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The Hamiltonian viewpoint of fluid mechanical systems with few and infinite number of degrees of
freedom is described. Rudimentary concepts of finite-degree-of-freedom Hamiltonian dynamics are
reviewed, in the context of the passive advection of a scalar or tracer field by a fluid. The notions of
integrability, invariant-tori, chaos, overlap criteria, and invariant-tori breakup are described in this
context. Preparatory to the introduction of field theories, systems with an infinite number of degrees
of freedom, elements of functional calculus and action principles of mechanics are reviewed. The
action principle for the ideal compressible fluid is described in terms of Lagrangian or material
variables. Hamiltonian systems in terms of noncanonical variables are presented, including several
examples of Eulerian or inviscid fluid dynamics. Lie group theory sufficient for the treatment of
reduction is reviewed. The reduction from Lagrangian to Eulerian variables is treated along with
Clebsch variable decompositions. Stability in the canonical and noncanonical Hamiltonian contexts is
described. Sufficient conditions for stability, such as Rayleigh-like criteria, are seen to be only
sufficient in the general case because of the existence of negative-energy modes, which are possessed
by interesting fluid equilibria. Linearly stable equilibria with negative energy modes are argued to be
unstable when nonlinearity or dissipation is added. The energy-Casimir method is discussed and a
variant of it that depends upon the notion of dynamical accessibility is described. The energy content
of a perturbation about a general fluid equilibrium is calculated using three methods.
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468 P. J. Morrison: Hamiltonian description of the ideal fluid
I. INTRODUCTION

Why look at fluid mechanics from a Hamiltonian per-
spective? The simple answer is because it is there and it
is beautiful. For ideal fluids the Hamiltonian form is not
artificial or contrived, but something that is basic to the
model. However, if you are a meteorologist or an ocean-
ographer, perhaps what you consider to be beautiful is
the ability to predict the weather next week or to under-
stand transport caused by ocean currents. If this is the
case, a more practical answer may be needed. Below, in
the remainder of this Introduction, I shall give some ar-
guments to this effect. However, I have observed that
the Hamiltonian philosophy is like avocado: you either
like it or you don’t. In any event, since 1980 I have also
observed a strong development in this field, and this is
very likely to continue.

One practical reason for the Hamiltonian point of
view is that it provides a unifying framework. In particu-
lar, when solving ‘‘real’’ problems one makes approxi-
mations about what the dominant physics is, considers
different geometries, defines small parameters, expands,
etc. In the course of doing this one performs various
kinds of calculations again and again, for example, cal-
culations regarding

(1) waves and instabilities by means of linear ei-
genanalyses;

(2) parameter dependency of eigenvalues as obtained
by such eigenanalyses;

(3) stability that are based on arguments involving
energy or other invariants;

(4) various kinds of perturbation theory;
(5) approximations that lead to low-degree-of-

freedom dynamics.
After a while one discovers that certain things happen

over and over again in the above calculations, for ex-
ample,

(1) spectra whose nature is not arbitrary, but pos-
sesses limitations;

(2) certain types of bifurcations that occur upon col-
lision of eigenvalues;

(3) Rayleigh-type stability criteria (these occur for a
wide variety of fluid and plasma problems);

(4) simplifications based on common patterns;
(5) common methods for reducing the order of sys-

tems.
By understanding the Hamiltonian perspective, one

knows in advance (within bounds) what answers to ex-
pect and what kinds of procedures can be performed.

In cases where dissipation is not important and ap-
proximations are going to be made, it is, in my opinion,
desirable to have the approximate model retain the
Hamiltonian structure of the primitive model. One may
not want to introduce spurious unphysical dissipation or
sources that destroy energy conservation or other con-
served physical quantities. Understanding the Hamil-
tonian structure allows one to make Hamiltonian ap-
proximations. In physical situations where dissipation is
important, I believe it is useful to see in which way the
dynamics differ from what one expects for the ideal (dis-
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sipationless) model. The Hamiltonian model thus serves
as a sort of benchmark. Also, when approximating mod-
els with dissipation, we can isolate which part is dissipa-
tive and make sure that the Hamiltonian part retains its
Hamiltonian structure and so on.

It is well known that Hamiltonian systems are not
structurally stable in a strict mathematical sense (which I
shall not define here). However, this obviously does not
mean that Hamiltonian systems are not important; the
physics point of view can differ from the mathematics. A
simple linear oscillator with very small damping can be-
have over long periods of time like an undamped oscil-
lator, even though the topology of its dynamics is quite
different.

To say that a Hamiltonian system is structurally un-
stable is not enough. A favorite example of mine that
illustrates this point concerns the first U.S. satellite, Ex-
plorer I, which was launched in 1958 (see Fig. 1). This
spacecraft was designed so that its attitude would be
stabilized by spin about its symmetry axis. However, the
intended spin-stabilized state did not persist and the sat-
ellite began to tumble. This was attributed to energy
dissipation in the small antennae shown in the figure.
Thus, unlike the simple oscillator, in which the addition
of dissipation has a small effect, here the addition of
dissipation had a catastrophic effect. Indeed, this was a
most expensive experiment on negative-energy modes, a
universal phenomenon in fluids that I will discuss.

After Explorer I, in 1962 Alouette I was launched
(see Fig. 2), which had an obvious design difference.
This satellite behaved like a damped linear oscillator in

FIG. 1. Depiction of Explorer I satellite, which was destabi-
lized by energy dissipation (after Likins, 1971).

FIG. 2. Depiction of the satellite Alouette (after Likins, 1971),
which was designed after Explorer I.
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the sense that dissipation merely caused it to spin down.
I should like to emphasize that the difference between
the behavior of Explorer I and that of Alouette I lies in
a mathematical property of the Hamiltonian dynamics
of these spacecraft: it could have been predicted.

So, the purpose of my lectures is to describe the
Hamiltonian point of view in fluid mechanics, and to do
so in an accessible language. It is to give you some fairly
general tools and tricks. I am not going to solve a single
‘‘real’’ problem; however, you will see specific examples
of problems throughout the summer.1 The first lecture
(Sec. II) is somewhat different in flavor from the others.
Imagine that you have succeeded in obtaining a finite
Hamiltonian system out of some fluid model, the Kida
vortex being a good example (see, for example, Mea-
cham et al., 1997). What should you expect of the dy-
namics? This first lecture, being a sketch of low-degree-
of-freedom Hamiltonian dynamics, answers this to some
degree. The next lectures (Secs. III–V) are concerned
with the structure of infinite-degree-of-freedom Hamil-
tonian systems, although I shall often use finite systems
for means of exposition. The last lecture (Sec. VI) is
concerned with expressions for the energy of perturba-
tions of an equilibrium state and their use in determin-
ing stability.

II. RUDIMENTS OF HAMILTONIAN SYSTEMS WITH FEW
DEGREES OF FREEDOM, ILLUSTRATED BY
PASSIVE ADVECTION IN TWO-DIMENSIONAL FLUIDS

In this introductory lecture we shall review some basic
aspects of Hamiltonian systems with a finite number of
degrees of freedom.2 We illustrate, in particular, proper-
ties of systems with one, two, and three degrees of free-
dom by considering the passive advection of a tracer in
two-dimensional incompressible fluid flow.3 The tracer is
something that moves with, but does not influence, the
fluid flow; examples include neutrally buoyant particles
and colored dye. The reason for mixing Hamiltonian
system phenomenology with fluid advection is that the
latter provides a nice framework for visualization, since,
as we shall see, the phase space of the Hamiltonian sys-
tem is in fact the physical space occupied by the fluid.

A point of view advocated in this lecture series is that
an understanding of finite-dimensional Hamiltonian sys-
tems is useful for the eventual understanding of infinite-
degree-of-freedom systems, such as the equations of
various ideal fluid models. Such infinite systems are the
main subject of these lectures. It is important to under-
stand that the infinite systems are distinct from the pas-

1I have tried to retain language that preserves the flavor of
the Woods Hole lecture series.

2For an introduction see Berry (1978) and the comprehensive
article of Arnold (1963); for symplectic maps see Meiss (1992).

3Much has been written about passive advection; see, for ex-
ample, Ottino (1990), del-Castillo-Negrete and Morrison
(1993), and many references therein.
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sive advection problem that is treated in this lecture; the
former are governed by partial differential equations,
while the latter is governed by ordinary differential
equations.

A. A model for two-dimensional fluid motion

In various situations fluids are described adequately
by models in which motion occurs in only two spatial
dimensions. An important example is that of rotating
fluids in which the dominant physics is governed by geo-
strophic balance, where the pressure force is balanced
by the Coriolis force. For these types of flows the well-
known Taylor-Proudman theorem (see, for example,
Pedlosky, 1987) states that the motion is predominantly
two dimensional. A sort of general model that describes
a variety of two-dimensional fluid motion is given by

]q

]t
1@c ,q#5S1D, (1)

where q(x ,y ,t) is a vorticity-like variable, c(x ,y ,t) is a
stream function, and both are functions of the spatial
variable (x ,y)PD , where D is some spatial domain, and
t is time. The quantities S and D denote sources and
sinks, respectively. Examples of S include the input of
vorticity by means of pumping or stirring, while ex-
amples of D include viscous dissipation and Ekman
drag. Above, the Poisson bracket notation is used:

@f ,g# :5
]f

]x

]g

]y
2

]f

]y

]g

]x
, (2)

[which is the Jacobian ](f ,g)/](x ,y)] and we have as-
sumed incompressible flow, which implies that the two
components of the velocity field are given by

~u ,v !5S 2
]c

]y
,
]c

]x D . (3)

In order to close the system, a ‘‘self-consistency’’ condi-
tion that relates q and c is required. We signify this by
q5Lc . Examples include

(1) The two-dimensional Euler equation for which
q5¹2c ;

(2) The rotating fluid on the b-plane for which
q5¹2c1by .

In the former case q is the vorticity, while in the latter
case q is the potential vorticity. Potential vorticity is a
vorticity-like quantity that includes the ‘‘b-effect,’’ an
effect that arises in part from the deviation of the nor-
mal to the earth’s surface with the rotation axes (see
Pedlosky, 1987).

For convenience we shall suppose that the domain D
is an annular region as depicted in Fig. 3. Many experi-
ments have been performed in this geometry,4 where the
fluid swirls about in the u and r directions and is pre-

4Early experiments, along with theory, are described by
Greenspan (1968); more recent work is discussed by Sommeria
et al. (1991).
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dominantly two dimensional. The geometry of the annu-
lus suggests the use of polar coordinates, which are
given here by the formulas x5rsinu and y5rcosu. In
terms of r and u the bracket of Eq. (2) becomes

@f ,g#5
1
r S ]f

]u

]g

]r
2

]f

]r

]g

]u D . (4)

The spatial variables (x ,y) play the role below of ca-
nonical coordinates, with x being the configuration-
space variable and y being the canonical momentum.
The transformation from (x ,y) to (r ,u) is a noncanoni-
cal transformation, and so the form of the Poisson
bracket is altered as manifested by the factor of 1/r . (In
Sec. IV we shall discuss this in detail.) To preserve the
canonical form we replace r by a new coordinate
J :5r2/2 and the bracket becomes

@f ,g#5
]f

]u

]g

]J
2

]f

]J

]g

]u
. (5)

These coordinates are convenient, since they can be
action-angle variables, as we shall see.

A solution to Eq. (1) provides a stream function,
c(u ,J ,t). In this lecture we shall assume various forms
for c , without going into detail as to whether or not
these forms are solutions to Eq. (1) with particular
choices of L, S, or D. Here we shall just suppose that the
tracers in the fluid, specks of dust if you like, follow
particular assumed forms for the velocity field of the
flow. The stream function gives a means for visualizing
this. Setting c equal to a constant for some particular
time defines an instantaneous streamline whose tangent
is parallel to the velocity field. (See Fig. 4.)

FIG. 3. Sketch of annular region with coordinates for rotating
tank experiments.

FIG. 4. A streamline defined in terms of c with instantaneous
velocity.
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B. Passive advection

Imagine that a tiny piece of the fluid is labeled, some-
how, in such a way that it can be followed. As men-
tioned above, a small neutrally buoyant sphere or a
small speck of dust might serve this purpose. Since such
a tracer, the sphere or the speck, moves with the fluid,
its dynamics is governed by

ẏ5v5
]c

]x
5@y ,2c# , ẋ5u52

]c

]y
5@x ,2c# , (6)

or, in terms of the (u ,J) variables,

J̇5
]c

]u
, u̇52

]c

]J
. (7)

(Note: 5d/dt .) These equations are of the form of
Hamilton’s equations, which are usually written as

ṗ i5@pi ,H#52
]H

]qi
, q̇ i5@qi,H#5

]H

]pi
, (8)

where i51,2, . . . N , and the Poisson bracket, @ , # , is de-
fined by

@f ,g#5
]f

]qi

]g

]pi
2

]f

]pi

]g

]qi
. (9)

Here and henceforth we use repeated index sum nota-
tion. The quantities (qi,pi) constitute a set of canoni-
cally conjugate pairs with qi being the canonical coordi-
nate and pi being the canonical momentum. Together
they are coordinates for the 2N-dimensional phase
space. The function H(q ,p ,t) is the Hamiltonian. Ob-
serve that y (or J), which physically is a coordinate, here
plays the role of momentum, and 2c is the Hamil-
tonian.

We emphasize, once again, that the coordinates (x ,y)
are coordinates of a tracer, and the motion of the tracer
is determined by a prescribed velocity field. This is to be
distinguished from the Lagrangian variable description
of the ideal fluid, which we treat in Sec. III, where the
goal is to describe the velocity field as determined by the
solution of a partial differential equation.

Before closing this subsection we give a bit of termi-
nology. A single degree of freedom corresponds to each
(q ,p) pair. However, some account should be given of
whether or not H depends explicitly upon time. It is well
known that nonautonomous ordinary differential equa-
tions can be converted into autonomous ones by adding
a dimension. Therefore researchers sometimes count a
half of a degree of freedom for this. Thus Eq. (7) is a
1 1

2-degree-of-freedom system if c depends explicitly
upon time; otherwise it is a one-degree-of-freedom sys-
tem. This accounting is not very precise, since one might
want to distinguish between different types of time de-
pendency. We shall return to this point later.

C. Integrable systems: One degree of freedom

All one-degree-of-freedom systems are integrable.
However, integrable systems of higher dimension are



471P. J. Morrison: Hamiltonian description of the ideal fluid
rare in spite of the fact that some mechanics texts make
them the centerpiece (if not the only piece). A theorem
often credited to Siegel (see, for example, Moser, 1973)
shows how integrable systems are of measure zero.
What exactly it means to be integrable is an active area
of research with a certain amount of subjectivity. For us,
integrable systems will be those for which the motion is
determined by the evaluation of N integrals. When this
is the case, the motion is ‘‘simple’’ in the appropriate
coordinates.

More formally, a system with a time-independent
Hamiltonian H(q ,p) with N degrees of freedom is said
to be integrable if there exist N independent, smooth
constants of motion Ii , i.e.,

İ i5@Ii ,H#50, (10)

that are in involution, i.e.,

@Ii ,Ij#50. (11)

The reason that the constants are required to be
smooth and independent is that the equations Ii5ci ,
where the ci’s are constants, must define N different sur-
faces of dimension 2N21 in the 2N-dimensional phase
space. The reason for the constants to be in involution is
that one wants to use the I’s (or combinations of them)
as momenta, and momenta must pairwise commute. In
coordinates of this type the motion is quite simple.

Sometimes additional requirements are added in defi-
nitions of integrability. For example, one can add the
requirements that the surfaces Ii5const for
i51,2, . . . ,N be compact and connected.5 If this is the
case the motion takes place on an N-torus and there
exist action-angle variables (Ji ,u i) in terms of which
Hamilton’s equations have the form

J̇ i52
]H

]u i
50, u̇ i5

]H

]Ji
5V i~J !, (12)

where i ,j51,2, . . . ,N . The first of Eqs. (12) implies that
H is a function of J alone. When H does not depend
upon a coordinate, the coordinate is said to be ignorable
and its conjugate momentum is a constant of motion. In
action-angle variables all coordinates are ignorable and
the second of Eqs. (12) is easy to integrate, yielding

u i5u0
i 1V i~J ! t , (13)

where u0
i is the integration constant, u is defined modulo

2p , and V i(J):5]H/]Ji are the frequencies of motion
around the N-torus.

A good deal of the machinery of Hamiltonian me-
chanics was developed in the attempt to reduce equa-
tions to the action-angle form above. If one could find a
coordinate transformation, in particular a canonical
transformation (see Sec. IV), that took the system of

5Intuitively, one can think of the surface as contained within a
hypersphere of some (noninfinite) radius, and between any
two points of the surface a line can be drawn within the surface
(see, for example, Arnold, 1963).
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interest into the form of Eq. (12), then one could simply
integrate and then map back to get the solution in closed
form. The theory of canonical transformations,
Hamilton-Jacobi theory, etc. sprang up because of this
idea. However, it is now known that this procedure is
not possible in general because generically Hamiltonian
systems are not integrable. Typically systems are chaotic,
i.e., trajectories wander in a seemingly random way in
phase space rather than lying on an N-dimensional
torus. A distinct feature of such trajectories is that they
display sensitive dependence on initial conditions. We
shall say a little about this below.

To conclude this subsection we return to our fluid me-
chanics example, in which context we show how all one-
degree-of-freedom systems are integrable. In the case
where c is time independent, we clearly have a single
degree of freedom with one constant of motion, viz., c :

ċ5
]c

]x
ẋ1

]c

]y
ẏ50, (14)

which follows upon substitution of the equations of mo-
tion for the tracer, Eq. (6). To integrate the system one
solves

c~x ,y !5c05const. (15)

for x5f(c0 ,y), which is in principle (if not in practice)
possible, and then inserts the result as follows:

ẏ5
]c

]x
~x ,y !U

x5f~c0 ,y !

5 :D~c0,y !. (16)

Equation (16) is separable, which implies

E
y0

y dy8

D~c0,y !
5E

t0

t
dt8. (17)

Thus we have reduced the system to the evaluation of a
single integral, a so-called quadrature. There are some
sticky points, though, since x5f(c0,y) may not be single
valued or explicitly invertible, and usually one cannot do
the integral explicitly. Moreover, afterwards one must
invert Eq. (17) to obtain the trajectory. These are only
technical problems, ones that are easily surmounted
with modern computers.

Generally equations of the form of Eq. (1) possess
equilibrium or steady-state solutions when c and q de-
pend upon only a single coordinate. The case of special
interest here is that in which the domain is the annulus
discussed above, polar coordinates are used, and c de-
pends only upon r (or equivalently the canonical vari-
able J). Physically this corresponds to a purely azimuth-
ally symmetric, sheared fluid flow, where vu5vu(r). In
this case streamlines are ‘‘energy surfaces,’’ which are
merely concentric circles as depicted in Fig. 5. The coun-
terpart of Eq. (13), the equations of motion for the
speck of dust in the fluid, are

u5u01V~r !t , r5r0 , (18)

where vu5Vr . Note that the speck goes round and
round at a rate dependent upon its radius, but does not
go in or out.
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D. Chaotic dynamics: Two degrees of freedom

As noted, one-degree-of-freedom systems are always
integrable, but two-degree-of-freedom systems typically
are not. Nonintegrable systems exhibit chaos, which we
briefly describe below.

Systems with two degrees of freedom have a four-
dimensional phase space, which is difficult to visualize,
so we do something else. A convenient artifice is
the surface of section or as it is sometimes called the
Poincaré section. Suppose the surface H(q1 ,q2 ,p1 ,p2)
5const5 :E is compact (i.e., contained within a three-
sphere). Since the motion is restricted to this surface, p2
can be eliminated in favor of E , which we keep fixed.
We could then plot the trajectory in the space with the
coordinates (q1 ,q2 ,p1), but simpler pictures are ob-
tained if we instead plot a point in the (q1 ,p1) plane
whenever q2 returns to its initial value, say q250.

We also require that the trajectory pierce this plane
with the momentum p2 having the same sign upon each
piercing. This separates out the branches of the surface
H5E . That q2 will return is almost assured, since the
Poincaré recurrence theorem6 tells us that almost any
orbit will return to within any e-ball (points interior to a
sphere of radius e). It is unlikely it will traverse the ball
without piercing q250. [If there are no fixed points
within the ball the vector field can be locally rectified,
and unless there is no component normal to the (q1 ,p1)
plane, which is unlikely, it will pierce.]

