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Strong echo effect and nonlinear transient growth in shear flows
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The nonlinear interaction of two disturbances excited successively in a two-dimensional Couette
flow is shown to lead to a transient energy growth. This phenomenon, which is called the echo effect
and exists in several other physical systems, is interesting because the energy growth appears long
after the energy associated with the original disturbances has decayed. Here, the echo effect is
studied analytically and numerically in a situation where the nonlinear response has the same order
of magnitude as the two excitations. A system of amplitude equations describing the nonlinear
interactions between three sheared modes is derived and employed to examine the physical
mechanism of the echo. The qualitative validity of this system is confirmed by numerical
simulations. The influence of viscous dissipation on the echo effect is also considerel®980
American Institute of Physic§S1070-663(98)01406-§

I. INTRODUCTION the plasma electrostatic enejgwhich is the mark of tran-
sient growth.

It is now widely recognized that the kinetic energy of an A crucial feature of(linear transient growth is the fact
infinitesimal disturbance in a shear flow can be significantlythat it requires very specific initial conditions: the initial dis-
amplified even if the flow is spectrally stable. Such an am{urbances must be coherent, have a very small scale and a
plification, which is then followed by a decay in the long- specific orientation for the amplification to be significéht.
time limit and is generally referred to as transient growth,In this paper, we discuss a different mechanism that also
was originally identified by Ofrin a two-dimensional Cou- leads to a transient amplification of the disturbance, but does
ette flow. In recent years, it has been studied in connectiofOt require such a small-scale excitation of the flow. This

with various problems in hydrodynamics stabfity and in mechanism, called the echo effect, is essentially nonlinear; it
meteorology? is characterized by a transient growth of the disturbance en-

The physical mechanism behind transient growth is parg—:-rgy following two successive excitations, as illustrated

ticularly transparent for two-dimensional incompressibIeSCh.er(;'.at'c.aIIy Ilr? a}F'g' % t_The ;WO fudccs ssn(egitlally—
flows, which are governed by a vorticity equation. In suchger'ﬁe('jc’ ;Ta?;évs tSXC,'la |o<n(s), a(ra]r(;o te— 0 ﬁr:; eciivaerle
flows, the disturbance vorticity is advected and sheared b pp € Ta ' P Y.

the basic-flow velocity, and the disturbance energy cruciall hrough nonlinear interaction, they produce a delayed re-
Y, and gy ¥ onse, denoted hy, the echo. The energy peak associated
depends on the phase mixing that appears when the strea

L . L X T ith the echo is isolated, because it appears when the direct
function is derived from the vorticity. In the long-time limit,

R ) ~ responses to the excitatiomsand b have already decayed
the scale of the vorticity field systematically decreases Wlﬂ’éway through Landau damping.

time, leading to an enhanced phase mixing and thus t0 & The echo effect is in fact common to a variety of physi-
decrease of the disturbance streamfunction and eheriys cal systemd2~in particular, as noted above, it has been
decrease is sometimes referred to as Landau damping, Ryudied in plasmas modelled by the Vlasov—Poisson
analogy with the similar phenomenon of decrease of electroequations>*° In view of the analogy between these equa-
static energy in plasma$However, if the initial disturbance tions and the equations describing the evolution of distur-
is dominated by vorticity lines tilted against the shear, thebances in two-dimensional shear flows, the existence of an
phase mixing does not evolve monotonically: it temporarilyecho effect in shear flows is not entirely surprising. It has in
cancels when, after some time, the vorticity lines are perperfact been previously studied by Lifschitavho considered a
dicular to the shear, leading to a peak in the disturbancéwo-dimensional Couette flow in a channel. Following the
streamfunction and the disturbance ene(the analogue of plasma derivation, he assumed weak amplitudes for the two
excitations and used a regular perturbation expansion to cal-
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throughu = v/(AL2). A standard procedure to study Couette

E
a b N flows is to introduce the convected coordinatd®e impor-
tance of which was noted, e.g., in Ref. 18 for this problem
| X:=x—yt, Y:=y, T:.=t,
Ta 0 T et

which transform(1) into

FIG. 1. Schematic representation of the echo effect showing the time evo-

lution of the disturbance energy. At e 17, andt=0, the shear flow is ‘9_“’ + J( zﬁ,w) _
disturbed by spatially periodic excitations. The energy of the response to aT  A(X,Y) K
those excitations decays through Landau damping, but because of nonlinear

effects, a third peak—the echo—appears in the energy after a ttime gnd give the form

=e’lrc.

