem, assuming that both
turbancesa andb are initialized att50 with l a given by~7!
and l b50.

IV. TRUNCATED MODEL

To investigate the echo effect in more detail, we fi
consider the truncation of~4! to the triad of modesa,b,c.
NeglectingO(e) terms and using~7! and ~8!, the evolution
equations forAa ,Ab ,Ac can be written as

dAa

dt
52JH 1

kb
2~11t2!

2
1

kc
2@11~ t2e21tc!

2#
J Ab* Ac* ,

dAb

dt
52

J

kc
2@11~ t2e21tc!

2#
Ac* Aa* , ~10!

dAc

dt
5

J

kb
2~11t2!

Aa* Ab* ,

whereJ:5kbkctc5O(1). Clearly, the initial forcing ofAc is
O(1) and, in general, one can expect the modec to quickly
reach anO(1) amplitude. This can be confirmed by dire
numerical solution of~10!. As an example, we consider th
modes with

ka522, l a510, kb53, l b50, kc521, l c5210,

which satisfy~5! and ~9!, such thate21ta525 ande21tc

510. We takee50.1 and choose the initial amplitudesAa

52 andAb52i. Figure 2 displays the time evolution of th
three amplitudes. As expected, modec attains an amplitude
comparable to that ofa andb due to their nonlinear forcing
For t5O(e21), Ac is approximately constant~because of the
explicit time decrease of the nonlinear interaction term!, but
Aa and Ab are strongly modulated fort'e21tc510. The
echo effect appears in the cumulative energy, given by
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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E5
e2uAau2

ka
2@11~ t2e21ta!2#

1
e2uAbu2

kb
2~11t2!

1
e2uAcu2

kc
2@11~ t2e21tc!

2#
,

whose evolution is shown in Fig. 3~dashed curve!. Initially,
the energy is dominated by the contribution of modeb and
decays as predicted by the linear theory~dotted curve!. For
longer time, however, the contribution of modec is domi-
nant and the energy exhibits a clear peak fort'e21tc cor-
responding to the echo.~The energy had also peaked aft
the excitation of modea, at t5e21ta,0.!

It is possible to derive an approximate analytical solut
of ~10! and thus to obtain an estimate for the echo amplitu
by noting that withe!1 the nonlinear terms are significa
only for t<O(1) andt2e21tc<O(1). For t<O(1), Ab is
almost constant and simply plays a catalytic role in the
teraction between modesa and c. Similarly, for t2e21tc

<O(1), Ac is almost constant; the evolution ofAa and Ab

FIG. 2. Time evolution of the amplitudes of the three modesa, b andc as
predicted by the truncated system~10!.

FIG. 3. Time evolution of the total disturbance energy in the system g
erned by the complete equations~4! with m50, in the truncated system~10!
and according to the linear theory.
Downloaded 18 Dec 2009 to 128.83.61.179. Redistribution subject to AIP
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during this second time period is irrelevant for the echo
fect. Focusing ont<O(1), weapproximate~10! by the lin-
ear system

dAa

dt
5

2J

kb
2~11t2!

Ab* Ac* ,

dAc

dt
5

J

kb
2~11t2!

Aa* Ab* ,

~11!

whereAb5Ab(0) is kept constant. The solution correspon
ing to the initial conditionsAa5Aa(0) andAc50 is

Aa~ t !5Aa~0!cos~a arctant !,

Ac~ t !5
Aa* ~0!Ab* ~0!

uAb~0!u
sin~a arctant !,

wherea:5uAbuJ/kb
2 . SinceAc does not change significantl

for t@1, we obtain the following estimates for the echo a
plitude:

uAc~e21tc!u'uAa~0!sin~ap/2!u

→Eecho'
e2uAa~0!u2

kc
2

sin2~ap/2!. ~12!

In the above example,a52/3, so that the estimates ar
uAc(e

21tc)u'A351.73 andEecho'0.03. Both values com-
pare well with what has been found by solving~10! numeri-
cally, as seen from Figs. 2 and 3, althoughe is only margin-
ally small.

A few remarks can be made about the approximate re
~12!. First, it indicates that the echo amplitude depends
the initial amplitudes of modesa andb in two distinct man-
ners: the echo amplitude is directly proportional toAa(0),
whereasAb(0) merely determines a time scale for the ev
lution of c. Note also the particular dependence ofuAcu on a,
i.e., on uAbu for fixed wavenumbers~and thus fixedJ); the
echo is maximized fora5(2n11), wheren is an integer,
and it disappears fora52n. Although these results only
hold for the truncated system~11!, one can expect an analo
gous complex dependence of the echo amplitude onuAbu in a
more realistic situation. Finally, we mention that standa
results about~weak! echo, which neglect the feedback ofc
on a andb, correspond to the limita!1 in ~12!. This leads
to the estimates

uAc~e21tc!u'
pkctcuAa~0!Ab~0!u

2kb
52.09

→Eecho'Ec~e21tc!

'
e2p2tc

2uAa~0!Ab~0!u2

4kb
2

50.044 ,

which provide the correct order of magnitude, although th
significantly overestimate the amplitude of the echo as
might expect.