For integrable systems, an orbit either eventually re-
turns to itself, in which case we have a periodic orbit, or
it maps out a curve, which is an example of an invariant
set. The latter case is typical, as illustrated in Fig. 6. In
nonintegrable or chaotic systems this is not true, as is
illustrated in Figs. 7(a) and 7(b), where it is seen that
orbits make ‘‘erratic’’ patterns.

Now what about the fluid mechanics illustration? Can
chaos exist? How can we have a two-degree-of-freedom
system when we have only the two spatial coordinates,
say (u ,J)? The answer is that explicit time dependence
in c, the extra half degree of freedom, is enough for
chaos. There is, in fact, a trick for puffing up a
1 1

2-degree-of-freedom system and making it look like a

6See Wintner (1947), which contains references to several
original papers.

FIG. 5. Depiction of invariant circle streamlines for an azi-
muthally symmetric flow.
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two-degree-of-freedom system, and vice versa.
Let s correspond to a fake time variable, set t5f ,

where f is going to be a new canonical coordinate, and
define a new Hamiltonian by

H~u ,J ,f ,I !52c~u ,J ,f!1I . (19)

The equations of motion for this Hamiltonian are

du

ds
5

]H

]J
52

]c

]J
,

dJ

ds
52

]H

]u
5

]c

]u
, (20)

df

ds
5

]H

]I
51,

dI

ds
52

]H

]f
5

]c

]f
. (21)

The first of Eqs. (21) tells us that f5s1s05t ; we set
s050. Thus we obtain what we already knew, namely,
that f5t and that Eqs. (20) give the correct equations of
motion. What is the role of the second of Eqs. (21)? This
equation merely tells us that I has to change so as to
make H5const.

The above trick becomes particularly useful when c is
a periodic function of time: c(u ,J ,t)5c(u ,J ,t1T). In
this case it makes sense to identify f1T with f , because
the velocity field is the same at these points. With this
identification done, it is clear that a surface of section is
obtained by plotting (u ,J) at intervals of T .

One can construct 1 1
2-degree-of-freedom Hamiltonian

systems from two-degree-of-freedom Hamiltonian sys-
tems by using one of the configuration-space coordinates
as a time variable. We leave the details of this calcula-
tion as an exercise.

Now suppose the stream function is composed of an
azimuthal shear flow plus a propagating wave:

c~J ,u ,t !5c0~J !1c1~J !cos@m1~u2v1t !# , (22)

where m1PN (i.e., m1 is a natural number) and c1 is
assumed small in comparison to c0. Here c0(J) repre-
sents the azimuthal background shear flow and the sec-
ond term represents the wave, with c1, m1, and v1 being
the radial eigenfunction, mode number, and frequency
of the wave, respectively.

FIG. 6. Surface of section for an integrable system.
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This system might look like a 1 1
2-degree-of-freedom

system, but it is in fact integrable. The easiest way to see
this is to boost it into the frame of reference rotating
with the wave. In this frame the stream function be-
comes

c8~J8,u8,t !5c0~J8!1c1~J8!cos~m1u8!2v1J8, (23)

where the transformation is J85J , u85u2v1t . This
transformation is canonical and is derivable from
the mixed-variable generating function F(u ,J8)
5J8(u2v1t). Note that the term 2v1J8 accounts for
the azimuthal rigid rotation generated from the frame
shift.

In the absence of the wave it is clear that the trajec-
tories in phase space are just circles, as shown in Fig. 5
(or straight lines, as plotted in Fig. 6). However, from
the form of Eq. (22) it is clear that something interesting

FIG. 7. Surface of section for a typical nonintegrable system,
the standard map of Eq. (26) at (a) k50.80; (b) k'0.97.
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is going to happen at stagnation points, that is, where

]c

]u8
5

]c

]J8
50. (24)

Stagnation points occur at places where the phase veloc-
ity of the wave matches the background azimuthal ve-
locity. Here a critical layer opens up into an island chain.
In the terminology of Hamiltonian dynamics this is
called a resonance and looks as depicted in Fig. 8.

From the picture it is clear that orbits lie on surfaces
and from the form of the stream function given by Eq.
(23) it is clear that the motion can be solved by quadra-
ture. The use of the coordinate u85u2v1t reduces this
system to a single degree of freedom.

As noted above, the fact that we could reduce the
1 1

2-degree-of-freedom system to a single degree of free-
dom is the exception rather than the rule; generically it
is not possible to get rid of time dependence by changing
coordinate frames. This is the case, for example, for an
azimuthal shear flow with the presence of two waves
with different phase velocities, which has the stream
function

c~J ,u ,t !5c0~J !1c1~J !cos@m1~u2v1t !#

1c2~J !cos@m2~u2v2t !# . (25)

It is clear that in this case a frame no longer exists in
which the flow is stationary. In general there will be cha-
otic motion of a tracer particle. In a frame moving at a
phase velocity v1 a tracer particle wants to execute its
integrable motion, as described above. However, it is
perturbed by a time-dependent wave propagating by at
a speed uv12v2u. In a frame moving at v2 the situation
is reversed. A plot of both of the integrable motions, in
their respective frames, is shown in Fig. 9. This is a plot
of Eq. (23) for the first wave superimposed on a plot of
the same function for the second wave, but with c1, m1,
and v1 replaced by c2, m2, and v2. The form of c1 and
c2 is chosen in this figure to be proportional to sech2;
the angle u8 is u2v1t for the first wave and u2v2t for
the second. If the distance between the island chains is
large, then this figure closely approximates the surface
of section. The figure, in fact, suggests a basic mecha-
nism of Hamiltonian chaos, the competition between
resonances. If the resonances are close enough together
a trajectory, in a sense, flips back and forth between the
two integrable motions. When this happens a given tra-
jectory may no longer map out a continuous curve. Gen-

FIG. 8. Depiction of a single resonance in the surface of sec-
tion.
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erally separatrices become fuzzy, but some continuous
curves still exist, as shown in Fig. 7.

As stated above, Fig. 9 is not a surface of section,
because the resonances were plotted independently, but
if they are far apart and the amplitudes of the reso-
nances are both small it looks about right. To see the
real surface of section one could integrate the differen-
tial equations numerically.7 Instead of doing this you can
consider the following toy, actually a serious toy, called
the standard map (which is sometimes called the
Chirikov-Taylor map):

un118 5un81Jn118 ,

Jn118 5Jn82k sin~un8 !, (26)

where Jn8 and un8 are computed modulo 2p . This is an
example of an area-preserving map; it was, in fact, used
to obtain Figs. 6, 7(a), and 7(b). Area-preserving maps
are nice because the surface of section can be obtained
without having to iterate differential equations. Impor-
tantly, the standard map describes generic behavior of
Hamiltonian systems near resonances—it is the proto-
type of area-preserving maps.

I recommend that you examine the standard map
starting from k50, gradually increasing k . The case in
which k50 was shown in Fig. 6, which clearly indicates
integrable behavior. For kÞ0 some of the invariant sets
(continuous curves) are broken. As k → 0 the measure
of invariant sets approaches unity. This is in essence the
celebrated Kolmogorov-Arnold-Moser (KAM) theo-
rem. For larger k more and more curves are broken, but
some still exist [see Fig. 7(a) where k50.80 and Figs.
7(b) where k51.2]. At a critical value of kc'0.97,
curves that span 0,u8<2p no longer exist. The critical
value kc was calculated by Greene (1979) [see also Fal-
colini and de la Llave (1992)] to many decimal places.

The question of when the last continuous curve
breaks is an important one in Hamiltonian dynamics

7To do this one can use standard Runge-Kutta packages.
However, more sophisticated symplectic integration algorithms
exist. See, for example, Sanz-Serna and Calvo (1994), Kueny
(1993), and Kueny and Morrison (1995).

FIG. 9. Depiction of two resonances in the surface of section.
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theory. In particular, it is of importance in the passive
advection fluid mechanics problem since these curves
are barriers to transport. One is interested in when these
curves break as the sizes and positions of the resonances
change. The method developed by Greene gives a pre-
cise answer to this question, but requires some effort. A
simple but rough criterion that yields an estimate for
when the continuous curves between two resonances
cease to persist is given by the Chirikov overlap crite-
rion. According to this criterion the last curve separating
two resonances will be destroyed when the sum of the
half-widths of the two resonances (calculated indepen-
dently) equals the distance between the resonances; that
is,

W1

2
1

W2

2
5uJ182J28u, (27)

where W1 and W2 denote the widths of the resonances
while J18 and J28 denote their positions. This criterion is
straightforward to apply and usually gives reasonable re-
sults. However, it must be borne in mind that it is only a
rough estimate and as such has limitations. As noted
above, more sophisticated criteria exist.

The study of two-degree-of-freedom Hamiltonian sys-
tems is a richly developed yet still open area of research.
Unfortunately, in a single lecture it is only possible to
scratch the surface and, it is hoped, whet your appetite.
Conspicuously absent from this lecture is any discussion
of the notions of universality and renormalization (see,
for example, MacKay, 1982 or del-Castillo-Negrete
et al., 1997). There is much to be learned from the ref-
erences we have cited.

E. ‘‘Diffusion’’: Three degrees of freedom

In closing we mention something about three-degree-
of-freedom systems. For these systems the invariant sets
that are remnants of the integrable N-tori do not divide
the phase space. For three-degree-of-freedom systems
the phase space is six dimensional and the correspond-
ing three-dimensional invariant tori do not isolate re-
gions. Because of this, trajectories are not confined and
can wander around the tori. This phenomenon is gener-
ally called Arnold diffusion. A cartoon of this is shown
in Fig. 10.

FIG. 10. Cartoon depicting the motion around invariant tori in
systems with greater than two degrees of freedom.
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There is a great deal of literature dealing with the
chaotic advection of a passive tracer in two-dimensional
fluid systems. These studies typically involve model
stream functions that are time periodic and hence are
nonintegrable. For these systems the diffusion phenom-
enon mentioned above cannot occur. However, it is pos-
sible that the solution of Eq. (1) is not periodic, but
quasiperiodic, a special case of which is represented by
the following:

c~u ,J ,t !52f~u ,J ,v2t ,v3t !, (28)

where f is a function that satisfies

f~u ,J ,v2t ,v3t !5f~u ,J ,v2t12p ,v3t !

5f~u ,J ,v2t ,v3t12p!. (29)

If v2 /v3 is irrational, then c is not periodic.
One can puff up a system with a Hamiltonian of the

form of Eq. (28) into a three-degree-of-freedom system
by a technique similar to that described above. Let
u5 :u1 , J5 :J1 , define

H~u1 ,J1 ,u2 ,J2 ,u3 ,J3!5f~u1 ,J1 ,u2 ,u3!1v2J2

1v3J3 , (30)

and introduce the fake time s as before. Note that the
last two terms of Eq. (30) are just the Hamiltonian for
two linear oscillators in action-angle form, but here they
are coupled to each other and to oscillator ‘‘1’’ through
f . Hamilton’s equations are

du1

ds
5

]f

]J1
,

du2

ds
5v2 ,

du3

ds
5v3 , (31)

dJ1

ds
52

]f

]u1
,

dJ2

ds
52

]f

]u2
,

dJ3

ds
52

]f

]u3
. (32)

It is clear how the last two equations of (31) can be
integrated and thus the system can be collapsed back
down. The last two equations of (32) guarantee that J2
and J3 will vary so as to make H conserved.

The kind of quasiperiodic system treated in this sub-
section is undoubtedly relevant for the study of trans-
port in two-dimensional fluids. Solutions of Eq. (1) are
likely to be closer to quasiperiodic than periodic. A
stream function that describes an azimuthally symmetric
shear flow plus three waves with different speeds is qua-
siperiodic. Transport in such systems and their generali-
zation to more frequencies is not well understood. (See,
for example, Wiggins, 1992.)

III. FUNCTIONAL CALCULUS, TWO ACTION PRINCIPLES
OF MECHANICS, AND THE ACTION PRINCIPLE
AND CANONICAL HAMILTONIAN DESCRIPTION
OF THE IDEAL FLUID

This lecture is devoted to developing techniques that
are needed to describe infinite-dimensional Hamiltonian
systems, and then to using these techniques to describe
the canonical Hamiltonian description of the ideal fluid
in terms of so-called Lagrangian or material variables.
Specifically, in Sec. III.A techniques of functional calcu-
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lus are presented, in Sec. III.B two traditional action
principles of classical mechanics are reviewed along with
their connection to Hamilton’s equations, and in Sec.
III.C the action principle and Hamiltonian description
of the fluid are treated in detail.

A. Functional calculus

A functional is a map that takes functions into real
numbers. Describing them correctly requires defining a
function space, which is the domain of the functional,
and the rule that assigns the real number. Like ordinary
functions, functionals have notions of continuity, differ-
entiability, the chain rule, etc. In this subsection we shall
not be concerned with rigor, but with learning how to
perform various formal manipulations.8

As an example of a functional consider the kinetic
energy of a constant-density, one-dimensional, bounded
fluid:

T@u#5 1
2 E

x0

x1
r0u2dx . (33)

Here T is a functional of u which is indicated by the @ #
notation, a notation that we use in general to denote
functionals. The function u(x) is the fluid velocity,
which is defined on xP@x0 ,x1# , and r0 is a constant fluid
density. Given a function u(x) we could put it into Eq.
(33), do the integral, and get a number.

We would like to know in general how the value of a
functional K@u# changes as u(x) changes a little, say
u(x)→u(x)1e du(x), where u1e du must still be in
our domain. The first-order change in K induced by du
is called the first variation, dK , and is given by

dK@u ;du# :5 lim
e→0

K@u1edu#2K@u#

e

5
d

de
K@u1edu#U

e50

5 :E
x0

x1
du

dK

du~x !
dx5 : K dK

du
,du L . (34)

We shall assume that the limit exists and that there are
no problems with the equalities above; later, however,
we shall give an exercise in which something ‘‘interest-
ing’’ happens.

The notation dK@u ;du# is used because there is a dif-
ference in the behavior of the two arguments: generally
dK is a linear functional in du , but not so in u . The
quantity dK/du(x) of Eq. (34) is the functional deriva-
tive of the functional K . This notation for the functional
derivative is chosen since it emphasizes the fact that

8For further details, on a level roughly consistent with that
given here, see Courant and Hilbert (1953), Chapter IV, and
Gelfand and Fomin (1963).
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dK/du is a gradient in function space. The reason why
the arguments of u are sometimes displayed will become
clear below.

For the example of Eq. (33) the first variation is given
by

dT@u ;du#5E
x0

x1
r0u dudx , (35)

and hence the functional derivative is given by

dT

du
5r0u . (36)

To see that the functional derivative is a gradient, let
us take a sidetrack and consider the first variation of a
function of n variables, f(x1 ,x2 , . . . ,xn)5f(x):

df~x ;dx !5(
i51

n
]f~x !

]xi
dxi5 :¹f•dx . (37)

It is interesting to compare the definition of Eq. (37)
with the last definition of Eq. (34). The • in Eq. (37) is
analogous to the pairing ^ , &, while dx is analogous to
du . In fact, the index i is analogous to x , the argument
of u . Finally, the gradient ¹f is analogous to dK/du .

Consider now a more general functional, one of the
form

F@u#5E
x0

x1
F~x ,u ,ux ,uxx , . . . !dx , (38)

where F is an ordinary, sufficiently differentiable, func-
tion of its arguments. Note ux :5du/dx , etc. The first
variation of Eq. (38) yields

dF@u ;du#5E
x0

x1S ]F
]u

du1
]F
]ux

dux

1
]F

]uxx
duxx1••• Ddx , (39)

which upon integration by parts becomes

dF@u ;du#5E
x0

x1
duS ]F

]u
2

d

dx

]F
]ux

1
d2

dx2

]F
]uxx

2••• Ddx

1S ]F
]ux

du1••• D U
x0

x1

. (40)

Usually the variations du are chosen so that the last
term, the boundary term, vanishes; e.g., du(x0)
5du(x1)50, dux(x0)5dux(x1)50, etc. Sometimes the
boundary term vanishes without a condition on du be-
cause of the form of F. When this happens the boundary
conditions are called natural. Assuming, for one reason
or the other, that the boundary term vanishes, Eq. (40)
becomes

dF@u ;du#5 K dF

du
,du L , (41)
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where

dF

du
5

]F
]u

2
d

dx

]F
]ux

1
d2

dx2

]F
]uxx

2••• . (42)

The main objective of the calculus of variations is the
extremization of functionals. A common terminology is
to call a function û , which is a point in the domain, an
extremal point if dF@u#/duuu5û50. It could be a maxi-
mum, a minimum, or an inflection point. If the extremal
point û is a minimum or maximum, then such a point is
called an extremum.

The standard example of a functional that depends on
the derivative of a function is the arc-length functional,

L@u#5E
x0

x1A11ux
2 dx . (43)

We leave it to you to show that the shortest distance
between two points is a straight line.

Another example is the functional defined by evaluat-
ing the function u at the point x8. This can be written as

u~x8!5E
x0

x1
d~x2x8!u~x !dx , (44)

where d(x2x8) is the Dirac delta function and where
we have departed from the @ # notation. Applying the
definition of Eq. (34) yields

du~x8!

du~x !
5d~x2x8!. (45)

This is the infinite-dimensional or continuum analog of
]xi /]xj5d ij , where d ij is the Kronecker delta function.
Equation (45) shows why it is sometimes useful to dis-
play the argument of the function in the functional de-
rivative.

The generalizations of the above ideas to functionals
of more than one function and to more than a single
spatial variable are straightforward. An example is given
by the kinetic energy of a three-dimensional compress-
ible fluid,

T@r ,v#5 1
2 E

D
rv2 d3x , (46)

where the velocity has three rectangular components
v5(v1 ,v2 ,v3) that depend upon x5(x1 ,x2 ,x3)PD and
v25v•v5v1

21v2
21v3

2. The functional derivatives are

dT

dv i
5rv i ,

dT

dr
5

v2

2
. (47)

We shall use these later.
For a more general functional F@c# , where

c(x)5(c1,c2, . . . ,cn) and x5(x1 ,x2 , . . . ,xn), the ana-
log of Eq. (34) is

dF@c ;dc#5E
D

dc i

dF

dc i~x !
dnx5 : K dF

dc
,dc L . (48)

As an exercise consider the pathological functional

P@c#5E
21

1
P~c1 ,c2! dx , (49)
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where

P5H c1c2
2

c1
21c2

2 if c1,2Þ0,

0 if c1,250.

(50)

Calculate dP@0,0;dc1 ,dc2# . Part of this problem is to
figure out what the problem is.

Next, we consider the important functional chain rule,
which is a simple idea that underlies a great deal of lit-
erature relating to the Hamiltonian structure of fluids
and plasmas.

Suppose we have a functional F@u# and we know u is
related to another function w by means of a linear op-
erator

u5Ow . (51)

As an example, u and w could be real-valued functions
of a single variable x , and

O:5 (
k50

n

ak~x !
dk

dxk , (52)

where, as usual, u , w , and ak have as many derivatives as
needed. We can define a functional of w by inserting Eq.
(51) into F@u# :

F̄@w# :5F@u#5F@Ow# . (53)

Equating variations yields

K dF̄

dw
,dwL 5 K dF

du
,du L , (54)

where the equality makes sense if du and dw are con-
nected by Eq. (51), i.e.,

du5Odw , (55)

where we assume an arbitrary dw induces a du .
Inserting Eq. (55) into Eq. (54) yields

K dF̄

dw
,dwL 5 K dF

du
,Odw L 5 : KO†

dF

du
,dw L , (56)

where O† is the formal adjoint of O. The DuBois-
Reymond lemma of the calculus of variations states that
if dw is arbitrary, then Eq. (56) implies

dF̄

dw
5O†

dF

du
. (57)

This lemma is proven by assuming that Eq. (57) does not
hold at some point x , selecting dw to be localized about
the point x , and establishing a contradiction. A physicist
would just set dw equal to the Dirac delta function to
obtain the result.