Vi, 2

VZ=(1+T? - 2T - + i
= )ax2 IXIY  gy?’

amplitude of the forced responsasandb (although when

the echo appears the amplitude of these responses may hgyg ihe | aplacian. Considering a periodic domairimndY,

decayed sufficiently and be negligible _ we can expand the vorticity and the streamfunction in Fou-
In this paper, we shall be concerned with a somewhajier series according to

different—and more spectacular—phenomenon, which we

refer to as thestrongecho and which arises when the three o= _

energy peaks in the energy have comparable amplitudes. ©@=€ :E_w | ;_m Aa(T)exdi(kaX+15Y) ],
This is possible provided that the amplitude of the two exci- @ @
tations isO(€), with e<1, while the time-lag between them to 4o —A(T)

is O(e 1) (7, and 7. introduced in Fig. 1 are the®(1) =€ 2 2 +
quantities. However, in that case, the perturbative treatment ka=—= la=—= Kg+ (Ia=KaT)?
of Ref. 16 is not strictly valid; we therefore employ numeri-
cal simulations to demonstrate the existence of a strong echg. —(A,)*. Here, we have introduced a formal parameter
We also considerably simplify the problem by dealing with aeg_}L as \7ve are co’ncerned with weak amplitude disturbances.
Couette flow in an unbounded domaip as opposgd toa Cha'F\Tote that the extension df3) to an unbounded domain is
nel. We note, however, that the physical mechanism at Worlﬁnmediately obtained by replacing the summations by inte-

is one of generality. With the simplified Couette geometry, rals. Introducing(3) into (2) leads to the amplitude equa-
the disturbance vorticity and streamfunction can be expand bns

in terms of sheared moddgshe exact solutions originally
discovered by Kelvil') whose form is very simple; the echo dA, e & 2
effect may then be interpreted as the nonlinear interaction = 2 Z_m | Z_w
between three sheared modes. Exploiting this, we derive a b~ o~
system of three amplitude equatiof@alogous to the three-

)

exli(kaX+1,Y)],

where the subscrip of A, designates the paik{,l,;) and

1 1
wave equations for wave triadahich capture the essence of X| = -
i i ke+(lpb—kpT)?  KZ+(1—k.T)?
the echo effect. Although these amplitude equations cannot b b Rb c e fe
be. obtained completely rig.orously, 'Fhey .provid.e results X (el p—kplo) AL A —ﬂ[k§+(|a— k. T)2]A,,
which compare fairly well with numerical simulations. As
will be seen, the echo effect involves disturbances with small (4)

spatial scales, and hence may be expected to be significanilyerec is defined by the interaction conditions
affected by viscous dissipation. We investigate this influence

by deriving an estimate for the viscous damping of the echo  k,tk,+k.=0, |,+I1,+1.=0. (5)

and confirm our findings numerically. . . . . .
g y (We consider sum interactions only, allowing for both posi-

tive and negative values of the wavenumbers.
Il. SHEARED MODES IN COUETTE FLOW We now concentrate on a strictly inviscid fluid wijh
The nonlinear evolution of disturbances in a two- =0- As is well known, a single mode with constant ampli-
dimensional Couette flow) = Ay is governed by the vortic- tUdeAa(T) =A4(0) is then an exact solution @#). In the

ity equation original variables X,y,t), this solution consists of a sheared
mode whose vorticity
i+ i + I(¢,0) = V2 ith V2y= .
at Yax YT axy) Y M y=o, o= €eAy(0)expi[kax+ (Ia—kat)y1} (6)

@) pehaves like a passive tracer: it is constant along straight
where i is the streamfunction angd the inverse of a Rey- lines that are simply tilted by the shear—the slope of these
nolds number. This equation has been rendered dimensiotines evolves as 1¥(-1,/k,). The time evolution of the dis-
less usingA ~! as a timescale and a reference lenigths a  turbance kinetic energy/ [|V #/|?dxdy of a sheared mode is
lengthscale. The dimensional viscosityis thus related tqu given by
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62|Aa(0)|2 ki-i—lg wc= eAc() explifkex+ (I =Ky}

Ba(t)= K2t (k)2 K2+ (1~ kat)? =) = eAc(t)explik[x+ (e te—Dyl},

Although in the long-time limit this energy decays like?,  where the amplitudé\.(t) is determined by the nonlinear
it can be temporarily amplified Kk,/1,>0, i.e., if the vor-  interactions. Correspondingly, the energycois given by
ticity lines are initially tilted against the shear. It is this tran-

sient growth, identified originally by Orrthat has motivated E(1)= €2|As(1)]?

much of the literature on sheared modes. c KL+ (t—e trp)?]