V. NUMERICAL RESULTS

The system~10!, which has been derived as an ad h
truncation of~4!, misses important parts of the dynamics

-
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FIG. 4. Disturbance streamfunction fort51.5,4.5,7.5 and 10.5. Note the change in the contour levels.
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~4!, in particular the generation of a moded, with kd5kb

2ka and l d5 l b2 l a , corresponding to the interaction ofa
with 2b. This and other neglected interactions are likely
weaken the echo. It is therefore important to study the e
effect directly with the complete system~4!, or in practical
terms, with a truncation of~4! keeping many modes. It turn
out that convergent results are obtained with a limited nu
ber of modes; those presented below have been obtaine
the same parameters as before, with a 25325 truncation, and
reflect the behavior of the complete system~the disturbance
energy is particularly stable when resolution is varied!. The
evolution of the energy so obtained is displayed in Fig
~solid curve!. As anticipated, the truncated model overes
mates the energy peak att'e21tc . Nevertheless, these re
sults confirm the qualitative validity of the truncated mod
and the existence of the strong echo effect. Note that Fi
also shows the energy evolution predicted by the lin
theory; this theory only captures the Landau damping
mode b and thus completely misses the appearance of
echo.

It is interesting to examine the evolution of the structu
of the streamfunction and vorticity during the simulatio
Figure 4 shows the streamfunction att51.5,4.5,7.5 and 10.5
At t51.5, the streamfuction is dominated by modeb, since
Landau damping has already acted strongly on modea,
while modec only begins to emerge. Att54.5, the stream-
function amplitudes of modesb andc are similar, but weak
because both have relatively small spatial scales. Att57.5
andt510.5, little remains of modeb in terms of the stream
function which is dominated by modec. The amplitude of
the streamfunction increases as the spatial scale of this m
increases; it reaches its maximum fort510 before decreas
Downloaded 18 Dec 2009 to 128.83.61.179. Redistribution subject to AIP
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de

ing. Note the factor of 20 between the amplitude of t
streamfunction fort51.5 and fort510.5, which indicates
the importance of the echo effect.

It is difficult to plot the evolution of the vorticity field in
a similar manner, since it contains very small scales ass
ated with modea, and, after some time, those associat
with modeb. Figure 5, which shows the vorticity field with
x-wavenumberkc only, focuses on modec. The two panels
correspond tot57.5 ~before the echo! andt512.5 ~after the
echo!. Although a dominant orientation of the vorticity line
can be distinguished and corresponds to the behavior
pected from modec, this figure emphasizes that sever
sheared modes, with wavenumberk5kc but different wave-
numbersl , are in fact superposed.

As Figs. 4 and 5 clearly illustrate, the echo effect rel
on the presence in the flow of disturbances with very sm
scales. Since such disturbances are strongly affected by
sipation, it is important to consider the echo effect with
nonzero viscosity. A rough estimate of the influence of v
cosity can be derived from~4! by noting that, in the linear
approximation, any mode amplitude is damped by a fac
exp@2m(ka

21la
22kalat1ka

2t2/3)t#. The modesa andc involved
in the echo have wavenumbersl a and l c which areO(e21),
and modec must remain excited untilt'e21tc . Therefore,
at the moment of the echo, dissipation is responsible for
overall damping factor of exp(2me23ka

2tc
3/3). Sinceka

2tc
3/3

5O(1), anapproximate condition for the echo to occur in
viscous fluid isme23<1. The validity of this estimate can
be confirmed by direct numerical solution of~4! ~again with
a 25325 truncation! for different values of the viscosity pa
rameterm. The corresponding evolution of the total energy
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Vorticity field with wavenumberkc for t57.5 and 12.
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shown in Fig. 6. With the nonzero values chosen form,
which areO(e3), the energy peak significantly decreas
although it remains well defined. It is clear that form!e3

50.001, the echo would be virtually unaffected by dissip
tion, whereas form@e3 it would entirely disappear.

VI. CONCLUSION

In this paper, we have studied the echo effect in a tw
dimensional Couette flow both analytically and numerica
This phenomenon can be regarded as a nonlinear mecha
of transient growth: a disturbance strongly tilted against
shear, and thus susceptible to experience a significant en
amplification, is generated by the nonlinear interaction
two other disturbances which are excited successively.
time lag between these two excitations, when large a
assumed here, provides a natural way of introducing in
system disturbances with very different scales. This lead
a significant nonlinear effect although the initial excitati
amplitude is weak. The echo effect, as the instability
sheared modes,20 thus illustrates the difficulties that ma
arise when linearizing evolution equations for disturban
in stable shear flows: stability guarantees that some norm
the disturbance—the enstrophy for Couette flows—

FIG. 6. Time evolution in the system governed by the complete equat
~4! for different values of the viscosity parameterm.
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bounded, but this does not preclude the nonlinear terms t
large since they involve vorticity gradients which increa
with time.

Our investigation of the echo effect is particular
simple, mainly thanks to the very simple form taken
sheared modes in two-dimensional Couette flows when
domain is unbounded. The physical mechanisms involv
however, are generic to all monotonic shear flows, so t
echoes can be expected to occur in a variety of situatio
Geophysical flows seem especially interesting in this resp
since they are only slightly affected by dissipation; this m
tivates the extension of our work to include the effects
rotation, curvature (b-effect! and stratification. Spatia
echoes15 also deserves investigation, notably because
phenomenon would be well suited for an experimental de
onstration of the echo effect in shear flows.
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