Notice that nowhere did we assume that O was
invertible—it need not be for the chain rule to work in
one direction. This is because, in the sense displayed
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above, functionals transform in the other direction.
Clearly the transformation of Eq. (51) is a special case,
in that the two functions u and w are linearly related.
However, if u depends nonlinearly upon w we can still
obtain a relation of the form of Eq. (57). We shall dem-
onstrate this in the more general case for a functional
F@c# , where c is related to x5(x1,x2, . . . ,xm) in an
arbitrary, possibly nonlinear and noninvertible, way:

c i5c i@x# , i51,2, . . . ,n . (58)

This @ # notation could be confusing, since we have used
it to denote functionals, but since we have already stated
that c and x are functions there should be no confusion.
A variation of c induced by x requires linearization of
Eq. (58), which we write as

dc i5
dc i

dx
@x ;dx# , (59)

or simply, since dc/dx is a linear operator on dx , as

dc i5
dc i

dx j dx j, (60)

where j51,2, . . . ,m . Inserting Eq. (60) into Eq. (54) im-
plies

K dF

dx
,dx L 5 K S dc

dx D † dF

dc
,dx L , (61)

whence it is seen that

dF

dx j 5S dc i

dx j D † dF

dc i . (62)

Here we have dropped the overbar on F , as is com-
monly done. In Eq. (62) it is important to remember
that d(function)/d(function) is a linear operator acting
to its right, as opposed to d(functional)/d(function),
which is a gradient.

As an example consider functionals that depend upon
the two components of the velocity field for an incom-
pressible fluid in two dimensions, u(x ,y) and v(x ,y).
These are linearly related to the stream function c by
u52]c/]y and v5]c/]x . For this case Eq. (59) be-
comes

du5
du

dc
dc52

]

]y
dc ,

dv5
dv
dc

dc5
]

]x
dc , (63)

and

dF

dc
5

]

]y

dF

du
2

]

]x

dF

dv
. (64)

Now consider the second variation, d2F , and second
functional derivative, d2F/dcdc . Since the first varia-
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tion, dF@c ;dc# , is a functional of c , a second variation
can be made in this argument:

d2F@c ;dc ,dĉ#5
d

dh
dF@c1hdĉ ;dc#U

h50

5 :E
D

dc i
d2F

dc idc j
dĉ j dnx

5 : K dc ,
d2F

dcdc
dĉ L . (65)

Observe that d2F is a bilinear functional in dc and dĉ .
If we set dĉ5dc we obtain a quadratic functional.
Equation (65) defines d2F/dcdc , which is an operator
that acts linearly on dĉ but depends nonlinearly on c .
This operator possesses a symmetry analogous to the
interchange of the order of second partial differentia-
tion. To see this observe

d2F@c ;dc ,dĉ#5
]2

]h]e
F@c1hdĉ1edc#U

e50,h50

.

(66)

Since the order of differentiation in Eq. (66) is immate-
rial it follows that

S d2F

dc idc jD †

5
d2F

dc jdc i
. (67)

This relation is necessary for establishing the Jacobi
identity of noncanonical Poisson brackets.

As an example consider the second variation of the
arc-length functional of Eq. (43). Performing the opera-
tions of Eq. (66) yields

d2L@u ;du ,dû#5E
x0

x1
dux

1

~11ux
2!3/2

dûxdx . (68)

Thus

d2L

du2
5

d

dx

21

~11ux
2!3/2

d

dx
. (69)

For an important class of function spaces, one can
convert functionals into functions of a countably infinite
number of arguments. This is a method for proving
theorems concerning functionals and can also be useful
for establishing formal identities. One way to do this
would be to convert the integration of a functional into a
sum by finite differencing. Another way to do this, for
example for functionals of the form of Eq. (38), is to
suppose @x0 ,x1#5@2p ,p# and expand in a Fourier se-
ries,

u~x !5 (
k52`

`

uk eikx. (70)

Upon inserting Eq. (70) into Eq. (38) one obtains an
expression for the integrand, which is, in principle, a
known function of x . Integration then yields a function
of the Fourier amplitudes, uk . Thus we obtain
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F@u#5F~u0 ,u1 ,u21 , . . . !. (71)

In closing this discussion of functional calculus we
consider a functional, one expressed as a function of an
infinite number of arguments, that demonstrates an ‘‘in-
teresting’’ property. The functional is given by

F~x1 ,x2 , . . . !5 (
k51

`

~ 1
2 akxk

22 1
4 bkxk

4 !, (72)

where the domain of F is composed of sequences $xk%,
and the coefficients are given by

ak5
1

k6
, bk5

1

k2
. (73)

Assuming that Eq. (72) converges uniformly, the first
variation yields

dF5 (
k51

`

~akxk2bkxk
3 !dxk , (74)

which has three extremal points,

xk
~0 !50, xk

~6 !56~ak /bk!1/2, (75)

for all k . It is the first of these that will concern us. The
second variation evaluated at xk

(0) is

d2F5 (
k51

`

ak~dxk!2, (76)

where we assume Eq. (74) converges uniformly for xk
and dxk . Since ak.0 for all k , Eq. (76) is positive defi-
nite; i.e.,

d2F.0 for dxkÞ0, for all k . (77)

However, consider DF defined by

DF5F~x ~0 !1Dx !2F~x ~0 !!

5 (
k51

`

@ 1
2 ak~Dxk!22 1

4 bk~Dxk!4# , (78)

which we evaluate at

Dxk5H 1
m

, k5m ,

0, kÞm ,
(79)

and obtain

DF,0, (80)

provided m.1. Since m can be made as large as desired,
we have shown that inside any neighborhood of x (0), no
matter how small, DF,0. Therefore this extremal point
is not a minimum — even though d2F is positive defi-
nite.

A sufficient condition for proving that an extremal
point is an extremum is afforded by a property known as
strong positivity. If ĉ is an extremal point and the qua-
dratic functional d2F@ĉ ;dc# satisfies

d2F@ĉ ;dc#>cidci2,
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where c5const.0 and i i is a norm defined on the
domain of F , then d2F@ĉ ;dc# is strongly positive. This is
sufficient for ĉ to be a minimum. We leave it to you to
explain why the functional F(x1 ,x2 , . . . ) is not strongly
positive. This example points to a mathematical techni-
cality that is encountered when proving stability by Li-
apunov’s method (see Sec. VI).

B. Two action principles of mechanics

Physicists have had a long-lasting love affair with the
idea of generating physical laws by setting the derivative
of some functional to zero. This is called an action prin-
ciple. The most famous action principle is Hamilton’s
principle, which produces Lagrange’s equations of me-
chanics upon variation. One reason action principles are
appreciated is that they give a readily covariant theory,
and means have been developed for building in symme-
tries. However, it should be pointed out that the use of
continuous symmetry groups in this context is only a
limited part of a deep and beautiful theory that was ini-
tiated by Sophus Lie and others. Perhaps the most con-
vincing deep reason for the use of action principles is the
cleanliness and utility of Feynman’s path-integral formu-
lation. The utility of action principles should not be un-
derstated. Indeed, they provide a good starting place for
making approximations. However, a quote from Trues-
dell (1966) cannot be resisted:

‘‘A fully conservative situation can be described by an
action principle, which has the advantage of making the
theory accessible also to physicists.’’

In any event, Hamilton’s principle is an important
prototype upon which modern theories are in part built.
Shortly, we shall show how this story goes for the ideal
fluid, but first we review some mechanics. [See Saletan
and Cromer (1971) or Sudarshan and Mukunda (1974)
for standard presentations.]

One approach to producing the equations of motion
for a mechanics problem is first to identify the configu-
ration space Q with coordinates q5(q1 ,q2 , . . . ,qN).
Then, based on physical intuition, write down the kinetic
and potential energies, T and V , respectively. The equa-
tions of motion then follow upon setting the functional
derivative of the following action functional to zero:

S@q#5E
t0

t1
L~q ,q̇ ,t ! dt , (81)

where L :5T2V is the Lagrangian function. The func-
tions q(t) over which we are extremizing must satisfy
the fixed end conditions q(t0)5q0 and q(t1)5q1. Thus
dq(t0)5dq(t1)50. The functional derivative relations

dS@q#

dqi
50 (82)

imply Lagrange’s equations,

]L

]qi
5

d

dt

]L

]q̇ i
. (83)
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This is Hamilton’s principle.
Since for particles in rectangular coordinates9 usually

T5 1
2 (

i51

N

mi~ q̇ i!2, V5V~q !, (84)

Eqs. (83) yield

miq̈i52
]V

]qi
. (85)

This is just Newton’s second law with a conservative
force. You will notice that Hamilton’s principle does not
yield Hamilton’s equations—one way to get them is via
the Legendre transformation.

The Legendre transformation is a trick for transferring
functional dependence. Generally it is used in physics
when one has a sort of ‘‘fundamental’’ function that de-
scribes a theory, whether it be a thermodynamic poten-
tial or, as is the case here, a Lagrangian. The Legendre
transformation has a nice geometric interpretation, but
we shall skip this. Here we shall use it to transform the
N second-order differential equations of (85) into the
2N first-order equations of Hamilton.

Define a quantity pi :5]L/]q̇ i, which is the canonical
momentum, and consider

H̄~q ,p ,q̇ ,t !:5piq̇
i2L~q ,q̇ ,t !. (86)

Now we ask the question: How does H̄ change if we
independently change q , q̇ , p , and t a little? Evidently

dH̄5
]H̄

]qi
dqi1

]H̄

]q̇ i
dq̇ i1

]H̄

]pi
dpi1

]H̄

]t
dt

52
]L

]qi
dqi1S pi2

]L

]q̇ iD dq̇ i1q̇ idpi

2
]L

]t
dt . (87)

The first thing to notice is that if dq5dp5dt50, i.e., we
only vary dq̇ , then dH̄50, since pi5]L/]q̇ i. This means
H̄ is independent of q̇ , so we drop the overbar and write
H(q ,p ,t). Equating the remaining coefficients of the
variations yields

]H

]qi
52

]L

]qi
,

]H

]pi
5q̇ i,

]H

]t
52

]L

]t
. (88)

Lagrange’s equations, (83), together with the defini-
tion of pi and the middle equation of (88), give Hamil-
ton’s equations:

ṗ i52
]H

]qi
, q̇ i5

]H

]pi
. (89)

9More precisely the kinetic energy contains h ijq̇
iq̇ j, where the

metric h ij :5d ij and its inverse can be used to raise and lower
indices.
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In order to calculate H(p ,q ,t) explicitly one uses
pi5]L/]q̇ i to solve for q̇5q̇(p) and then inserts this
into Eq. (86). This requires L to be convex in q̇ . Since
there exist important physical cases in which L is not
convex, Dirac and others developed a theory to handle
this. An interesting application of Dirac’s constraint
theory for filtering out fast motion in geophysical fluid
dynamical models has been developed by Salmon
(1988a).

Now consider another action principle, which is some-
times called the phase-space action. This one, which di-
rectly yields Hamilton’s equations, is given by

S@q ,p#5E
t0

t1
@piq̇

i2H~q ,p ,t !# dt , (90)

where S is a functional of q and p , independently. The
end conditions are q(t0)5q0 and q(t1)5q1, i.e., q is
fixed as before. However, the boundary condition on p
is natural in that nothing is required of it at the ends.
One has a sort of ‘‘clothesline’’ boundary condition as
depicted in Fig. 11, where the curve is free to slide along
the lines of constant q in the p direction.

Variation of S with respect to q and p yields, respec-
tively,

ṗ i52
]H

]qi
, q̇ i5

]H

]pi
. (91)

Thus the phase-space action directly yields Hamilton’s
equations as the extremal condition.

C. Action principle and canonical Hamiltonian description
of the ideal fluid in Lagrangian or material variables

Now we are in a position to talk about the action for
fluid mechanics,10 but we are going to do so in terms of

10An action principle for the ideal fluid dates back to
Lagrange (1788), although of course he was unaware of the
thermodynamics that we shall include. More modern refer-
ences with generalizations include Serrin (1959), Eckart
(1960), Newcomb (1962), and Salmon (1982, 1988b).

FIG. 11. Clothesline boundary conditions for the phase-space
action principle.
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variables that might be new to you. Often, fluid mechan-
ics is taught entirely in terms of Eulerian variables. In
what follows, Lagrangian variables, or as they are some-
times called, material variables, will be central.

The idea we are going to pursue is a simple one. If a
fluid is described as a collection of fluid particles or ele-
ments, then both the Hamiltonian and the Lagrangian
formalism that we have described above can be adapted
to describe the ideal fluid. The adaptation requires an
extension to an infinite number of degrees of freedom in
order to describe a continuum of fluid elements. This
means that a fluid element is shrunk to zero size and that
there is one for each point of the fluid. This is an ideali-
zation, since in reality fluid elements do not exist: if they
were of macroscopic size, they would not maintain their
integrity forever, and if they were of microscopic size,
we would be outside the realm of fluid mechanics. How-
ever, there exists a precise Eulerian state corresponding
to a Lagrangian state. It should be kept in mind that the
above limitations apply to the fluid description in gen-
eral, whether it be in Lagrangian or Eulerian variables.

Suppose the position of a fluid element, referred to a
fixed rectangular coordinate system, is given by

q5q~a ,t !, (92)

where q5(q1 ,q2 ,q3). This is the material or Lagrangian
variable. Here a5(a1 ,a2 ,a3) could be any label11 that
identifies a fluid particle, but below it will be taken to be
the position of the fluid particle at time t50 in rectan-
gular coordinates. The quantities qi(a ,t) are coordinates
for the configuration space Q, which is in fact a function
space because in addition to the three indices i there is
the continuum label a . We assume that a varies over a
fixed domain D , which is completely filled with fluid,
and that the functions q map D onto itself. We shall
assume that as many derivatives of q with respect to a as
needed exist, but we shall not say more about Q; in fact,
not that much is known about the solution space for the
3D fluid equations in Lagrangian variables. At this stage
we shall assume that the configuration space has been
specified and proceed to discuss the potential energy of
the fluid.

The fluid approximation assumes local thermody-
namic equilibrium in spite of the fact that fluid motion is
in general not quasistatic. Potential energy is stored in
terms of pressure and temperature. More precisely, we
adapt the energy representation of thermodynamics in
which the extensive energy is treated as a function of the
extensive variables, viz., the entropy and the volume.
For a fluid it is convenient to consider the energy per
unit mass, which we denote by U to be a function of the
entropy per unit mass, s , and the mass density, r . The
inverse of the latter quantity is a measure of the volume.
The intensive quantities, pressure and temperature, are
obtained as follows:

11Note that the freedom to relabel particles is associated with
the Casimir invariants, which are discussed below. See Calkin
(1963), Newcomb (1967), Bretherton (1970), Ripa (1981),
Salmon (1982), and Padhye and Morrison (1996a, 1996b).
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T5
]U

]s
~s ,r!, p5r2

]U

]r
~s ,r!. (93)

The second of equation (93) is a bit peculiar—it arises
because the volume, the usual thermodynamic variable,
is proportional to r21. Special choices for U produce
specific thermodynamics for fluid flow.12

The quantities r and s are in fact Eulerian variables,
which we must, in order to move ahead, describe in
terms of Lagrangian variables. With this goal in mind,
let us diverge for a moment and discuss the Lagrangian-
Eulerian map. The difference between the two types of
variables can be elucidated by describing two ways of
watching fish. In the Eulerian picture one stays at a
point and watches whatever fish happen by; in the La-
grangian picture one picks out a particular fish and
keeps track of where it goes. Note that this analogy gets
better if the fish are very small, neutrally buoyant, and
dead.

Call r the spatial variable, i.e., the Eulerian point of
observation. The Eulerian density is then related to the
Lagrangian variable q as

r~r ,t !5E
D

d„r2q~a ,t !…r0~a ! d3a . (94)

Here d(r2q) is a three-dimensional Dirac delta func-
tion and r0(a) is an initial configuration of mass density
ascribed to the particle labeled by a . It is akin to know-
ing the mass of the particle labeled by i in conventional
particle mechanics.

Equation (94) embodies mass conservation. This can
be seen by using a property of the d function,
d„f(x)…5d(x2x0)/uf8(x0)u, where x0 is the only place
where f(x0)50. In three dimensions this yields

r~r ,t !5
r0~a !

J~a ,t !U
a5q21~r ,t !

, (95)

where the Jacobian J5det(]qi/]aj). That this is local
mass conservation follows from

r d3q5r0 d3a , (96)

where d3a is an initial volume element that maps into
d3q at time t , and d3q5J d3a . (When integrating over
D we shall replace d3q by d3r .)

In addition to the mass ascribed to a fluid particle, one
could ascribe other quantities, e.g., color, smell, or what
have you. In the ideal fluid, the entropy per unit mass s
is such a quantity. We suppose that initially s5s0(a)
and that it remains so. A form similar to Eq. (94) corre-
sponding to this statement is

s~r ,t !5E
D

s0~a !d„r2q~a ,t !…d3a , (97)

12For barotropic or isentropic flow, U depends only on r . For
an ideal monoatomic gas U(r ,s)5crg21exp(as), where c , g ,
and a are constants. See, for example, Serrin (1959) for a dis-
cussion of equations of state.
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where s(r ,t)5r(r ,t)s(r ,t) is the entropy per unit vol-
ume and s05r0(a)s0(a). Thus the counterpart of Eq.
(95) is

s~r ,t !5s0~a !ua5q21~r ,t ! . (98)

This is merely the statement that the quantity s stays put
on a fluid particle.

Completing the Lagrange-Euler map requires the
specification of the Eulerian velocity field, something
that is not needed now, but that we record here for later
reference. By now you will have noticed that the Euler-
Lagrange map naturally takes the Lagrangian variables
into Eulerian densities. Thus we consider the momen-
tum density M :5rv . A form for M similar to Eqs. (94)
and (97) is

M~r ,t !5E
D

q̇~a ,t !d„r2q~a ,t !…r0~a !d3a , (99)

where the • notation now means differentiation with re-
spect to time at fixed label a . Performing the integration
produces the counterpart of Eqs. (95) and (96), viz.,

v~r ,t !5q̇~a ,t !ua5q21~r ,t ! , (100)

which is the usual relation between the Lagrangian vari-
able and the Eulerian velocity field.

Now we can return to our quest for the potential en-
ergy. Since the energy per unit volume is given by rU ,
the total potential-energy function is evidently

V@q#5E
D

r0U~s0 ,r0 /J!d3a . (101)

Observe that Eq. (101) is a functional of q that depends
only upon J and hence only upon ]q/]a .

The next step required for constructing Hamilton’s
principle is to obtain an expression for the kinetic-
energy functional. This is clearly given by

T@q#5 1
2 E

D
r0q̇2d3a , (102)

where we use the shorthand q̇2:5h ijq̇
iq̇ j. Observe that

Eq. (102) is a functional of q that depends only upon q̇ .
From Eqs. (101) and (102) the Lagrangian functional

is obtained,

L@q ,q̇#5E
D

@ 1
2 r0q̇22r0U~s0 ,r0 /J!#d3a

5 :E
D
L~q ,q̇ ,]q/]a ,t !d3a , (103)

where L(q ,q̇ ,]q/]a ,t) is the Lagrangian density. Thus
the action functional is given by

S@q#5E
t0

t1
L@q ,q̇#dt5E

t0

t1
dtE

D
@ 1

2 r0q̇22r0U#d3a .

(104)

Observe that this action functional is like that for
finite-degree-of-freedom systems, as treated above, ex-
cept that the sum over particles is replaced by integra-
tion over D , i.e.,
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E
D

d3a↔(
i

. (105)

The mass of each ‘‘particle’’ of the continuum corre-
sponds to r0d3a .

The end conditions for Hamilton’s principle for the
fluid are the same as before,

dq~a ,t0!5dq~a ,t1!50. (106)

However, in addition, boundary conditions are needed
because there is now going to be integration by parts
with respect to a . It is assumed that these are such that
all surface terms vanish. Shortly we shall see what this
implies.