- L . .
. ECHO EEFECT If 7.>0, which is achieved if

.. . KaTa ) _
A superposition of sheared modes is generally not an 22 > je. if k,k,<O and [Kal <|Kp|, (9)
exact solution of the nonlinear equati@l). Analyzing spec- KatKp
: 9
tral equatlorjs analogous t@), Tund _neyertheless CON- e can expect the appearance of a peakEjnfor t
cluded that it represents ab(e) approximation to an exact -1

~e ~7.. At that time, bothE, and E, have decreased to
() while E, is O(€?) since, as shown below,
(e 17.)=0(1). Thepeak inE, can thus be viewed as the
echo of two modes which have already damped aveze
Fig. 1. Note that, because sheared modes are exact nonlinear
ax ‘ X ) solutions of(1) (with u=0), we can treat the generation of
initially the disturbance partly consists of strongly tilted vor- the echo as an initial-value problem, assuming that both dis-

ticity lines, the_ nonlinearity can have nontrivial conse- turbances andb are initialized at=0 with |, given by(7)
guences at leading order that cannot be captured by a regulgﬁd I,=0

perturbation expansion. The echo effect which we now de-
scribe relies on this fact and requires the simultaneous pres-
ence of two modes: a modewith |,=0O(e"!) and a mode
b with I,=0O(1). A natural way to achieve this configuration V. TRUNCATED MODEL
is to force the two modes at two successive instants separated . . . . '
P To investigate the echo effect in more detail, we first

by a time ofO(e™1). Successive excitations have been tra- . . .
Y (™) consider the truncation d4) to the triad of modes,b,c.

ditionally considered to study other echo effects both theo- . X :
retically and experimentall{?~1® however, in these studies, NeglectingO(e) terms and using7) and(8), the evolution

the time lag is assumed to be much smaller thah, leading equations for, , A, A can be written as

solution and is uniformly valid in time, because of the ex-
plicit decrease of the nonlinear terms. However, as pointe
out by Hayne® in his study of the stability of sheared

modes, this conclusion assumes that all the wavenunipers
areO(1). If at least one wavenumbéy, is O(e™ 1), i.e., if

to an echo amplitude much smaller than the maximum am- dA 1 1
. a
plitudes of the forced responses. - Nz N —- (AVAL,
Consider modea forced att=e 17,<0, 7,=0(1), t Kp(1+t%)  kg[1+(t—e “7c)7]
with vorticity lines initially perpendicular to the shear and
initial amplitudeA, (e 17,). The subsequent evolution of the ~ dA, J -
ticity is given by(6), with dt 2 1, 2y ha (10
vorticity is given by(6), wi t K1+ (t—e 102
hll|a=helka7'a, dAa(O)zAa(edlra), (7) dAC_ ] )
while the energy decays according to F_W aAb
EzlAa(EilTaH2 1 1 - . .
a = >Eal€e™ " 7a). whereJ: =kyk.7.=0O(1). Clearly, the initial forcing ofA; is

k§[1+(t—e 7% 1+ (t-e 'y O(1) and, in general, one can expect the mode quickly
At t=0, when modea has vorticity lines strongly tilted in reach anO(1) amplitude. This can be confirmed by direct
the direction of the shed(their slope is—e7, *>0) and a humerical solution of10). As an example, we consider the
very small energy E,(0)~ ’E (e *7,)/72], we excite the ~modes with
second modé, with k,#k, andl,=0(1). It is only essen- _ _ _ _ _ _
tial thatl,<e L, and for simplicity we takd,=0 in what <@~ 2 1a=10, k=3, 1,=0, ke=-1, 1.=-10,
follows. The linear evolution of this mode is again a simplewhich satisfy(5) and (9), such thate *r,=—5 ande 17,
tilt of the vorticity lines, with a decay of the energy. How- =10. We takee=0.1 and choose the initial amplitudés,
ever, the nonlinear interaction af andb generate a third =2 andA,=2i. Figure 2 displays the time evolution of the
modec, whose wavenumbers satisfy). Defining, three amplitudes. As expected, modattains an amplitude
| k.7 comparable to that ad andb due to their nonlinear forcing.
“lr= k—c = *ﬁ, (8) Fort=0(e 1), A, is approximately constaitbecause of the
¢ a’th explicit time decrease of the nonlinear interaction terbut
wherer, is O(1), it can beseen that the vorticity of takes A, and A, are strongly modulated for~e *7,=10. The
the form echo effect appears in the cumulative energy, given by
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FIG. 2. Time evolution of the amplitudes of the three modeb andc as
predicted by the truncated systeéf0).