In order to apply Hamilton’s principle, we must func-
tionally differentiate Eq. (104); thus it is necessary to
know something about differentiating determinants. Re-
call

]qk

]aj

Ak
i

J 5d j
i (107)

where Ak
i is the cofactor of ]qk/]ai5 :q ,i

k . (Remember
repeated indices are to be summed.) A convenient ex-
pression for Ak

i is given by

Ak
i 5 1

2 ekjle
imn

]qj

]am

]ql

]an
, (108)

where e ijk(5e ijk) is the skew-symmetric tensor (den-
sity), which vanishes if any two of i ,j ,k are equal; it is
equal to 1 if i ,j ,k are unequal and a cyclic permutation
of 1,2,3, and is otherwise equal to 21. In functionally
differentiating Eq. (104) we shall require the following
relation:

]J
]q ,j

i
5Ai

j , (109)

which follows from Eq. (107).
For Lagrangian density functionals of the form

L(q ,q̇ ,]q/]a ,t), the functional derivative dS/dq(a ,t)
50 implies

d

dtS ]L
]q̇ iD 1

]

]ajS ]L
]q ,j

i D 2
]L
]qi

50, (110)

provided the surface integral vanishes:

E
t0

t1E
]D

pdqiAi
jnjd

2a5E
t0

t1E
]D

pdq•n̂d2q . (111)

The equality above follows upon changing from integra-
tion over a to integration over q . Clearly the surface
term vanishes if any of the following are true on ]D :

~ i! dqi50,

~ ii! p5~r0
2/J 2!~]U/]r!50,

~ iii! dq•n̂50,

where p is the pressure and n̂ is a unit normal vector to
]D . While all of these possibilities result in the vanishing
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of the surface term, (i) is clearly more than is necessary,
in light of (iii), which merely states that fluid particles
are not forced through the boundary. When D is a box
and periodic boundary conditions are imposed, the van-
ishing of the surface term is automatic. When D is ‘‘all
space’’ one has the option (ii), which asserts that the
pressure vanishes at infinity. Condition (iii) is the com-
mon physical condition.

From Eq. (110) the equation of motion is obtained,

r0q̈ i1Ai
j ]

]ajS r0
2

J 2

]U

]r D 50. (112)

Here we have used ]Ai
j/]aj50, which you can work out

using Eq. (108). Alternatively, upon using Eq. (107), we
find that the equation of motion can be written in the
form

r0q̈ j

]qj

]ai
1J

]

]aiS r0
2

J 2

]U

]r D 50. (113)

We leave it to you to show that Eq. (112) can be trans-
formed into Eulerian form:

rS ]v
]t

1v•¹v D52¹p , (114)

where v5v(r ,t). A useful identity in this regard is

]

]qk
5

1
J Ak

i ]

]ai
. (115)

With Eq. (115) it is clear that Eq. (112) is of the form
of Newton’s second law. The Legendre transform fol-
lows easily: the canonical momentum density is

p i~a ,t !:5
dL

dq̇ i~a !
5r0q̇ i, (116)

and

H@p ,q#5E d3a@p•q̇2L#5E d3aF p2

2r0
1r0UG .

(117)

Hamilton’s equations are then

ṗ i52
dH

dqi
, q̇ i5

dH

dp i
. (118)

These equations can also be written in terms of the Pois-
son bracket,

$F ,G%5E FdF

dq
•

dG

dp
2

dG

dq
•

dF

dp Gd3a , (119)

viz.,

ṗ i5$p i ,H%, q̇ i5$qi,H%. (120)

Here dqi(a)/dqj(a8)5d j
id(a2a8) has been used, a re-

lation analogous to ]qj/]qi5d i
j for finite systems [recall

Eq. (45)].
In conclusion we point out that variational principles

similar to that given above exist for essentially all ideal-
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fluid models, including incompressible flow, magnetohy-
drodynamics, etc. One can even obtain directly two-
dimensional scalar vortex dynamics by considering
constrained variations, but we shall not pursue this here.

IV. NONCANONICAL HAMILTONIAN DYNAMICS
AND EXAMPLES

Preparatory to discussing the Hamiltonian structure
of the ideal fluid in terms of Eulerian variables, we now
consider systems that are Hamiltonian, but written in
terms of variables (or coordinates) that are not canoni-
cal. In Sec. IV.A we describe noncanonical Hamiltonian
dynamics for systems with both finite and infinite de-
grees of freedom, and in Sec. IV.B we give many ex-
amples, which have been culled from the literature. In
Sec. V we shall show how to derive the noncanonical
Hamiltonian description for the ideal fluid from the ca-
nonical Lagrangian variable Hamiltonian description of
Sec. III.C.

A. Noncanonical Hamiltonian dynamics

Let us start out by playing a sort of game. Suppose we
have a system of ordinary differential equations:

ż i5Vi~z !, i51, 2, . . . ,M . (121)

How would you know if this system is a Hamiltonian
system? If you came upon the equations during research
you might have some idea based upon the physics, but
assume that this is not the case here. What would you
do?

One thing you might try is to check Liouville’s theo-
rem. Hamilton’s equations have the property

]q̇ i

]qi
1

]ṗ i

]pi
5

]2H

]qi]pi

2
]2H

]pi]qi
50, (122)

from which one can show that phase-space volume is
conserved; i.e., if

V~ t !5E )
i51

N

dpi dqi, (123)

where the integration is over a volume interior to an
arbitrary comoving surface, then

dV
dt

50. (124)

The surface may distort, and in general it will do so in a
major way, but the volume inside remains constant. The
analogous statement for the system of Eq. (121) is in-
compressibility of the vector field; i.e.,

]Vi

]zi 50, (125)

whence it follows that

V~ t !5E )
i51

N

dzi (126)
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is constant in time.
Suppose Eq. (125) is not true, as is the case for the

following example:

ż152
z2

3

3
2z2 ,

ż25
z1

z2
211

. (127)

For this system

] ż1

]z1
1

] ż2

]z2
52

2z1z2

~z2
211 !2Þ0. (128)

You would be mistaken if, based on Eq. (128), you con-
cluded that Eq. (127) was not Hamiltonian. In fact this
system is a disguised simple harmonic oscillator. It has
been disguised by making a noncanonical coordinate
change, something that we shall discuss below.

So, is there a general method for determining whether
or not a system is Hamiltonian? Probably the answer is
no, since one must first find a Hamiltonian, and this re-
quires a technique for finding constants of motion.
There is no completely general way of doing this.13 Nev-
ertheless we can say some things, but to do so we must
investigate Hamiltonian systems in arbitrary coordi-
nates.

You might wonder, why would equations ever arise in
noncanonical variables? Surely the physics would make
things come out right. To the contrary, variables that are
the most physically compelling need not be canonical
variables. The Eulerian variables that describe ideal con-
tinuous media are in general noncanonical. Examples of
systems that are typically written in terms of noncanoni-
cal variables are Liouville’s equation for the dynamics of
the phase-space density of a collection of particles, the
BBGKY hierarchy of kinetic theory, the Vlasov equa-
tion of plasma physics, ideal fluid dynamics and various
approximations thereof, magnetized fluids, . . . : essen-
tially every fundamental equation that describes classi-
cal media is of this type.

So with the above motivation, let us turn to discussing
noncanonical Hamiltonian dynamics for systems with a
finite number of degrees of freedom, using ideas that
extend back (at least) to Sophus Lie. The first step is to
write Hamilton’s equations in covariant form. Thus we
define

zi5H qi for i51,2, . . . ,N ,

pi2N for i5N11, . . . ,2N . (129)

The zi are coordinates on phase space which we denote
by Z. In terms of the z’s Hamilton’s equations take the
compact form

13Techniques for finding constants of motion do exist, but
necessarily possess limitations. See, for example, Ramani et al.
(1989) and references therein.
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ż i5Jc
ij ]H

]zj 5@zi,H# , (130)

where the Poisson bracket is given by

@f ,g#5
]f

]zi Jc
ij ]g

]zj , (131)

with

~Jc
ij!5S 0N IN

2IN 0ND . (132)

Above, the repeated indices are to be summed over
1,2, . . . ,2N . In Eq. (132), 0N is an N3N matrix of zeros
and IN is the N3N unit matrix. The subscript c of Jc
indicates that the system is written in terms of canonical
coordinates. It is important to realize that we have only
rewritten Hamilton’s equations in new notation, albeit
in a form that is suggestive.

Now consider a general, time-independent change of
coordinates

z̄ i5 z̄ i~z !. (133)

The Hamiltonian H transforms as a scalar:

H~z !5H̄~ z̄ !. (134)

Taking time derivatives of Eq. (133) yields

ż̄ l5
] z̄ l

]zi
ż i5

] z̄ l

]zi
Jc

ij ]H

]zj 5F ] z̄ l

]zi
Jc

ij ] z̄m

]zj G ]H̄

] z̄m
. (135)

Upon defining

Jlm:5
] z̄ l

]zi
Jc

ij ] z̄m

]zj
, (136)

we see that Hamilton’s equations are covariant and that
Jlm, which is called the cosymplectic form, transforms as
a contravariant tensor of second rank. In the new vari-
ables, Hamilton’s equations become

ż̄ l5Jlm~ z̄ !
]H̄

] z̄m
5@ z̄ l,H# , (137)

where the Poisson bracket is now given by

@f ,g#5
]f

] z̄ l
J lm

]g

] z̄m
. (138)

Notice that in Eq. (137) we have displayed the explicit z̄
dependence in Jlm. This was done to emphasize an im-
portant distinction—that between covariance and form
invariance. Equation (136) is a statement of covariance,
while a statement of form invariance is given by

Jc
lm5

] z̄ l

]zi
Jc

ij ] z̄m

]zj
. (139)

This is, in fact, the (most important) definition of a ca-
nonical transformation. Form invariance here means
that the form of the Jij and hence Hamilton’s equations
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remains the same. Evidently, the first N of z̄ l are coor-
dinates, while the second N are momenta, so it is a
simple matter to revert to the usual form of Hamilton’s
equations in the new canonical variables z̄ l.

Let us now return to Liouville’s theorem. Taking the
divergence of Eq. (137) yields

] ż̄ l

] z̄ l
5

]Jlm

] z̄ l

]H̄

] z̄m
1Jlm

]2H̄

] z̄ l] z̄m
. (140)

The second term vanishes because Jlm is antisymmetric
and ]2H̄/] z̄ l] z̄m is symmetric. This is all there is for the
usual Liouville’s theorem, since in the canonical case Jlm

is constant, so the first term vanishes. However, for
Hamilton’s equations written in noncanonical coordi-
nates the following is typically (but not necessarily) true:

] ż̄ l

] z̄ l
5

]Jlm

] z̄ l

]H̄

] z̄m
Þ0. (141)

This was the situation for our little example of Eq. (127).
It might have occurred to you that changing the coor-

dinates may hide but cannot destroy volume preserva-
tion. This is clear if we simply change coordinates in Eq.
(123):

V~ t !5E J )
l51

2N

dz̄l. (142)

If we include the Jacobian J:5det(]zi/] z̄ j) in the inte-
grand, then Liouville’s theorem is still satisfied. There is
a nice formula relating J and J , which is obtained by
taking the determinant of Eq. (136) and using the deter-
minant product rule:

J5
1

AdetJ
. (143)

Observe that there are many J’s with the same J.
Before leaving this discussion of Liouville’s theorem

we mention that even though J is a function of z̄ , it is

still possible for ] ż̄ l/] z̄ l50. This can happen because H̄
is such that the two vectors of Eq. (141) are perpendicu-
lar or it may happen that ]Jlm/] z̄ l50, even though J is a
function of z̄ . The latter case occurs for fluid models and
underlies attempts to describe turbulence by using sta-
tistical mechanics concepts (see, for example, Montgom-
ery and Kraichnan, 1979).

Now it is clear that the essence of what it means to be
Hamiltonian does not lie in the canonical form. Where
does it lie? It lies in some coordinate invariant proper-
ties of J . To illustrate this we shall play another sort of
game. Suppose you have a system of the form of Eq.
(121) and you want to know if it is Hamiltonian. More-
over, suppose you are clever enough to realize that
Liouville is not the answer, because you know that
Hamiltonian systems in noncanonical coordinates look
like Eq. (137) with Poisson brackets that look like Eq.
(138). Finally, suppose somehow you have found a con-
stant of motion, call it H , and you think this is the en-



485P. J. Morrison: Hamiltonian description of the ideal fluid
ergy and therefore a good bet for the Hamiltonian.
Clearly if it is Hamiltonian, then

Vi~z !5Jij
]H

]zj , i51,2, . . . ,M . (144)

Now, everything in Eq. (144) is known except Jij, which
is required to be antisymmetric because of definition
(136). The antisymmetry automatically makes dH/dt50
and leaves M equations for (M22M)/2 unknown quan-
tities in Jij. Suppose that with some fiddling around you
have found a candidate J . [Try this for the simple ex-
ample of Eq. (128).] Does a transformation exist such
that you can transform the candidate J back to Jc?

The answer to this question is given by an old theo-
rem that is credited to Darboux. If the Jij you have
found makes a good Poisson bracket, that is, when Eq.
(138) is assembled, it satisfies

@f ,g#52@g ,f# ; f ,g , (145)

†f ,@g ,h#‡1†g ,@h ,f#‡1†h ,@f ,g#‡50 ; f ,g , (146)

and moreover if detJÞ0, then Darboux says there exists
a transformation (at least locally) where J → Jc . Note,
a requirement for detJÞ0 is that M52N , since odd-
dimensional antisymmetric matrices have zero determi-
nant. We shall not prove Darboux’s theorem, but will
mention that Eq. (146) is the important ingredient. This
is an integrability condition known as the Jacobi iden-
tity; it is the central identity of a Lie algebra—a nonas-
sociative algebra—which has a product with the proper-
ties (145) and (146). Above, the elements of the Lie
algebra are functions defined on the phase space. We
shall say more about this later in Sec. V.

The bracket properties, (145) and (146), can be trans-
lated into properties required of the cosymplectic form.
The first is clearly

Jij52Jji. (147)

The second, with a little work, can be shown to be
equivalent to

Sijk:5Jil
]Jjk

]zl
1Jjl

]Jki

]zl
1Jkl

]Jij

]zl
50. (148)

In going from Eq. (146) to Eq. (148) it is observed that
all the terms involving second derivatives that arise
upon calculating †f ,@g ,h#‡1†g ,@h ,f#‡1†h ,@f ,g#‡ cancel;
the only terms to survive are those where the derivative
of the outer bracket acts upon the J of the inner bracket.
This fact makes life much easier when verifying the Ja-
cobi identity.

Now suppose everything worked out right except that
the J you found had detJ50, with some rank 2N,M .
What then? A generalization of the Darboux theorem,
which was proven by Lie long ago (see, for example,
Eisenhart, 1961 and Littlejohn, 1982), says that J can be
transformed (locally) into the following form:

~Jc!5S 0N IN 0

2IN 0N 0

0 0 0M22N

D . (149)
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Interesting things happen in places where the rank of J
changes. Later we shall say something about this, too.

From Eq. (149) it is clear that in the right coordinates
the system is an N-degree-of-freedom system with some
extraneous coordinates, M22N in fact. The geometrical
picture is as depicted in Fig. 12.

Through any point of the M-dimensional phase space
Z there exists a regular Hamiltonian phase space P of
dimension 2N . These surfaces are called symplectic
leaves. A consequence of the degeneracy is that there
exists a special class of invariants that is built into the
phase space. They are called Casimir invariants, a name
which derives from the Lie algebra for angular momen-
tum. Since the rank of J is 2N , there exist possibly
M22N independent null eigenvectors. A consequence
of the generalization of Darboux’s theorem is that the
independent null eigenvectors exist and, moreover, the
null space can in fact be spanned by the gradients of the
Casimir invariants, which satisfy

Jij
]Ca

]zj 50, (150)

where a51,2,3, . . . ,M22N . That the Casimir invariants
are constants of motion follows from

Ċa5
]Ca

]zi Jij
]H

]zj 50. (151)

Note that they are constants of motion for any Hamil-
tonian; they are, as noted above, built into the phase
space and are in this sense kinematic constants of mo-
tion. The dynamics is determined by the Hamiltonian H .
Note that the surfaces P of dimension 2N in the figure
are the intersections of the M22N surfaces defined by
Ca5const. Dynamics generated by any H that begins on
a particular P surface remain there.

The picture we have described above is the finite-
dimensional analog of the Hamiltonian form possessed
by Eulerian continuous-media theories. We shall de-
scribe the Poisson brackets for some of them soon, but
now we mention that if these media theories are written
in terms of the density variables (for example, the r , s ,
and M of Sec. III.C), then the cosymplectic operator will
be seen to be linear in the variables. The finite-

FIG. 12. The local structure of phase space in a noncanonical
Hamiltonian system.
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dimensional analog of this is that Jij has a special form
that is linear in the zk:

Jij5ck
ijzk, (152)

where the ck
ij are constants—in fact, structure constants

for a Lie algebra (see Sec. V). In light of Eqs. (147) and
(148) they must satisfy

ck
ij52ck

ji (153)

and

cm
ij cl

mk1cm
jkcl

mi1cm
kicl

mj50. (154)

Brackets with J’s of the form of Eq. (152) are called
Lie-Poisson brackets.

It is interesting to reexamine the condition for Liou-
ville’s theorem (141) for J’s of the above form,

]Jlm

]zl

]H

]zm 5cl
lm ]H

]zm 50. (155)

In general, structure constants do not possess antisym-
metry or symmetry upon interchange of an up with a
down index. However, sometimes they do, as in the case
of so(3) (see Sec. III.B). In general semisimple Lie alge-
bras can, by a coordinate change, be brought into a form
in which the structure constants are completely antisym-
metric (Jacobson, 1962). In these coordinates there is
Liouville’s theorem without the need for inserting a
Jacobian as in Eq. (143). This, as noted above, is typi-
cally the case for fluid theories in Eulerian variables.

In infinite dimensions the analog of Eq. (138) is given
by

$F ,G%5E
D

dF

dc i Jij
dG

dc j dm5 : K dF

dc
,J

dG

dc L , (156)

where c i(m ,t) are functions, m5(m1 , . . . ,mn) is a ‘‘spa-
tial’’ or Eulerian observation variable, and c i,
i51, . . . ,n are n components of the field. Now J is an
operator, and we require

$F ,G%52$G ,F%, (157)

ˆF ,$G ,H%‰1ˆG ,$H ,F%‰1ˆH ,$F ,G%‰50 (158)

for all functionals F , G , and H . Analogous to Eq. (147)
the antisymmetry condition of Eq. (157) requires J to be
skew symmetric, i.e.,

^f ,J g&5^J†f ,g&52^g ,J f&. (159)

The Jacobi identity (158) for infinite-dimensional sys-
tems has a condition analogous to Eq. (148); one need
only consider variations of J when calculating
ˆF ,$G ,H%‰1ˆG ,$H ,F%‰1ˆH ,$F ,G%‰.14 For Eulerian
media, as noted above, the cosymplectic operator typi-
cally has the Lie-Poisson form

Jij5Ck
ijck, (160)

14This is the infinite-dimensional analog of Eq. (148), which is
described further by Lax (1975) and Morrison (1981a, 1982).
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where Ck
ij are structure operators. We shall clarify the

meaning of these structure operators by examples; a bit
more will be said in Sec. V.

B. Examples

Below the noncanonical Poisson brackets for several
systems are presented. The first, the free rigid body, is a
finite-dimensional system, while the others are infinite
dimensional. We present the brackets here and refer the
reader to the references for treatment of the Jacobi
identity.

1. Free rigid body

The equations that govern the motion of the free rigid
body are Euler’s equations, the following three-
dimensional system:

l̇ 15l 2l 3S 1
I3

2
1
I2

D ,

l̇ 25l 3l 1S 1
I1

2
1
I3

D ,

l̇ 35l 1l 2S 1
I2

2
1
I1

D , (161)

which correspond to the statement of torque-free mo-
tion in a frame frozen into the body with axes aligned
with the principal axes. (See Sec. V for more details.)
The energy is purely rotational kinetic energy; since the
coordinate axes are principal axes it takes the form

H5 1
2 (

i51

3
l i

2

Ii
. (162)

The function H is easily seen to be a constant of motion
upon differentiating with respect to time and making use
of Eq. (161). The Poisson bracket for this system is of
Lie-Poisson type,

@f ,g#52e ijkl k

]f

]l i

]g

]l j
. (163)

The structure constants are e ijk , which are those of
SO(3), that is, the group of rotations. The Jacobi iden-
tity is assured since the e ijk , being structure constants,
satisfy condition (154)—something that is not difficult to
verify directly.15 It is evident upon substituting Eq. (162)
into Eq. (163) that

l̇ i5@ l i ,H# , (164)

which is equivalent to Eq. (161). This system possesses
the Casimir invariant

15The structure constants for any Lie algebra will satisfy con-
dition (154). The algebra SO(2,1) is appropriate for describing
the dynamics of the Kida vortex, as shown in Meacham et al.
(1997).
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C5 1
2 (

i51

3

l i
2 , (165)

which satisfies

@C ,f#50, ; f . (166)

Thus the global picture of the phase space Z, which here
corresponds to Fig. 12, is one where the symplectic
leaves are nested two-dimensional spheres in the three-
dimensional space with coordinates (l 1 ,l 2 ,l 3).

2. Korteweg-de Vries equation

We write the famous Korteweg-de Vries (KdV) equa-
tion (see, for example, Whitham, 1974), which describes
long-wavelength water waves or ion-acoustic waves in
plasmas, in the following form:

]u

]t
1u

]u

]x
1

]3u

]x3
50. (167)

Here xPD , which can be (and typically is) chosen to be
(2` ,`) or @2p ,p# . In the former case the appropriate
boundary condition is u(6`)50, while in the latter
case periodic boundary conditions are appropriate. The
KdV equation possesses a countable infinity of constants
of motion, but the one that is of interest now is the
following:

H5E
D
F 1

6 u32 1
2 S ]u

]x D 2Gdx . (168)

The noncanonical Poisson bracket, due to Gardner
(1971), is given by

$F ,G%52E
D

dF

du

]

]x

dG

du
dx , (169)

from which it is seen that the cosymplectic operator is

J52
]

]x
. (170)

The skew symmetry of Eq. (169) follows upon integra-
tion by parts; the Jacobi identity can be shown to be
automatic since the cosymplectic operator is indepen-
dent of u . Inserting the functional derivative of Eq.
(168),

dH

du
5S 1

2 u21
]2u

]x2 D , (171)

into Eq. (169) yields

]u

]t
5$u ,H%52

]

]xS 1
2 u21

]2u

]x2 D 52u
]u

]x
2

]3u

]x3
.

(172)

This bracket possesses one Casimir invariant,

C@u#5E
D

udx . (173)
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It is easily verified that $C ,F%50 for all functionals F .
The phase space Z in this case is infinite dimensional—it
being a function space composed of all admissible func-
tions u . The symplectic leaves are of one fewer dimen-
sion, but they are also infinite dimensional.

Note that the bracket above is not linear in u and is
therefore not of Lie-Poisson form, in spite of the fact
that we have claimed that the standard Hamiltonian
form for theories of media is of this type. You may know
that the KdV equation is special—it being integrable by
the inverse scattering method—so it is not too surprising
that it has a Hamiltonian structure that is inconsistent
with the credo. Although the basic equations that de-
scribe media in terms of Eulerian variables have the Lie-
Poisson form, when approximations are made this form
can change.

3. One-dimensional pressureless fluid

Now we consider an equation even simpler than the
KdV equation, that of a one-dimensional pressureless
fluid,

]u

]t
1u

]u

]x
50. (174)

This equation has, in jest, been referred to as both the
dispersionless KdV equation and the inviscid Burger’s
equation. That it models a fluid suggests that the Hamil-
tonian ought to be just the kinetic-energy functional,

H@u#5E
D

1
2 u2dx , (175)

there being no internal energy. The following bracket,
with the above Hamiltonian, produces Eq. (174):

$F ,G%52 1
3 E

D
uFdF

du

]

]x

dG

du
2

dG

du

]

]x

dF

du Gdx ,

(176)

that is,

]u

]t
5$u ,H%52 1

3 S u
]u

]x
1

]~u2!

]x D52u
]u

]x
. (177)

The cosymplectic operator is clearly given by

J52 1
3 S u

]

]x
1

]

]x
u D52 1

3 S 2u
]

]x
1

]u

]x D . (178)

The following Casimir invariant is easily obtained by
solving $C ,F%50 for all functionals F , i.e., by searching
for null eigenvectors of Eq. (178) and undoing the func-
tional derivative:

C5E
D

uuu1/2 dx . (179)

It is evident that the Hamiltonian

H@u#5 1
6 E

D
u3dx , (180)

together with the bracket (169), will also produce Eq.
(174). Thus it is possible for a system to have two Hamil-
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tonian structures: two functionally independent Hamil-
tonians with two distinct Poisson brackets. This rarity
occurs for the above system, the KdV equation, and
other systems. It is a symptom of integrability (see Ma-
gri, 1978).

4. One-dimensional compressible fluid

Now we consider a somewhat more complicated
model, the one-dimensional compressible fluid with a
pressure that depends only upon the density. The equa-
tions of motion for this system are the following:

]u

]t
52u

]u

]x
2

1
r

]p

]x
,

]r

]t
52

]~ru !

]x
. (181)

The Hamiltonian has a kinetic-energy part plus an
internal-energy part,

H@r ,u#5E
D

@ 1
2 ru21rU~r!#dx , (182)

and the Poisson bracket16 is given by

$F ,G%52E
D
FdF

dr

]

]x

dG

du
2

dG

dr

]

]x

dF

du Gdx . (183)

The cosymplectic operator,

~Jij!5S 0
]

]x

]

]x
0 D , (184)

is seen to be skew symmetric upon integration by parts
and systematic neglect of the surface terms. The Jacobi
identity follows since the cosymplectic operator is inde-
pendent of the dynamical variables.

Observe that this bracket, like the two above, is not
Lie-Poisson. However, upon transforming from the de-
pendent variables (u ,r) to (M ,r), where M5ru , it ob-
tains the Lie-Poisson form. We shall not do this trans-
formation here but consider this below when we treat
the ideal fluid in three spatial dimensions.

Setting $F ,C%50 for all F yields two equations,

]

]x

dC

dr
50,

]

]x

dC

du
50, (185)

from which we obtain the following Casimir invariants:

16A bracket of this type was given by Morrison and Greene
(1980), Morrison (1982), and Dubrovin and Novikov (1984). In
the last reference such brackets were termed brackets of hy-
drodynamic type and an interesting connection between the
cosymplectic operator and a metric on function space was ob-
tained: the Jacobi identity was shown to corrrespond to flat-
ness.
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C1@u#5E
D

udx , C2@r#5E
D

rdx . (186)

Using

dH

du
5ru ,

dH

dr
5 1

2 u21h~r!, (187)

where h(r):5rUr1U is the enthalpy (note that
dH/dr5constant is Bernoulli’s law), in Eq. (183) pro-
duces

]u

]t
5$u ,H%52

]

]x
~ 1

2 u21U1rUr!,

]r

]t
5$r ,H%52

]

]x
~ru !. (188)

These equations can be seen to be equivalent to Eqs.
(181) upon making use of hx5px /r (recall p5r2Ur).

5. Two-dimensional Euler scalar vortex dynamics

The vortex dynamics we consider here, unlike the ex-
amples above, have two spatial variables, r :5(x ,y)PD ,
in addition to time; that is, this is a 211 theory. The
noncanonical Poisson bracket possessed by this system
(Morrison, 1981a, 1982; Olver, 1982; Marsden and Wein-
stein, 1983) is the prototype of 211 theories, it being
shared by the 1D Vlasov-Poisson equation (Morrison,
1980, 1981b), quasigeostrophy or the Hasegawa-Mima
equation (Weinstein, 1983a; Zakharov and Piterbarg,
1988), and others.

The single dynamical variable for the 2D Euler equa-
tion is the scalar vorticity, defined by

v~r ,t !:5 ẑ•¹3v , (189)

where v is the Eulerian velocity field and ẑ is the ig-
nored coordinate. The velocity field is assumed to be
nondivergent, ¹•v50, and hence the stream function c
is introduced:

v5S 2
]c

]y
,
]c

]x D , (190)

which is related to the vorticity through

v5¹2c . (191)

The equation of motion for this system is

]v

]t
52v•¹v52@c ,v# , (192)

where

@f ,g#5
]f

]x

]g

]y
2

]f

]y

]g

]x
. (193)

There is some subtlety with the boundary conditions.
The physical boundary condition for the ideal fluid is
that no flow penetrates the boundary, i.e., the normal
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component of v vanishes. This amounts to c being con-
stant on ]D . Since v is the dynamical variable, one
might expect, from a mathematics point of view, the
boundary condition to be v constant on ]D . Then it is
natural to set variations of v to zero on the boundary to
eliminate surface terms obtained upon integration by
parts. Although this boundary condition may be correct
for the Vlasov-Poisson equation, it is unphysical for the
ideal fluid where the vorticity at a point on the boundary
is generally not constant. When boundary terms do not
vanish with physical boundary conditions, generally the
mathematics is signalling something physical. In this
case it is signalling the fact that surfaces of constant vor-
ticity possess dynamics, an idea that is the basis of the
‘‘contour dynamics’’ approximation technique. To de-
scribe this is beyond the scope of these notes (see Lewis
et al., 1986). However, all these complications can be
avoided by choosing the domain D to be a finite box and
imposing periodic boundary conditions. Alternatively,
D can be chosen to be R2 with vanishing vorticity at
infinity; however, as is well known in electrostatics, this
requires a potential that diverges logarithmically.

The energy in this model is purely kinetic. Thus the
Hamiltonian is given by

H@v#5 1
2 E

D
v2d2r5 1

2 E
D

u¹cu2d2r

5 1
2 E

D
E

D
v~r !K~rur8!v~r8!d2rd2r8

52 1
2 E

D
vcd2r , (194)

where K is defined by

c~r !52E
D

K~rur8!v~r8!d2r8. (195)

Observe that in the case where D5R2 the last equality
of Eq. (194) requires the elimination of the logarithmic
singularity that comes from integration by parts. The
noncanonical Poisson bracket for this system is given by

$F ,G%5E
D

vF dF

dv
,
dG

dv Gd2r , (196)

which is of the Lie-Poisson form. The cosymplectic op-
erator in this case is

J52@v ,•# . (197)

Skew symmetry follows from

E
D

f@g ,h#d2r52E
D

g@f ,h#d2r , (198)

which is obtained upon integration by parts and neglect
of the boundary terms. The Jacobi identity for J is in-
herited from that for @ , # , as is the case for Lie-Poisson
brackets. The Casimir invariant for the bracket of Eq.
(196) is given by

C@v#5E C~v!d2r , (199)
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where C is an arbitrary function. Since C is arbitrary, C in
fact constitutes an infinity of constants of motion. These
arise from the incompressibility of phase space.17 We
mention that even though there are an infinity of con-
stants this is insufficient for the 2D Euler equations to
be integrable. In order to obtain the equations of motion
we require

dH

dv
52c . (200)

Evidently,

]v

]t
5$v ,H%52Fv ,

dH

dv G5@v ,c# , (201)

which is equivalent to Eq. (192).

6. Three-dimensional ideal fluid

For this last example we consider the ideal fluid in
three dimensions, our first example of a 311 theory
where the spatial variables are the rectangular coordi-
nates r :5(x ,y ,z)5 :(x1 ,x2 ,x3)PD . The dynamical vari-
ables that we use were introduced in Sec. III: the three
components of the Eulerian velocity field v , the density
r , and the entropy per unit mass s . We use s rather than
the pressure p , but it is a simple matter to alter this. The
equations of motion are

]v
]t

52v•¹v2
1
r

¹p , (202)

]r

]t
52¹•~rv !, (203)

]s

]t
52v•¹s . (204)

Recall that the thermodynamics is embodied in an
internal-energy function U(r ,s), from which, in addition
to the pressure p5r2Ur , the temperature is given by
T5Us .

The Hamiltonian functional is given by

H@v ,r ,s#5E
D

@ 1
2 rv21rU~r ,s !#d3r , (205)

and the noncanonical Poisson bracket (Morrison and
Greene, 1980) is

17If one divides D up into small cells and attaches a value of
v to each cell, then these constants state that the number of
cells with a given value of attached v remains constant in time.
Thus the dynamics is restricted to be a rearrangement. See
Gardner (1963) and Morrison (1987).
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$F ,G%52E
D
F S dF

dr
¹•

dG

dv
2

dG

dr
¹•

dF

dv D
1S ¹3v

r
•

dG

dv
3

dF

dv D
1

¹s

r
•S dF

ds

dG

dv
2

dG

ds

dF

dv D Gd3r . (206)

This bracket is familiar in that the first term is the gen-
eralization to three dimensions of that for the 111 com-
pressible fluid given above. Similarly, recognizing that
via the chain rule dF/dv5¹3dF/dv , we can see that
the second term is a 311 generalization of that for the
211 scalar vortex dynamics given above.18 The third
term is not familiar, but had we included entropy in our
111 fluid theory its one-dimensional counterpart would
have been present.

Using

dH

dv
5rv ,

dH

dr
5 1

2 v21~rU !r ,
dH

ds
5rUs , (207)

we find that Eqs. (202)–(204) are equivalent to

]v
]t

5$v ,H%,
]r

]t
5$r ,H%,

]s

]t
5$s ,H%. (208)

In order to obtain the equations of motion from the
above and in order to prove the Jacobi identity, integra-
tions by parts must be performed and surface terms in-
volving functionals must be neglected. The boundary
condition appropriate for the ideal fluid, as noted above,
is n̂•v50 on ]D , but this is a boundary condition on v ,
not on the functionals directly. The function space of
functionals must be such that these terms vanish for all
functionals. When D is a finite domain, there is a com-
plication with the vanishing of these terms, as in the case
for the 2D Euler equations. This problem is not an issue
when periodic boundary conditions are used or when
D5R3, for in these cases the space of functionals can be
defined readily. When D is a finite domain one might try
to eliminate the surface terms by requiring all function-
als to satisfy n̂•dF/dv50, but it must be verified that
this space of functionals is closed, i.e., the bracket of two
functionals with this property produces a functional with
this property. An alternative method that circumvents
this complication is to build the boundary condition into
the Hamiltonian by a suitable potential-energy func-
tional.

It is evident that the Poisson bracket of Eq. (206) is
not of Lie-Poisson form. However, if a transformation
from the variables v , r , and s to the conserved variables
M :5rv , r , and s :5rs , which were introduced in Sec.
III (and alluded to above), is made, then the bracket
(Morrison and Greene, 1980; a commutator description
is given in Dzyaloshinskii and Volovick, 1980) becomes

18See also, for three-dimensional vortex dynamics, Kuznetsov
and Mikhailov (1980).
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$F ,G%52E
D
FMiS dF

dMj

]

]xj

dG

dMi
2

dG

dMj

]

]xj

dF

dMi
D

1rS dF

dM
•¹

dG

dr
2

dG

dM
•¹

dF

dr D
1sS dF

dM
•¹

dG

ds
2

dG

dM
•¹

dF

ds D Gd3r . (209)

This transformation requires the use of the chain rule
for functional derivatives, which gives formulas such as
the following:

dF

drU
v ,s

5
dF

drU
M ,s

1
M

r
•

dF

dM
1

s

r

dF

ds
. (210)

It is straightforward to show that the bracket (209) to-
gether with the Hamiltonian

H@M ,r ,s#5E
D
FM2

2r
1rU~r ,s/r!Gd3r (211)

produces the fluid equations of motion in conservation
form as

]M

]t
5$M ,H%,

]r

]t
5$r ,H%,

]s

]t
5$s ,H%. (212)

Now consider the condition for the Casimir invariants,
$F ,C%50 for all F . From Eq. (206) it can be seen that
this implies

¹•

dC

dv
50,

1
r

¹s•

dC

dv
50,

¹
dC

dr
1

~¹3v !

r
3

dC

dv
2

¹s

r

dC

ds
50. (213)

One solution of these equations is

C1@r ,s#5E
D

rf~s !d3r , (214)

where f is an arbitrary function. If we eliminate the en-
tropy variable s from the theory, then another solution
is the helicity

C2@v#5E
D

v•¹3vd3r . (215)

One can also show that there is a potential vorticity Ca-
simir invariant (Padhye and Morrison, 1996a; 1996b),
but it will be left to you to investigate the general solu-
tion of Eqs. (213).

7. General comments

Above we have presented a variety of noncanonical
Poisson brackets, of one, two, and three spatial dimen-
sions and of one or more field variables, culminating in
that of the three-dimensional fluid with the field vari-
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ables (v ,r ,s) or (M ,r ,s).19 In closing this section we
make some brief comments about the classification of
the various brackets.

Consider the cases in which there is only a single field
variable. We presented two such 111 theories, that for
the KdV equation and that for the pressureless fluid. It
is natural to ask whether or not these brackets are in
some sense equivalent. Is it possible by a coordinate
change to map one into the other? A simple scaling
analysis suggests that a quadratic transformation might
do this. Indeed the transformation

ũ5 1
6 u2, (216)

with the inverse20

u5A6 ũ , (217)

demonstrates this equivalence. Inserting

dF

du
5A2 ũ

3
dF

d ũ
(218)

into the KdV bracket yields

$F ,G%52E
D

dF

du

]

]x

dG

du
dx

52 1
3 E

D
ũ FdF

d ũ

]

]x

dG

d ũ
2

dG

d ũ

]

]x

dF

d ũ Gdx . (219)

Now it is evident from Eq. (219) and from above, where
we changed fluid variables from (v ,r ,s) to (M ,r ,s),
that sometimes brackets can be mapped into the Lie-
Poisson form by an invertible transformation. The study
of when this can be done is an interesting area that we
shall not address here. However, since typically for fluid
theories this transformation can be done, this suggests a
classification of such theories by their Lie-Poisson brack-
ets, which in turn are classified by the Lie groups (see
Sec. V) corresponding to their structure operators. Thus
theories can be classified by a Lie group21 and the cor-
responding Casimir invariants are determined. In the
case of 111 theories discussed above, the group is that
of coordinate changes and the algebra is in essence the
infinitesimal generator ]/]x . In the case of the 211

19Additional examples relevant to geophysical fluid dynamics
can be found in Shepherd (1990).

20This transformation is invertible if u and ũ are positive, a
property that in some cases is preserved by the dynamics. One
can extend this by using ũ5sgn(u)u2/6, which is one-to-one.
Formal manipulation with this transformation produces the
same bracket as (219).

21This classification idea is an old one. It appears in Sudars-
han (1963) and Sudarshan and Mukunda (1974) in the context
of describing dynamics by canonical realizations of Lie groups
(cf. Sec. V). Development in the geometrical setting was given
by Arnold (1966a, 1969), who, in contrast to our approach,
emphasized the Lagrange bracket. See also Weinstein (1983b)
and Arnold et al. (1990) for finite systems.
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theory of Euler’s fluid equations the group is the group
of canonical transformations of the plane, or equiva-
lently area-preserving transformations. When one in-
creases the number of spatial dimensions the possibili-
ties increase. When more than one field variable is
considered the groups become more complicated: they
are groups by extension, such as the direct product or
the semidirect product. Treatment of this area is beyond
the scope of these lectures, although we shall comment
briefly on this in the context of Clebsch variables in
Sec. V.

V. TUTORIAL ON LIE GROUPS AND ALGEBRAS,
REDUCTION, AND CLEBSCH VARIABLES

This section begins with Sec. V.A, a tutorial on Lie
groups and Lie algebras, which was in fact a lecture that
was given after the others. It is placed here for continu-
ity, and it is intended to require little background and to
be a bare-bones minimum needed for understanding
Secs. V.B and V.C. It can be skipped by the cognoscenti,
who may proceed directly to Sec. V.B, where reduction,
a procedure for obtaining smaller Hamiltonian systems
from bigger ones, is described. Reduction is employed in
Sec. V.B.4 to derive the noncanonical Hamiltonian de-
scription of the ideal fluid in terms of Eulerian variables
from the canonical Hamiltonian description in terms of
Lagrangian variables. Section V is concluded with Sec.
V.C, where an inflation procedure is described for ‘‘can-
onizing’’ noncanonical Lie-Poisson brackets by trans-
forming to Clebsch variables. The less mathematically
inclined may skip Sec. V altogether and proceed, with
little loss of continuity, directly to Sec. VI, where stabil-
ity is discussed.

A. Tutorial on Lie groups and Lie algebras

The study of Lie groups can be demanding because it
mixes both algebra and geometry: a Lie group G is both
a group and a differentiable manifold. To simplify mat-
ters, our discussion will be a local22 one; i.e., calculations
will be done in terms of coordinates, in a style reminis-
cent of Lie’s original work.23 The elements of a Lie
group, which are uncountably infinite in number, corre-
spond to points of the manifold, which for our purpose
can be thought of as Euclidean space. To be concrete we
shall consider a realization in which elements of G cor-
respond to functions that define transformations (coor-

22The term local is used in contradistinction to global, by
which is meant the study of the topological nature of surfaces
in the large. Such a study was begun by Riemann and Poin-
caré; results are predominately a product of the present cen-
tury.