52|Aa| 2

KLt (t-e )7

€*|Ap?

k2(1+12)

62|Ac|2
KI1+(t—e 17)?]

whose evolution is shown in Fig. @ashed curve Initially,
the energy is dominated by the contribution of mddand
decays as predicted by the linear the6udptted curve For
longer time, however, the contribution of modeis domi-
nant and the energy exhibits a clear peakttsre 17, cor-
responding to the ech@The energy had also peaked after
the excitation of mode, att=¢ 17,<0.)

It is possible to derive an approximate analytical solution

Vanneste, Morrison, and Warn 1401

during this second time period is irrelevant for the echo ef-
fect. Focusing on<0(1), we approximate(10) by the lin-
ear system

A, -3,
dt  k1+t2) °
(13)
dA. 3,
ab

At K1+t
whereA,=Ay(0) is kept constant. The solution correspond-
ing to the initial conditionsA,=A,(0) andA.=0 is

A, (t)=A4(0)coq a arctant),

AZ(0)A;(0)
Wsin(a arctant),
b

wherea:=|Ap|J/k3. SinceA, does not change significantly
for t>1, we obtain the following estimates for the echo am-
plitude:

|A(e 17o)|~|AL(0)sin a/2)|

Ac(t)=

€AL(0)?_
—————Si
ke

In the above exampleq=2/3, so that the estimates are
|A(e 175)|~/3=1.73 andEy,~0.03. Both values com-
pare well with what has been found by solvitid) numeri-
cally, as seen from Figs. 2 and 3, althougls only margin-

ally small.

A few remarks can be made about the approximate result
(12). First, it indicates that the echo amplitude depends on
the initial amplitudes of modes andb in two distinct man-
ners: the echo amplitude is directly proportionalAg(0),

P(aml2). (12)

— Eechg™

of (10) and thus to obtain an estimate for the echo amplitud&vhereasA,(0) merely determines a time scale for the evo-

by noting that withe<1 the nonlinear terms are significant
only for t<O(1) andt—e 17.<O(1). Fort<0(1), A, is

lution of c. Note also the particular dependenceAf| on «,
i.e., on|A,| for fixed wavenumbergand thus fixed)); the

almost constant and simply plays a catalytic role in the in-echo is maximized fow=(2n+1), wheren is an integer,

teraction between modes and c. Similarly, for t—e 17,
<0O(1), A, is almost constant; the evolution &f, and A,

0.03 ' ! ! T T T T
complete
0.025 truncated ——- A |
linear — i

0.02 /
E 0.015
0.01

0.005

0

and it disappears forr=2n. Although these results only
hold for the truncated systefii1), one can expect an analo-
gous complex dependence of the echo amplitudgAghin a
more realistic situation. Finally, we mention that standard
results aboutweak echo, which neglect the feedback of
ona andb, correspond to the limi&<<1 in (12). This leads

to the estimates

chTc|Aa(0)Ab(0)|
2k,

|A(e 11|~ =2.09

—Eechg~Ec(€™ 17'(:)

2272 A4(0)AL(0)|?
4K3

=0.044,

which provide the correct order of magnitude, although they
significantly overestimate the amplitude of the echo as one

might expect.

V. NUMERICAL RESULTS

FIG. 3. Time evolution of the total disturbance energy in the system gov-
erned by the complete equatiof® with ©=0, in the truncated systefi0)
and according to the linear theory.
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FIG. 4. Disturbance streamfunction for1.5,4.5,7.5 and 10.5. Note the change in the contour levels.