23For background and further reading the reader is directed
to the following references, which are at roughly the same
level and in the same language as that given here: Eisenhart
(1961), Hammermesh (1962), Gürsey (1963), and Loewner
(1971).
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dinate changes) on a space Z, which can also be viewed
locally as Euclidean space. We describe this in detail in
Sec. V.A.1, following with a discussion of Lie algebras in
Sec. V.A.2, and concluding this tutorial with definitions
of the terms realization and representation in Sec.
V.A.3.

1. Lie groups

Suppose the space Z has coordinates zi, i51,2, . . . ,M ,
and a family of transformations is given by

z8i5f i~z ,a !, i51,2, . . . ,M , (220)

where z5(z1,z2, . . . ,zM)PZ and a5(a1,a2, . . . ,aN)
P G denotes a parametrization of the family. For each
value of a the functions f constitute a one-to-one trans-
formation of Z onto itself. For convenience we denote
this by Ta . Thus Ta :Z → Z and z85Taz . The set of
Ta’s forms a group under composition of functions.

It is important to distinguish between the
M-dimensional space Z and the N-dimensional group
manifold G. The latter is called either the parameter
space, group space, or the group manifold. We are intro-
ducing Z now so that you have something concrete to
visualize, but this is really unnecessary—it could be done
completely in the abstract.

Another distinction to be made is between the passive
and active viewpoints of the transformation Ta . In the
passive viewpoint (adopted above) the point of Z re-
mains fixed and Ta represents a change in the coordi-
nates used to identify the point. In the active viewpoint
there are dynamics of a sort; a point of Z is mapped onto
a new point. Below you are, for the most part, free to
think in terms of either viewpoint.

The group product, as noted above, is composition.
Closure requires the existence of a group element Tc
such that

Tcz5TbTaz (221)

for all Tb and Tc . Hence there must be a function
f(b ,a)5c . It is this function that really defines the
group. If one assumes that f possesses three derivatives
in each of its arguments, it is a wonderful thing that this
guarantees the existence of all derivatives. We shall see
how this goes, but not work it out in detail. In terms of
the functions of Eqs. (220), closure can be stated as fol-
lows:

f~z ,c !5f~f~z ,a !,b !5f~z ,f~b ,a !!. (222)

A simple example of a Lie group is that of SO(2),
rotations of the plane. These are linear transformations
given by

Fz81

z82G5F cosu sinu

2sinu cosuGFz1

z2G , (223)

which we write as

z85Tuz . (224)

This is a one-parameter group with uP@0,2p). Closure
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requires that a rotation through an angle u followed by a
rotation through an angle c be equivalent to a rotation
through some angle x :

TcTu5F cosc sinc

2sinc coscGF cosu sinu

2sinu cosuG
5F cos~c1u! sin~c1u!

2sin~c1u! cos~c1u!
G5 :Tx . (225)

Clearly, the analog of c5f(b ,a) is x5f(c ,u)5c1u ,
mod 2p .

You may know that, in addition to closure, groups
have three other properties: associativity, the existence
of an identity, and the existence of an inverse. These
properties are natural if you think about elements of the
group corresponding to coordinate changes.

Associativity requires

Ta~TbTc!5~TaTb!Tc . (226)

Since TaTbz5f(f(z ,b),a), the right-hand side is

~TaTb!Tcz5f „f~f~z ,c !,b !,a)5f ~f~z ,c !,f~a ,b !!

5f„z ,f~f~a ,b !,c !…5Tf(f~a ,b !,c)z . (227)

Similarly TbTc5Tf(b ,c) , and the left-hand side is

Ta~TbTc!5Tf(a ,f~b ,c !) . (228)

Upon comparing Eqs. (227) and (228) we see that asso-
ciativity implies

f~a ,f~b ,c !!5f~f~a ,b !,c !. (229)

This relation is clearly not satisfied for all functions f ; it
in fact places a strict restriction on the functions that
may define a group product, as we shall see.

The identity element of the group is denoted by T0. It
must satisfy

T0Ta5TaT05Ta (230)

or

f ~f~z ,a !,0!5f ~f~z ,0!,a !5f~z ,a !. (231)

Therefore

f~0,a !5f~a ,0!5a . (232)

For every element a of a group G there must exist an
inverse, which we denote by a21, such that

TaTa215Ta21Ta5T0 . (233)

Evidently,

f~a ,a21!5f~a21,a !50. (234)

In order for these equations to have a unique solution
for a21, given a ,

detS ]f~a ,b !

]a DÞ0; detS ]f~a ,b !

]b DÞ0. (235)

It is easy to verify the above properties for the ex-
ample of SO(2); it is recommended that you do this.

Now let us return to the quest of determining what
the group properties say about f . Taylor-expanding f
about a5b50 through third order yields
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fn~a ,b !5fn~0,0!1
]fn~0,0!

]ak
ak1

]fn~0,0!

]bk
bk1

1
2

]2fn~0,0!

]ak]al
akal1

]2fn~0,0!

]ak]bl
akbl1

1
2

]2fn~0,0!

]bk]bl
bkbl

1
1
3!

]3fn~0,0!

]ak]al]am
akalam1

1
2

]3fn~0,0!

]ak]al]bm
akalbm1

1
2

]3fn~0,0!

]ak]bl]bm
akblbm

1
1
3!

]3fn~0,0!

]bk]bl]bm
bkblbm1O~4 !, (236)
where derivatives with respect to a are taken in the first
slot of fn and those with respect to b in the second.
Since

f~a ,0!5f~0,a !5a (237)

for all a , it is clear that f(0,0)50, and upon differenti-
ating Eq. (237) we obtain

]fn~0,0!

]ak
5dk

n ,

]fn~0,0!

]bk
5dk

n . (238)

Differentiating Eq. (237) twice and then thrice in the
nonzero argument implies

]2fn~0,0!

]ak]al
5

]2fn~0,0!

]bk]bl
5

]3fn~0,0!

]ak]al]am
5

]3fn~0,0!

]bk]bl]bm

50. (239)

However, Eq. (237) does not contain information about
mixed derivatives; viz.,

]2fn~0,0!

]ak]bl
,

]3fn~0,0!

]ak]al]bm
,

]3fn~0,0!

]ak]bl]bm
. (240)

So, thus far we have reduced Eq. (236) to

fn~a ,b !5an1bn1
]2fn~0,0!

]ak]bl
akbl

1
1
2

]3fn~0,0!

]ak]al]bm
akalbm

1
1
2

]3fn~0,0!

]ak]bl]bm
akblbm1O~4 !. (241)

To go farther the associativity condition (229) is im-
posed. If you expand this condition through second or-
der, in anticipation of a result, you will be disappointed.
Associativity places no constraint to this order. If you
attempt to expand through third order you will also be
disappointed because you will generate a tedious mess.
Nevertheless, perseverance and a tad of cleverness re-
sults in a condition on f . If we define

ckl
n :5

]2fn~0,0!

]ak]bl
2

]2fn~0,0!

]al]bk
, (242)
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which obviously satisfies

ckl
n 52clk

n , (243)

the condition obtained is

ckl
n cdg

l 1cgl
n ckd

l 1cdl
n cgk

l 50. (244)

The numbers ckl
n were called structure constants by So-

phus Lie. They are the heart of the matter.
You might wonder what happens to next order. It

turns out that Eqs. (243) and (244) are enough to deter-
mine f , the group product rule, and thus the essence of
the group. (Technically, only the part that is connected
to the identity is determined.)

2. Lie algebras

Studying the group manifold in a neighborhood of the
identity leads to a study of Lie algebras. Also, it leads to
differential equations for f , equations with important
consequences that we shall use in Sec. V.B where we
discuss reduction. To this end, suppose da is small, that
is, near to the identity, and consider

T ã :5TaTda (245)

or

ã 5f~a ,da !. (246)

Since f was assumed to be continuous, ã must be
near a , and so we write

ã 5a1da5f~a ,da ! (247)

or, in terms of the transformations,

Ta1daz5TaTdaz . (248)

This is depicted in Fig. 13.

FIG. 13. Depiction of the Lie group transformation
Ta1daz5TaTdaz , a relation used for deriving Lie group gen-
erators.
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Taylor-expanding Eq. (246) about a and b5da50
yields

aa1daa5fa~a ,0!1
]fa~a ,b !

]bb U
b50

dab1••• , (249)

where the greek indices a ,b , etc., which we shall use to
denote coordinates of the group manifold, run over
1,2, . . . ,N . From Eq. (249),

daa5Lb
a~a !dab (250)

where

Lb
a~a !:5

]fa~a ,b !

]bb U
b50

. (251)

Consider now a function defined on the group mani-
fold F :G → R. How does F(a) differ from F( ã )?

dF~a !:5F~ ã !2F~a !5F~a1da !2F~a !

'
]F

]aa
daa5

]F

]aa
Lb

a~a !dab

5 :dabXbF~a !. (252)

Clearly, if we choose F(a)5a , Eq. (252) implies

dag5dabXbag5Lb
gdab. (253)

We shall use this later.
The quantities Xb defined by

Xb :5Lb
a~a !

]

]aa
, (254)

are called the infinitesimal generators of the Lie group.
They are in fact elements of the Lie algebra, g, associ-
ated with G. The elements of the Lie algebra Xb are
first-order linear differential operators that add like or-
dinary vectors. In fact, the Xb are to be thought of as
vectors with components Lb

a and basis vectors ]/]aa.
These quantities also possess a natural product rule,
@Xa ,Xb# , which is the ordinary commutator. Plainly the
commutator of two first-order linear differential opera-
tors is another such operator, so the product rule is
closed.

For SO(2) the group product rule is defined by
x5f(c ,u)5c1u , whence we obtain for the generators

Xc5
]

]c
, Xu5

]

]u
.

The Lie algebra g in this case is composed of linear com-
binations of the above quantities and the product is sim-
ply @Xc ,Xu#50. This algebra is particularly simple in
that the product always vanishes.

Now we shall obtain a differential equation for the
group, and then discuss briefly some important theorems
proven by Lie. Recall Eq. (253), which we derived by
expanding Ta1da5TaTda . Since f(a ,a21)50 must be
solvable for a21 for any a , this implies Lb

a(a) must have
an inverse for all a . We call this Lg

21b , i.e.,
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Lb
aLg

21b5dg
a (255)

and Eq. (253) can be inverted,

dab5La
21bdaa. (256)

Now suppose

Tc1dc5TaTb1db5TaTbTdb , (257)

which is depicted in Fig. 14.
Equation (257) implies

c1dc5f~a ,b1db !5f~a ,f~b ,db !!. (258)

If dc5db5db50, then c5f(a ,b); thus Eq. (258) be-
comes, by associativity,

c1dc5f~f~a ,b !,db !5f~c ,db !. (259)

Therefore

ca1dca5fa~c ,db !5fa~c ,0!1Lb
a~c !dbb1••• ,

(260)

and

dca5Lb
a~c !dbb5Lb

a~c !Lg
21b~b !dbg, (261)

where the second equality follows from Eq. (256). We
can see that

]ca

]bg
5Lb

a~c !Lg
21b~b !, (262)

but since c5f(a ,b)

]fa~a ,b !

]bg
5Lb

a~f~a ,b !!Lg
21b~b !. (263)

Equation (263) is a system of partial differential equa-
tions of a form known as the Mayer-Lie type. Here
f(a ,b) is the unknown and a is a fixed parameter. It is
a system that determines the b dependence of f with
the a dependence coming from the initial condition
f(a ,0)5a . A similar equation holds where the roles of a
and b are reversed. In order for a system of equations of
this type to possess a solution, it must satisfy an integra-
bility condition, viz.,

]2fa~a ,b !

]bm]bg
5

]2fa~a ,b !

]bg]bm
, (264)

which implies

FIG. 14. Depiction of the Lie group transformation
Tc1dc5TaTb1db5TaTbTdb , a relation used for deriving the
differential equations for a Lie group.
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]

]bm
@Lb

a~f~a ,b !!Lg
21b~b !#

5
]

]bg
@Lb

a~f~a ,b !!Lm
21b~b !# . (265)

Performing the differentiation in Eq. (265),

]Lb
a~c !

]cn

]fn~a ,b !

]bm
Lg

21b~b !1Lb
a~c !

]Lg
21b~b !

]bm

5
]Lb

a~c !

]cn

]fn~a ,b !

]bg
Lm

21b~b !1Lb
a~c !

]Lm
21b~b !

]bg
,

(266)

and then using Eq. (263) yields

]Lb
a~c !

]cn
@Ld

n~c !Lm
21d~b !Lg

21b~b !

2Ld
n~c !Lg

21d~b !Lm
21b~b !#

5Lb
a~c !F ]Lm

21b~b !

]bg
2

]Lg
21b~b !

]bm G . (267)

Now the left-hand side can be made a function of c
alone and the right-hand side can be made a function of
b alone, by multiplying by ‘‘L(b)L(b)L21(c)’’ with the
appropriate indices. We obtain

La
21g~c !F ]Lb

a~c !

]cn
Ld

n~c !2
]Ld

a~c !

]cn
Lb

n ~c !G
5Ld

n~b !Lb
a~b !F ]Ln

21g~b !

]ba
2

]La
21g~b !

]bn G . (268)

Since the points b and c were arbitrary, the two sides of
Eq. (268) must equal the same constants. Upon setting
c50 these constants are determined to be the structure
constants, cbd

g , defined by Eq. (242). Using

Ld
n~0 !5Ld

21n~0 !5dd
n (269)

and

]Lb
a~0 !

]cn
5

]2fa~0,0!

]cn]bb
(270)

yields, upon setting the two sides of Eq. (268) equal to
the constants, the following two equations:

]Lb
a~c !

]cn
Lg

n~c !2
]Lg

a~c !

]cn
Lb

n ~c !5cgb
d Ld

a~c !, (271)

]Ln
21d~b !

]bg
2

]Lg
21d~b !

]bn
5cab

d Ln
21a~b !Lg

21b~b !,

(272)

which can be shown directly to be equivalent.
Equation (272) is an important equation known as the

Maurer-Cartan equation. Since its left-hand side is a
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‘‘curl,’’ the divergence of its right-hand side must vanish.
This is true provided the structure constants satisfy Eq.
(244). Therefore Eq. (272) can be solved for L21(b).
With this value of L21, Eq. (263) is solved for f .

Above we have described the connection between Lie
groups and the Lie algebra of generators. It needs to be
emphasized that Lie proved the remarkable theorem
that makes this connection: given the Lie algebra of
generators24

@Xa ,Xb#5cab
g Xg , (273)

where the structure constants cab
g satisfy Eqs. (243) and

(244), or equivalently

@Xa ,Xb#52@Xb ,Xa# , (274)

†Xa ,@Xb ,Xg#‡1†Xb ,@Xg ,Xa#‡1†Xg ,@Xa ,Xb#‡50,
(275)

there exists some Lie group for which the c’s are the
structure constants. Moreover, in the vicinity of the
identity this group is unique. The proof of this theorem
in the general case is difficult. It requires a deep under-
standing of the structure of Lie algebras; namely, that
any Lie algebra can be decomposed into the sum of two
kinds of algebras—a semisimple algebra and a solvable
algebra. It is not possible to pursue this within the con-
fines of a single lecture like this (see, for example, Ja-
cobson, 1962).

3. Realization and representation

At the beginning of this tutorial we used the term
realization to describe the group G that was composed
of transformations on the space Z. In closing this tuto-
rial we define more carefully, but briefly, what is meant
by the term realization, and in addition we define what is
meant by the companion term representation.

Let us begin by supposing that an abstract group has
been defined. To be specific we shall assume that a and
b are elements of the abstract group and that the prod-
uct element of the group is given by f(a ,b). A realiza-
tion of the abstract group is a specific group for which
there is a mapping from the abstract group to the spe-
cific group that preserves the group product. For ex-
ample, the group of transformations, Ta ,Tb , . . . of Sec.
V is a realization of the abstract group with the product
rule f(a ,b). Preservation of the product rule amounts
to

TaTb5Tf~a ,b ! .

An important realization possessed by all abstract
groups is the group of transformations on itself. This is
defined by Ta• :5f(a ,•), which is easily shown to pre-
serve the product rule.

A representation of a group is a realization in terms of
transformations that are linear. A simple example of
such a group is the Lie group SO(2) as defined above.

24Note for the example of SO(2) that the structure constants
cab

g are all zero. Such algebras are called Abelian.
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The notions of realization and representation do not
apply to groups alone, but to any algebraic structure.
For example, a Lie algebra could be realized by a set of
matrices with a product defined by the ordinary matrix
commutator. Another realization of a Lie algebra, the
canonical realization, is composed of functions on phase
space together with a product defined by the Poisson
bracket. Canonical realizations arise naturally by the
procedure of reduction, to which we now turn.

B. Reduction

Reduction is a procedure for obtaining from a given
Hamiltonian system one of smaller dimension. The idea
dates back to Lie, Poincaré, and Cartan. Reduction pro-
duces examples of generating dynamics via a canonical
realization of a Lie group, which is a subgroup associ-
ated with a Lie algebra composed of the ordinary Pois-
son bracket and a selected set of functions defined on
phase space.25

There are two parts to reduction: kinematic and dy-
namic. The kinematic part is concerned with the use of
special variables that have a certain closure property,
while the dynamic part refers to a type of symmetry of
the Hamiltonian, viz., that the Hamiltonian be express-
ible in terms of the special variables. The symmetry of
the Hamiltonian can motivate the choice of the reduced
variables. For example, for the ideal fluid the form of
the Hamiltonian suggests the use of Eulerian variables
as a reduced set (see Sec. V.B.4).

The symmetry of the Hamiltonian gives rise to one or
more constants of motion (Casimirs) that can, in prin-
ciple, be used to reduce the order of the system. How-
ever, the term reduction is, in a sense, a misnomer since
in actuality the procedure does not reduce the order of a
system, but splits the system in such a way that it can be
integrated in stages.

In this subsection we discuss reduction in general
terms for finite systems and then consider a reduction
that we term standard reduction, in which the new vari-
ables are linear in the momenta. This is followed by two
examples: the free rigid body and the ideal fluid. In the
last subsection we discuss Clebsch variables, a reduction
that is bilinear in canonical coordinates and momenta.

1. Reduction of finite-dimensional systems

In the first part of reduction, that which pertains to
kinematics, the system is transformed into a useful set of
(generally) noncanonical coordinates. To see how this
goes, we begin with the canonical Poisson bracket

@f ,g#5
]f

]zi
Jc

ij ]g

]zj
, (276)

where i ,j51,2,...,2N , and recall

25See, for example, Sudarshan (1963), Sudarshan and Muku-
nda (1974), Marsden and Weinstein (1974), and Arnold et al.
(1990).
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~Jc
ij!5F 0N IN

2IN 0N
G , (277)

and

z5~q ,p !, (278)

and then suppose we have a set of functions wa(z), with
a51,...,M, where in general, these functions are nonin-
vertible functions of z and M,2N . Let us also suppose
that f and g obtain their z dependence through the func-
tions w , i.e.,

f~z !5 f̄ ~w~z !!. (279)

Differentiation of Eq. (279) yields

]f

]zi
5

] f̄

]wa

]wa

]zi
, (280)

which upon insertion into Eq. (276) gives

@f ,g#5
]f

]wa

]g

]wbS ]wa

]zi
Jc

ij]wb

]zj D , (281)

where we have dropped the overbar. The quantity

Jab:5
]wa

]zi
Jc

ij]wb

]zj
(282)

is in general a function of z . However, it is possible that
Jab can be written as a function of w only. When this
closure condition occurs, we have a reduction. Said an-
other way, we have reduction if we obtain a Lie algebra
realization composed of the functions w and the Poisson
bracket.

In order for functions of w together with the bracket

@f ,g#5
]f

]wa

]g

]wb
Jab~w ! (283)

to be a Lie algebra, it is necessary for @ , # to satisfy the
Jacobi identity for all such functions. This is equivalent
to

Sabg~w !:5Jad
]Jbg

]wd
1Jgd

]Jab

]wd
1Jbd

]Jga

]wd
50. (284)

(Recall Sec. IV.) Substituting Eq. (282) into Eq. (284)
gives

Sabg~w !5
]wa

]zi
Jij

]wd

]zj

]

]wdS ]wb

]zk
Jkl

]wg

]zl D 1•••

(285)

5
]wa

]zi
Jij

]

]zjS ]wb

]zk
Jkl

]wg

]zl D 1••• (286)

5†wa,@wb,wg#‡1†wb,@wg,wa#‡

1†wg,@wa,wb#‡50, (287)
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where the last equality follows from the original Jacobi
identity applied to the functions wa. Thus any reduction
produces a bracket that satisfies the Jacobi identity.