(4), in particular the generation of a mode with ky=k, ing. Note the factor of 20 between the amplitude of the
—k, andlg=1,—1,, corresponding to the interaction af  streamfunction fot=1.5 and fort=10.5, which indicates
with —b. This and other neglected interactions are likely tothe importance of the echo effect.

weaken the echo. It is therefore important to study the echo |t is difficult to plot the evolution of the vorticity field in
effect directly with the complete syste(), or in practical  a similar manner, since it contains very small scales associ-
terms, with a truncation of4) keeping many modes. It turns ated with modea, and, after some time, those associated
out that convergent results are obtained with a limited numwith modeb. Figure 5, which shows the vorticity field with
ber of modes; those presented below have been obtained fS?fwavenumbenkc only, focuses on mode. The two panels
the same parameters as before, with x 25 truncation, and correspond ta= 7.5 (before the echoandt=12.5 (after the
reflect the behavior of the complete systétime disturbance echg. Although a dominant orientation of the vorticity lines
energy is particularly stable when resolution is variethe 51 pe distinguished and corresponds to the behavior ex-
evolution of the energy so obtained is displayed in Fig. 3pected from modec, this figure emphasizes that several

(SOIt'd ctl;]rve). AS ant|C|pka;d,_tlhe tr;ncat?: ?Odetlhoveresu'sheared modes, with wavenumber k. but different wave-
mates the energy pea € ~7.. Nevertheless, these re- numbersl, are in fact superposed.

sults confirm the qualitative validity of the truncated model As Figs. 4 and 5 clearly illustrate, the echo effect relies

and the existence of the strong echo effect. Note that Fig. %n the presence in the flow of disturbances with very small

?rllse%r;'h?k\:\i/ss tt::or?/niﬁ)% ce;/gtlS:I:sn tﬁ;ei';;%iub)é;rr:]epirl:gegr cales. Since such disturbances are strongly affected by dis-
, gipation, it is important to consider the echo effect with a

modeb and thus completely misses the appearance of th ) . ) . .
petely PP nonzero viscosity. A rough estimate of the influence of vis-

echo.
cosity can be derived fronfd) by noting that, in the linear

It is interesting to examine the evolution of the structure - ; ] i
of the streamfunction and vorticity during the simulation. 2PProximation, any mode amplitude is damped by a factor

Figure 4 shows the streamfunctiontat1.5,4.5,7.5 and 10.5. XA —a(K+13—kalat+K;t*/3)t]. The modes andc involved

At t=1.5, the streamfuction is dominated by mdaesince N the echo have wavenumbdisand|; which areO(e ™),
Landau damping has already acted strongly on magde and modec must remain excited unttl~ e~ 17.. Therefore,
while modec only begins to emerge. At=4.5, the stream- at the moment of the echo, dissipation is responsible for an
function amplitudes of modes andc are similar, but weak overall damping factor of exp(ue 3K;72/3). Sincekiro/3
because both have relatively small spatial scalest=A7.5 =O(1), anapproximate condition for the echo to occur in a
andt=10.5, little remains of modb in terms of the stream- viscous fluid isue 3<1. The validity of this estimate can
function which is dominated by mode The amplitude of be confirmed by direct numerical solution @) (again with

the streamfunction increases as the spatial scale of this mo@e25x 25 truncation for different values of the viscosity pa-
increases; it reaches its maximum fer 10 before decreas- rameterw. The corresponding evolution of the total energy is
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FIG. 5. Vorticity field with wavenumbek for t=7.5 and 12.

shown in Fig. 6. With the nonzero values chosen fgr  bounded, but this does not preclude the nonlinear terms to be
which areO(€), the energy peak significantly decreases,large since they involve vorticity gradients which increase
although it remains well defined. It is clear that for< € with time.
=0.001, the echo would be virtually unaffected by dissipa-  Our investigation of the echo effect is particularly
tion, whereas fo> € it would entirely disappear. simple, mainly thanks to the very simple form taken by
sheared modes in two-dimensional Couette flows when the
domain is unbounded. The physical mechanisms involved,
VI. CONCLUSION however, are generic to all monotonic shear flows, so that
. . . echoes can be expected to occur in a variety of situations.
, In th's paper, we have studied th? echo effect in a tWO'GeophysicaI flows seem especially interesting in this respect,
d|rr_1enS|onaI Couette flow both analytically and numerlcallyl.Since they are only slightly affected by dissipation; this mo-
This ph(_anomenon can b,e regarded as a non.lmear m?Chan'ﬁmates the extension of our work to include the effects of
of transient growth: a disturbance strongly tilted against therotation, curvature g-effect and stratification. Spatial

shear, and thus susceptible to experience a significant enerqyy 1o 4iso deserves investigation, notably because this

amplification, is generated by the nonlinear interaction Ofphenomenon would be well suited for an experimental dem-
two other disturbances which are excited successively. Th8nstration of the echo effect in shear flows

time lag between these two excitations, when large as is

assumed. here, prowde_s a natur.al way of mtroduc_mg in th%\CKNOWLEDGMENTS
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