Now consider briefly the second part of reduction,
that which concerns the symmetry property of the
Hamiltonian. In order to have a reduced description of
the dynamics, i.e., one entirely in terms of the w’s, the
original Hamiltonian H(z) must be expressible solely in
terms of these variables, i.e., there must exist a function
H̄(w) such that

H~z !5H̄~w !. (288)

Equation (288) is in fact a statement of symmetry, since
the function H(z) in reality depends on a fewer number
of variables, the w’s. This is a condition that must be
verified case by case, but it is not difficult if one knows
the generators of the symmetry.

2. Standard reduction

For standard reduction the functions w have the spe-
cial form

wk5Lk
i ~q !pi , (289)

where i ,k51,2, . . . ,N . Note that the greek index a of
the previous subsection has been changed to k and it
now sums to M5N . The index has also been lowered for
reasons that will become clear in a moment. Writing out
Eq. (282),

Jkl5
]wk

]pi

]wl

]qi
2

]wl

]pi

]wk

]qi
, (290)

and inserting Eq. (289) into Eq. (290) yields

Jkl5Lk
i

]Ll
j

]qi
pj2Ll

i
]Lk

j

]qi
pj5S Lk

i
]Ll

j

]qi
2Ll

i
]Lk

j

]qi D pj .

(291)

Closure occurs if constant numbers ckl
m can be found

such that

S Lk
i

]Ll
j

]qi
2Ll

i
]Lk

j

]qi D pj5ckl
m Lm

j pj5ckl
m wm . (292)

The form of Eq. (292) may ring a bell. Recall the discus-
sion in Sec. V.A where we talked about integrability and
obtained the Maurer-Cartan equation. From Eq. (271) it
is clear that if the L’s are chosen to be the components
of the infinitesimal generators of some Lie algebra, then
Eq. (292) holds, if the constant numbers ckl

m are the
structure constants of the Lie algebra.

Since we lowered the indices above, the structure con-
stants have one contravariant index and two covariant
indices, which is the opposite of that of Sec. IV. We
changed them here so that the identification above with
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
the Maurer-Cartan equation would come out right.26 We
emphasize, though, that the important thing about this
construction is that there exist L’s that make Eq. (292)
an identity. These L’s will then be suitable for defining a
transformation of the form of Eq. (289) that yields a
reduced Poisson bracket. The reduced bracket is of the
Lie-Poisson form with the indices given as follows:

Jkl5ckl
m wm . (293)

Sometimes a minus sign is needed in the cosymplectic
form in order for the equations to come out right; for
example, this was the case for the rigid-body bracket of
Sec. IV.B. It is evident that if the Jacobi identity (154) is
satisfied for ckl

m , then it will be satisfied for 2ckl
m . Also, it

is clear that there exist reductions to brackets with both
signs, since condition (292) will be satisfied by Lk

i

→2 Lk
i if ckl

m →2 ckl
m . Thus Lie-Poisson brackets come

in pairs.
Let us now turn to the question of whether or not the

Hamiltonian can be written in terms of the reduced vari-
ables H(z)5H̄(w). First consider the important case in
which the Hamiltonian has the following quadratic form:

H~q ,p !5
1
2

m ij~q !pipj , (294)

where the ‘‘metric’’ satisfies m ij(q)5m ji(q). Since we
have supposed that Lk

i originates from a Lie group, it
must, as described in Sec. V.A.2, have an inverse. There-
fore inserting

pi5Li
21kwk (295)

into Eq. (294) yields

H~q ,p !5
1
2

m ij~q !Li
21kLj

21lwkwl . (296)

Thus we obtain the following condition27 for reduction:

m ij~q !Li
21kLj

21l5m0
kl ,

where m0 is independent of q .
Now consider the case of a general Hamiltonian. We

will have reduction if

H~q ,p !5H„q ,L21~q !w…5H̄~w !, (297)

which upon differentiation with respect to q yields

S ]H

]ql
1

]H

]pi

]Li
21k

]ql
wkD U

p5L21~q !w

[0, (298)

26Technically, Eq. (289) defines a transformation from phase
space with coordinates (q ,p), i.e., T* G, to the algebra g* ,
which is the dual of the Lie algebra g. The dual algebra g* is
the space of real linear functionals on g and thus has the indi-
ces reversed. Clearly there is more to this story: see Souriau
(1970) or Marsden and Weinstein (1974) for a discussion in
terms of the current terminology of geometry.

27This condition is automatically satisfied if the configuration
space is a Lie group and m ij(q) is a left-invariant metric. Such
metrics are easily constructed by translating a m0 defined at the
identity. See Appendix 2 of Arnold (1978).
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for l51,2, . . . ,N. Equation (298) is a general, necessary
and sufficient condition for reduction of the Hamil-
tonian. Clearly this condition is satisfied by any Hamil-
tonian that is obtained from an H̄ according to
H(q ,p)5H̄(L(q)p).

Since reduction involves the symmetry of Eq. (297)
and symmetries are related to constants of motion, it
should come as no surprise that a general expression for
constants of motion, which are the Casimir invariants,
comes along with the reduction framework. A clean way
of seeing this is afforded by triple-bracket dynamics
(Bialynicki-Birula and Morrison, 1991), which is a gen-
eralization of a formalism due to Nambu (1973).

This triple-bracket construction begins by considering
a semisimple Lie algebra with structure constants cij

k and
metric tensor28 gij which is given by

gij5cil
k cjk

l . (299)

This quantity can be used to raise and lower indices.
The fact that the structure constants have three indi-

ces hints at the existence of a geometric bracket opera-
tion on three functions, and it would be appealing if all
three functions appeared on equal footing. This can be
achieved by using the fully antisymmetric form of the
structure constants,

cijk5gilcjk
l , (300)

from which the following triple bracket is constructed:

@f ,g ,h#5cijk

]f

]wi

]g

]wj

]h

]wk
. (301)

A simple relationship exists between @f ,g ,h# and the
Lie-Poisson bracket @f ,g# . This is made manifest by in-
serting the Casimir of the Lie algebra, as given by

C :5
1
2

gijwiwj , (302)

into one of the slots of the triple bracket:

@f ,g#5@f ,g ,C# , (303)

where @f ,g# has the cosymplectic form of Eq. (293). Due
to this relationship, time evolution can be represented as
follows:

df

dt
5@f ,H ,C# , (304)

where f is an arbitrary dynamical variable. In this for-
mulation the dynamics are determined by two generat-
ing functions, the Hamiltonian H and the Casimir C ;
because of the complete antisymmetry, the Casimir is
necessarily conserved.

3. Reduction of the free rigid body

The free rigid body, which is a sort of prototype for
reduction, is a good example because it is finite dimen-

28This metric is also called either the trace form or the Killing
form. A semisimple Lie algebra is one for which gij has no zero
eigenvalues; hence gij has an inverse, which we denote by gij

(see, for example, Jacobson, 1962).
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sional and the computations are relatively easy. A free
rigid body is a rigid body that is subject to no external
forces, and thus a frame of reference can be assumed in
which the center of mass is fixed. It takes three numbers
to specify the state of the body: if a mark is placed on
(or in) the body as a reference point, then two angles
specify the orientation of the line from the center of
mass to the mark, while another angle is needed to
specify the orientation relative to the line; i.e., the loca-
tion of another mark (not along the line) is determined
by a rotation about the line. Thus the dimension of the
configuration space Q, for the free rigid body, is three. A
traditional set of coordinates is provided by the Euler
angles29 x5(x1 ,x2 ,x3), which are defined by Fig. 15.

Clearly, the rotation matrix O(x) that takes the
primed into the unprimed axes is the product of three
rotations through the three Euler angles.

By imagining infinitesimal rotations dx , or by consult-
ing a mechanics book, you can obtain the following for-
mulas relating the angular velocities, relative to a set of
rectangular coordinates fixed in the body, to the time
rate of change of the Euler angles:

v15ẋ1cosx31ẋ2sinx1sinx3 ,

v252ẋ1sinx31ẋ2sinx1cosx3 ,

v35ẋ31ẋ2cosx1 . (305)

This formula can be derived from the rotation matrix:
v i5

1
2 e ijkOlkȮlj5

1
2 e ijkOlkȮlj ,mẋm5 :Dimẋm . The body

axes are convenient since in these axes the moment-of-
inertia tensor is constant in time and one can choose
them so that the moment-of-inertia tensor is diagonal,
the so-called principal axes. In these coordinates the La-
grangian is deceptively simple,

L~x ,ẋ !5 1
2 ~I1v1

21I2v2
21I3v3

2!, (306)

it being merely the kinetic energy since there are no
external forces. Note, however, that upon insertion of

29Since the structure constants for the rotation group are
purely antisymmetric, it is customary to use all lowered indi-
ces. We follow this custom in this subsection.

FIG. 15. The Euler angles, x1, x2, and x3 that are used to
describe the rigid body.
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Eq. (305) the Lagrangian becomes a complicated func-
tion of x and ẋ . I will leave it as an exercise for you to
calculate the equations of motion.

Since the Lagrangian is convex in ẋ we can effect the
Legendre transformation. The canonical momenta are
given by

pi5
]L

]ẋ i

5
]L

]v j

]v j

]ẋ i

5l j

]v j

]ẋ i

, (307)

i.e.,

pi5Lij
21~x!l j , (308)

where

~L21!5S cosx3 2sinx3 0

sinx1sinx3 sinx1cosx3 cosx1

0 0 1
D , (309)

and the angular momenta l i :5Iiv i (not summed).
Comparing Eq. (305) with Eq. (308) reveals that
DT5L21 with T indicating transpose.

The inverse of Eq. (308) is given by

l j5Lji~x!pi , (310)

where

~L !5
1

sinx1
S sinx1 cosx3 sinx3 2sinx3 cosx1

2sinx1 sinx3 cosx3 2cosx3 cosx1

0 0 sinx1

D .

(311)

Observe that Eq. (310) is of the form of the standard
reduction formula (289).

Upon Legendre transformation, the Hamiltonian is
obtained:

H~p ,x!5piẋ i2L5 1
2 l kvk5 1

2 (
k

l k
2

Ik

5 1
2 (

k

1
Ik

LkiLkjpipj , (312)

which obviously possesses the necessary symmetry of
Eq. (288).

It remains to show explicitly that the variables l i al-
low a reduction. To see this consider @ l i ,l j# , which
upon insertion of Eq. (310) becomes

@ l i ,l j#5Lrs
21l sS ]Lir

]xk
Ljk2

]Ljr

]xk
LikD , (313)

as expected from the results of the previous subsection.
Since the right-hand side of Eq. (313) is difficult to
evaluate, we make use of

]Lir

]xk
Lrs

2152Lir

]Lrs
21

]xk
, (314)

which follows upon differentiating

LirLrs
215d is , (315)

to obtain
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@ l i ,l j#5S l s

]Lrs
21

]xk
D ~LjrLik2LirLjk!. (316)

The matrix in the first parentheses is not too difficult to
calculate. The evaluation of the second parentheses
amounts to the determination of three matrices; since
@ l i ,l j# is antisymmetric only @ l 1 ,l 2# , @ l 1 ,l 3# , and
@ l 2 ,l 3# must be obtained. Multiplying out the matrices
of the two parentheses (three times) yields the following
compact result:

@ l i ,l j#52e ijkl k . (317)

This result is to be expected: since Eq. (310) is of the
form of Eq. (289), Eq. (317) should be of the form of
Eq. (293).

This example demonstrates that reduction allows us to
solve for the motion of the rigid body in two stages.
First, Euler’s equations can be solved to obtain the l ’s,
which do not contain information about the configura-
tion of the rigid body. Second, the known l ’s can be
inserted into the left-hand side of Eq. (305) to yield
three more equations to be solved for the Euler angles.

4. Reduction for the ideal fluid: Lagrangian
to Eulerian variables

Now consider reduction for the ideal fluid, which
amounts to the transformation from Lagrangian to Eu-
lerian variables (Littlejohn, 1981; Morrison, 1981a;
Marsden et al., 1983). In the Lagrangian variable de-
scription of Sec. III we showed that the Hamiltonian

H@p ,q#5E
D
F p2

2r0
1r0U~s0 ,r0 /J!Gd3a , (318)

together with the canonical Poisson bracket

@F ,G#5E
D
FdF

dq
•

dG

dp
2

dG

dq
•

dF

dp Gd3a , (319)

produces the ideal fluid equations of motion. We first
forget about the Hamiltonian and concentrate on what
happens to the Poisson bracket when we change from
(q ,p), the Lagrangian canonically conjugate pair of
variables, to (r ,s ,M), the Eulerian noncanonical vari-
ables.

Recall from Sec. III that

r~r ,t !5E
D

r0~a !d„r2q~a ,t !…d3a ,

s~r ,t !5E
D

s0~a !d„r2q~a ,t !…d3a ,

M~r ,t !5E
D

p~a ,t !d„r2q~a ,t !…d3a . (320)

Clearly, from the above three relations we can calculate
(r ,s ,M) for a given displacement field q and a given
momentum field p . The chain rule thus goes the way
that is needed in order to calculate variations of

F@q ,p#5F̄@r ,s ,M# . (321)
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In Eq. (321) we are supposing that F obtains its q and p

dependence through some functional F̄ of (r ,s ,M). The
functionals F and F̄ are defined on different functions,
which are themselves defined on different (spacelike)
domains, a and r , respectively.

Consider the variation of F ,

dF5E
D
FdF

dq
•dq1

dF

dp
•dp Gd3a

5E
D
FdF̄

dr
dr1

dF̄

ds
ds1

dF̄

dM
•dMGd3r . (322)

Note that the two domains of integration coincide, al-
though the variables of integration have different
names. Now we represent the functional derivatives with
respect to the Lagrangian fields in terms of functional
derivatives with respect to the Eulerian fields. This will
allow us to express the bracket entirely in terms of the
Eulerian fields. The variations of the Eulerian fields in-
duced by a variation of the Lagrangian fields are

dr52E
D

r0~a !¹d~r2q !•dq d3a ,

ds52E
D

s0~a !¹d~r2q !•dq d3a ,

dM5E
D

@dpd~r2q !2p¹d~r2q !•dq# d3a . (323)

Above (and below) the ¹ operator operates on the r
dependence. Inserting Eq. (323) into the second equa-
tion of (322), interchanging the order of integration, and
equating the coefficients of dq and dp implies

dF

dq
52E

D
Fr0

dF̄

dr
1s0

dF̄

ds
1p•

dF̄

dMG¹d~r2q !d3r

5E
D
Fr0¹

dF̄

dr
1s0¹

dF̄

ds
1p i¹

dF̄

dMi
Gd~r2q !d3r

(324)

and

dF

dp
5E

D

dF̄

dM
d~r2q !d3r5

dF̄

dM
U

r5q

5 :
dF̄

dM8
, (325)

where the second equality of Eq. (324) is obtained upon
integrating by parts and assuming that the boundary
terms vanish. In the second equality of Eq. (325) we
have added the prime to remind us that this quantity
depends only upon the integration variable a . Inserting
Eqs. (324) and (325), for both F and G , into Eq. (319)
yields
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$F̄ ,Ḡ%5E
D
E

D
d~r2q !H r0¹

dF̄

dr
•

dḠ

dM8

1s0¹
dF̄

ds
•

dḠ

dM8
1p i

]

]xj

dF̄

dMi

dḠ

dMj8

2r0¹
dḠ

dr
•

dF̄

dM8
2s0¹

dḠ

ds
•

dF̄

dM8

2p i

]

]xj

dḠ

dMi

dF̄

dMj8
J d3rd3a . (326)

After interchanging the order of integration, we can
carry out the integral over d3a :

$F ,G%52E
D
FMiS dF

dMj

]

]xj

dG

dMi
2

dG

dMj

]

]xj

dF

dMi
D

1rS dF

dM
•¹

dG

dr
2

dG

dM
•¹

dF

dr D
1sS dF

dM
•¹

dG

ds
2

dG

dM
•¹

dF

ds D Gd3r . (327)

Equation (327) is the noncanonical bracket that was
given in Sec. IV. It is a bracket expression written en-
tirely in terms of Eulerian field variables and in terms of
Eulerian functionals, that is, functionals that depend on
Eulerian fields integrated over the Eulerian spatial do-
main. Thus we have effected the bracket or kinematic
part of the reduction.

To complete the reduction we must write the Hamil-
tonian in terms of r, s, and M . Reduction is not possible
unless there exists an Eulerian Hamiltonian H̄ that sat-
isfies

H@q ,p#5H̄@r ,s ,M# , (328)

upon substitution of Eqs. (320). In general, functionals
of the Lagrangian variables cannot be written entirely in
terms of the Eulerian variables as in Eq. (328); however,
for the ideal fluid the Hamiltonian functional that does
the trick is of course

H̄@r ,s ,M#5E
D
FM2

2r
1rU~r ,s/r!Gd3r . (329)

Clearly Eq. (329) becomes equal to Eq. (318) upon sub-
stitution of Eqs. (320). Therefore we have completed the
second step needed for reduction.

In summary, by reduction we have obtained a Hamil-
tonian description of the ideal fluid entirely in terms of
the noncanonical Eulerian variables (r ,s ,M): the non-
canonical Poisson bracket of Eq. (327) together with the
Hamiltonian of Eq. (329) produces the fluid equations of
motion in the Eulerian variables.

C. Clebsch variables

In this section we consider Clebsch variables. These
are canonical variables that reduce to noncanonical vari-
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ables where, as mentioned above, the noncanonical vari-
ables are bilinear in the momenta and configuration
space coordinates. We shall use the term Clebsch to de-
scribe all such bilinear transformations for which there is
a reduction. However, particular forms are of special
interest. Below we consider finite systems, infinite sys-
tems, the semidirect product, and several examples of
each, notably the Clebsch representation for the ideal
fluid, whence the name Clebsch originates (Clebsch,
1857, 1859; see also Lamb, 1945, art. 167).

1. Clebsch variables for finite systems

It is well known that the three components of the an-
gular momentum, q3p , form a canonical realization; if
one restricts phase-space functions to be functions of
only these three variables, then the canonical Poisson
bracket of two such functions produces another such
function. This is just the closure condition discussed in
the previous section. The resulting noncanonical Poisson
bracket in this case, like that for the free rigid body, is
that corresponding to SO(3).

We shall present the Clebsch reduction from an his-
torical, if not logical, point of view. Suppose we have a
noncanonical Lie-Poisson bracket of the form

@f ,g#5wkcij
k ]f

]wi

]g

]wj
, (330)

where cij
k are the structure constants for an arbitrary Lie

algebra. We know from the previous section that a ca-
nonical Poisson bracket, with a transformation of the
form of Eq. (289), reduces to this form. Now we turn
things around and ask the question, can we inflate Eq.
(330) and obtain other canonical descriptions? Here we
have used the word inflation, since we are not talking
about the canonical description of Sec. IV on the sym-
plectic leaves, which would be a further ‘‘reduction.’’
This inflation is in essence what Clebsch did for the ideal
fluid: he found a set of variables that uniquely deter-
mines the usual physical fluid variables, but the inverse
of his transformation does not exist. For this reason we
say there are ‘‘gauge’’ conditions analogous to those for
the vector potential in electromagnetism.

The following transformation, which is motivated by
the angular momentum reduction described above, is a
finite-dimensional generalization of Clebsch’s transfor-
mation:

wi5cij
k pkqj, (331)

where all indices are summed on 1,2, . . . ,N . The quanti-
ties wi could be thought of as components of a general-
ized angular momentum. Given a canonical description
in terms of the qi and pi ,

$f ,g%5
]f

]qi

]g

]pi
2

]f

]pi

]g

]qi
, (332)

the bracket in terms of w is obtained by a reduction.
This can be seen upon substituting
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]f

]pi
5

]f

]wj
cjk

i qk,

]f

]qi
5

]f

]wj
cji

k pk (333)

into Eq. (332)

]f

]qi

]g

]pi
2

]f

]pi

]g

]qi
5prq

t~cjt
k cik

r 2cit
k cjk

r !
]f

]wi

]g

]wj

5wkcij
k ]f

]wi

]g

]wj
, (334)

where the last equality follows upon making use of the
Jacobi identity for the structure constants, Eq. (244).

Given any noncanonical Lie-Poisson system in terms
of w , one can obtain an inflated canonical system of
equations in terms of the Clebsch q and p ; if these equa-
tions are solved for q(t) and p(t), then the w con-
structed according to Eq. (331) solves the noncanonical
system.

2. Clebsch variables for infinite systems

Here we shall be a bit formal and define things in
somewhat general terms. To begin with, we shall denote
by ^ , & a pairing between a vector space and its dual.
We shall, for now, leave the particular form of this un-
specified, but we have in the back of our mind an inte-
gration like that in Eq. (156). The second slot of ^ , & can
be thought of as an infinite-dimensional analog of the
finite-dimensional ‘‘up’’ indices, while the first slot is the
analog of the ‘‘down’’ indices. We shall refer to elements
of the second slot as belonging to a Lie algebra g and
those of the first slot, its dual, as belonging to g* . Thus
^ , & :g* 3g→ R. In general the pairing is not symmetric.

In terms of the pairing, noncanonical Lie-Poisson
brackets have the compact form

$F ,G%5^x ,@Fx ,Gx#&, (335)

where @ , # is a Lie algebra product, which takes g3g

→ g, and we have introduced the shorthand

Fx :5
dF

dx
, Gx :5

dG

dx
; (336)

Fx and Gx are, of course, in g. We refer to $ , % as the
‘‘outer’’ bracket and @ , # as the ‘‘inner’’ bracket.

Now we define the binary operator @ , #† as follows:

^x ,@f ,g#&5 :^@x ,g#†,f&, (337)

where evidently xPg* , g ,fPg, and @ , #†:g* 3g→g* .
The operator @ , #† is necessary for obtaining the equa-
tions of motion from a Lie-Poisson bracket. The bilinear
Clebsch transformation analogous to Eq. (331) is given
by

x5@P ,Q#†. (338)

In order to effect the reduction, let us consider a
variation of Eq. (338),
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dx5@dP ,Q#†1@P ,dQ#†, (339)

which is used to relate functional derivatives as

dF5^dx ,Fx&5^@dP ,Q#†,Fx&1^@P ,dQ#†,Fx&.
(340)

Manipulation of the second equality of Eq. (340) yields

dF5^dP ,@Fx ,Q#&1^P ,@Fx ,dQ#&

5^dP ,@Fx ,Q#&2^P ,@dQ ,Fx#&

5^dP ,@Fx ,Q#&2^@P ,Fx#†,dQ&, (341)

where the antisymmetry of @ , # and the definition of
@ , #† have been used. Upon comparing

dF5^dP ,FP&1^FQ ,dQ&,

which is just the variation of any functional F@Q ,P# ,
with the last equality of Eq. (341), we obtain

FP5@Fx ,Q# , FQ52@P ,Fx#†. (342)

The canonical bracket in terms of Q and P can be
written as

$F ,G%5^FQ ,GP&2^GQ ,FP&. (343)

Inserting Eq. (342) into Eq. (343) produces

$F ,G%52^@P ,Fx#†,@Gx ,Q#&1^@P ,Gx#†,@Fx ,Q#&

52^P ,†@Gx ,Q# ,Fx‡1†@Q ,Fx# ,Gx‡&

5^P ,†@Fx ,Gx# ,Q‡&5^@P ,Q#†,@Fx ,Gx#&

5^x ,@Fx ,Gx#&, (344)

where use has been made of the Jacobi identity of @ , # .
Thus we have a quite general abstract construction for

inflating Lie-Poisson brackets into canonical Poisson
brackets. Let us consider some examples.

3. Fluid examples

Two examples from fluid mechanics are given: the first
is the two-dimensional Euler equation, while the second
is related to the three-dimensional ideal fluid.

a. Two-dimensional Euler equation

As observed above, the structure constants for the
free-rigid-body noncanonical bracket are e ijk , which is
completely antisymmetric. The structure operator for
the 2D Euler noncanonical bracket, which was given in
Sec. IV, shares this property; this is clear from the fgh
identity of Eq. (198), from which we also observe that

@f ,g#†52@f ,g# . (345)

Here no distinction is made between the vector space
and its dual. (We are only working at a formal math-
ematical level.) For this case the inner bracket is

@f ,g#5
]f

]x

]g

]y
2

]f

]y

]g

]x
, (346)

and the pairing is
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^,&5E
D

d2r . (347)

The Clebsch variables Q(r ,t) and P(r ,t) are related to
the scalar vorticity via

v~r ,t !5@Q ,P# , (348)

which is the analog of the finite-dimensional formula of
Eq. (331).

The reduction from the canonical variables defined by
Eq. (348) to the 2D Euler bracket parallels exactly the
calculation of the previous subsection. There are two
ways to obtain the equations of motion for Q(r ,t) and
P(r ,t). One way is to insert Eq. (348) into the Hamil-
tonian H@v# of Eq. (194) and then calculate

]Q

]t
5

dH

dP
,

]P

]t
52

dH

dQ
. (349)

The other way is to insert Eq. (348) directly into the two
sides of the equation of motion for v , viz.,

]v

]t
52@c ,v# , (350)

[cf. Eq. (192)] and then manipulate as follows:

]v

]t
5F]Q

]t
,PG1FQ ,

]P

]t G2@c ,v#52†c ,@Q ,P#‡

5†Q ,@P ,c#‡1†P ,@c ,Q#‡, (351)

where the Jacobi identity was used to obtain the last
equality. From Eqs. (351) and (350) we obtain

F]P

]t
1@c ,P# ,Q G1FP ,

]Q

]t
1@c ,Q#G50, (352)

which is satisfied if

]P

]t
52@c ,P#1

]Y

]Q
,

]Q

]t
52@c ,Q#2

]Y

]P
, (353)

for arbitrary functions Y(Q ,P).30 Solutions of Eq. (353)
for any Y can be used to construct solutions of Euler’s
equation (350). Given an initial vorticity v(r ,0), one
need only find an initial Q and P such that
v(r ,0)5@Q(r ,0),P(r ,0)# . If Q(r ,t) and P(r ,t) are so-
lutions to Eq. (353), with the initial conditions Q(r ,0)
and P(r ,0), then v(r ,t)5@Q(r ,t),P(r ,t)# constructed
from these solutions is a solution of Eq. (350).

b. Three-dimensional fluid

Now consider the following bracket, which is a por-
tion of the noncanonical bracket for the ideal fluid [cf.
Eq. (209)]:

30The terms involving Y can be eliminated by a time-
dependent gauge transformation, where by gauge transforma-
tion we mean a transformation Q5Q(Q̄ ,P̄ ,t) and
P5P(Q̄ ,P̄ ,t) that does not change v as given by v5@Q ,P# .
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$F ,G%5E
D

MiS dF

dMj

]

]xj

dG

dMi
2

dG

dMj

]

]xj

dF

dMi
D d3r

5 :^M ,@FM ,GM#&. (354)

It is obvious that this bracket will satisfy the Jacobi iden-
tity if Eq. (209) does. The inner bracket in this case is
given by

@f ,g# i5f j
]gi

]xj
2gj

]f i

]xj
, (355)

where, evidently, f and g now have three components.
Integration by parts and neglect of surface terms yields

@x ,g# i
†5x j

]gj

]xi
1

]~x ig
j!

]xj
, (356)

whence the Clebsch variables are seen to be related to
M by

Mi5P j

]Qj

]xi
1

]~P iQ
j!

]xj
. (357)

In reality the decomposition above is not quite that due
to Clebsch, whose transformation did not have the sec-
ond term of Eq. (357).31 It is an interesting fact the re-
duction occurs for other transformations besides Eq.
(357). It works if the last term of Eq. (357) is dropped,
Clebsch’s original decomposition, and it works if the last
term of Eq. (357) has the opposite sign. Also, some ve-
locity fields do not need three Q’s and P’s to be repre-
sented, i.e., it may only be necessary for the index i to
take on one or two values. We shall expand a little on
this below in the last subsection of this lecture.

4. Semidirect product reductions

The semidirect product is an example of an extension,
a group-theoretic notion for making bigger groups out
of a given group. We shall not discuss this in detail here,
so the interested reader is referred to the references (Su-
darshan and Mukunda, 1974; Holm and Kupershmidt,
1983; Marsden and Morrison, 1984). However, this no-
tion makes its way from Lie groups to Lie algebras, and
thus to Lie-Poisson brackets. We shall briefly discuss
Lie-Poisson brackets that have inner algebras that are
extensions.

Suppose the functional F in Eq. (340) has, in addition
to its x dependence, dependence on P , i.e.,
F̄@x ,P#5F@Q ,P# . (We have included the overbar now,
as in Sec. III, to avoid confusion.) Invoking the chain
rule with this additional dependence yields

FP5@ F̄x ,Q#1F̄P , FQ52@P ,F̄x#†, (358)

31We note, however, that a transformation of the form of Eq.
(357) is closely related to the Clebsch decomposition intro-
duced for magnetohydrodynamics (MHD) (Zakharov and
Kuznetsov, 1971; Morrison and Greene, 1980(E); Morrison,
1982).
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which upon substitution into Eq. (343) produces instead
of Eq. (344) the following:

$F̄ ,Ḡ%5^x ,@ F̄x ,Ḡx#&1^@P ,Ḡx#†,F̄P&2^@P ,F̄x#†,ḠP&

5^x ,@ F̄x ,Ḡx#&1^P ,@ F̄P ,Ḡx#2@ḠP ,F̄x#&, (359)

where the second equality follows from manipulations
similar to those performed above.

Many systems possess brackets of the form of Eq.
(359). The rigid body in a gravitational field is an ex-
ample of finite dimension. An example of infinite dimen-
sion, which was given in the context of reduced magne-
tohydrodynamics (RMHD) (Morrison and Hazeltine,
1984; Zeitlin, 1992), but which also occurs in fluid me-
chanics, is the semidirect product extension of the non-
canonical bracket for the 2D Euler fluid. For this ex-
ample the bracket of Eq. (359) has an inner bracket
given by Eq. (346) and a pairing, ^,&, given by Eq. (347).

5. Other Clebsch reductions: The ideal fluid

In this subsection we present some other forms of
Clebsch reductions. The first is another way to reduce to
the RMHD bracket mentioned above. This emphasizes
the fact that reductions are not unique. Following this
we show another way to reduce to a portion of the ideal-
fluid bracket, also treated above. Finally we reduce to
the complete ideal-fluid noncanonical bracket.

Suppose we have a system with canonical variables
@Qi(r ,t),P i(r ,t)# , in which i51,2 and r5(x ,y). The ca-
nonical Poisson bracket is then

$F ,G%5E
D

~FQ•GP2GQ•FP!d2r . (360)

The following transformation gives a reduction:

x5@Q1 ,P1#1@Q2 ,P2# ,

c5@P1 ,P2# , (361)

where @ , # is given by Eq. (346). We leave it as an ex-
ercise to show via the chain rule that with Eq. (361), Eq.
(360) reduces to a bracket of the form of Eq. (359).

Now consider the portion of the fluid bracket dis-
cussed above in Eq. (354), but instead of Eq. (357) we
let

M5P i¹Qi, (362)

where i51,2, . . . ,N and N is arbitrary. We also leave it as
an exercise to show via the chain rule that, with Eq.
(362), a canonical bracket in terms of @Qi(r ,t),P i(r ,t)# ,
where now r5(x ,y ,z), reduces to a bracket of the form
of Eq. (354).

Finally, suppose in addition to Eq. (362) that

r52P1 , s52P2 . (363)

We leave it as a last exercise to show via the chain rule
that with Eqs. (362) and (363), a canonical bracket in
terms of @Qi(r ,t),P i(r ,t)# reduces to the ideal 3D fluid
bracket of Eq. (209). One can choose N large enough to
describe the velocity field of interest. Any velocity field
can be represented with N53, since Eq. (362) is just a
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curvilinear coordinate decomposition. For nondivergent
or irrotational velocity fields, fewer terms are needed.

VI. STABILITY AND HAMILTONIAN SYSTEMS

This section concerns notions of stability in Hamil-
tonian systems. In Sec. VI.A canonical systems are con-
sidered. Here, basic definitions are reviewed, energy ar-
guments for stability are discussed, and the notion of a
negative-energy mode (NEM) is introduced. An example
is given of a gyroscopic system that illustrates properties
of NEMs, in which context simple Hamiltonian bifurca-
tion theory is reviewed. Finally in this subsection, these
ideas are applied to the ideal fluid in the Lagrangian
variable description. Section VI.B is concerned with sta-
bility in noncanonical Hamiltonian systems. The energy-
Casimir method32 is described and two examples are
given: a modification of the rigid body and the 2D Euler
equation. The examples exhibit a pathology related to
the rank-changing behavior of the cosymplectic form,
which is discussed. In Sec. VI.C the notion of dynamical
accessibility, which can be used to make statements
about stability, in spite of the rank-changing behavior, is
introduced. Finally, it is shown how Eulerian variations,
constrained by the condition of dynamical accessibility,
lead to the same expression for the potential energy,
d2W , as Lagrangian variations.

A. Stability and canonical Hamiltonian systems

Consider a dynamical system of the form

ż i5Vi~z !, i51,2, . . . ,M , (364)

where, as in Sec. IV, we shall not get into what is re-
quired of V(z) for existence and uniqueness of solu-
tions, but just assume everything is all right. An equilib-
rium point ze is a type of solution of Eq. (364) that
satisfies V(ze)50. Stability concerns the behavior of so-
lutions near such equilibrium points. Roughly speaking,
ze is stable if solutions starting ‘‘close’’ to ze at t50
remain close to ze for all later times. This idea is formal-
ized as follows:

The equilibrium point ze is said to be stable if, for any
neighborhood N of ze there exists a subneighborhood
S,N of ze such that if z(t50)PS then z(t)PN for all
time t.0 .

At first one might wonder why such a fancy definition
is needed. Why introduce the subneighborhood? Why
not just say that, if it starts in a set and stays in the set,
then it is stable? The answer to this is illustrated in Fig.
16, which is the phase portrait for the simple harmonic
oscillator.

In this figure the circles are surfaces of constant en-
ergy. Here we have chosen as a neighborhood N the

32See, for example, Holm et al. (1985), Morrison and Eliezer
(1986), McIntyre and Shepherd (1987), Morrison and
Kotschenreuther (1990), and Shepherd (1992).
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rectangular region in which we have marked an initial
condition by the symbol 3 . Since trajectories move
round and round on the circles of constant H , it is clear
that in a short time the trajectory starting at 3 will leave
N , in spite of the fact that the equilibrium point at the
origin is stable. However, if we choose initial conditions
inside the subneighborhood S , which is defined as the
region bounded by an H5 const surface contained in N ,
then the trajectory will remain in N for all time. Thus
H5 const surfaces serve as a handy means of defining
subneighborhoods.

Observe that the neighborhood N can be chosen to be
any neighborhood N of ze . We can make N smaller and
smaller and in this way probe the stability property of
the point ze . In the example above we can always find
tiny circular energy surfaces inside any N , no matter
how small.

When z(t) is determined from the linearized dynam-
ics,

d ż i5
]Vi

]zj
~ze!dzj, (365)

where now z(t)'ze1dz , and this dynamics is stable ac-
cording to the above definition, we say that Eq. (365) or
ze is linearly stable.

One might think, since N can be made as small as we
like, that stability and linear stability are equivalent; but
this is not the case, as we shall see below. To distinguish,
we sometimes call stability under the full nonlinear dy-
namics, V(z), nonlinear stability. Equilibria that are un-
stable under nonlinear dynamics, yet stable under linear
dynamics, are said to be nonlinearly unstable. This is
different from finite-amplitude instability, in which the
equilibrium point is nonlinearly stable until it is pushed
hard enough. In a sense (almost) all physical systems are
finite-amplitude unstable; for example, any laboratory
experiment is unstable to a perturbation caused by a
large enough earthquake.

One last definition is that of spectral stability. A linear
system such as Eq. (365) has this type of stability if,
upon substituting dz5d ẑeivt and solving the resulting
linear algebra problem for v :5vR1ig , there exist no
solutions with g,0. Clearly, linear stability implies spec-
tral stability, but beware, the converse is not true.

A nice thing about Hamiltonian systems is that they

FIG. 16. Depiction of neighborhoods used in the definition of
stability.
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have a built-in method for proving nonlinear stability.
When the Hamiltonian has a separable form,
H5p2/21V(q), an old theorem due to Lagrange states
that an equilibrium point with pe50 and qe being a local
minimum of V is stable. It is tempting to think that the
converse should be true, but a counterexample from the
book of Wintner (1947) shows this not to be the case.
Consider

V~q !5H e21/q2
cos~1/q ! qÞ0,

0 q50.
(366)

The equilibrium position qe50 is stable, but due to the
wild oscillation that occurs as q → 0, the origin is not a
local minimum. However, with some relatively mild re-
strictions on V , Lagrange’s theorem is both necessary
and sufficient for stability for Hamiltonians of this re-
stricted form. Sufficiency follows since surfaces of con-
stant H serve to define subneighborhoods, as in the ex-
ample of the simple harmonic oscillator above.
Necessity is more difficult to see, but rests upon the idea
that there exists a direction in which the trajectory can
fall down to a state of lower potential energy.

For ‘‘well-behaved’’ V(q), stability can be determined
by analyzing the potential-energy matrix,
]2V(qe)/]qi]qj. If all the eigenvalues of this matrix are
greater than zero, then H defines good subneighbor-
hoods (topological 2N –1 dimensional spheres) and the
equilibrium is stable—in fact nonlinearly stable. If there
exists a negative eigenvalue the system is unstable.

One might be fooled into thinking that nonlinear sta-
bility implies linear stability; however, with a little
thought one can see that this is not true. The one-
degree-of-freedom system with potential

V~q !5
q4

4
(367)

has an equilibrium point qe50, and it is clear that this is
nonlinearly stable since H defines good subneighbor-
hoods. However, the linear dynamics is governed by

dṗ50, dq̇5dp (368)

and thus

dp5dp0 , dq5dq01dp0t . (369)

Obviously, trajectories leave any neighborhood of the
equilibrium point provided dpÞ0. This example also re-
veals why spectral stability does not imply linear stabil-
ity. Adding another degree of freedom (q8,p8) and de-
fining the potential V(q ,q8)5q4/41q82/2 produces a
linearly unstable, yet spectrally stable, system.

In the 1950s, project Matterhorn was begun at Prince-
ton for the purpose of investigating controlled fusion
reactions as a source of energy. The idea was (and still
is) to confine hot plasmas by means of magnetic fields.
Since the dominant force balance is governed by MHD,
a great many stability analyses using this model were
undertaken in a variety of confinement configurations
invoking different magnetic-field geometries. What is in
essence the infinite-degree-of-freedom version of
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
Lagrange’s theorem was worked out for MHD.33 This
goes by the name of the energy principle or ‘‘dW’’
(which is in fact the second variation of the potential
energy). Extremization techniques applied to this quan-
tity were used to determine stability and instability, and
such procedures were automated in PEST, the Princeton
Equilibrium and Stability Code, and elsewhere. Early
MHD calculations were successful in explaining and
eliminating the fastest plasma instabilities.

Often (as we shall see) Hamiltonian systems are not
of the separable form H(q ,p)5p2/21V(q), but are in-
stead general functions of q and p . When this is the case
another old theorem, which is sometimes called Di-
richlet’s theorem, gives a sufficient condition for stability
(Dirichlet, 1846). It should be no surprise to you now
that if, in the vicinity of an equilibrium point, surfaces of
H5const define a family of good neighborhoods, then
the equilibrium is nonlinearly stable. For well-behaved
Hamiltonians one need only analyze the matrix
]2H(ze)/]zi]zj, where z :5(q ,p). If this matrix is defi-
nite, i.e., it has no zero eigenvalues and all of its eigen-
values have the same sign, then we have stability. Ob-
serve that H could in fact be an energy maximum. This
can occur for rigid-body dynamics and is typically the
case for a localized vortex in fluid mechanics.

There is an important example due to Cherry (1925)
that illustrates two things: that Dirichlet’s theorem is not
necessary and sufficient and that linear stability does not
imply nonlinear stability. Cherry’s Hamiltonian is

H5 1
2 v2~p2

21q2
2!2 1

2 v1~p1
21q1

2!1 1
2 a@2q1p1p2

2q2~q1
22p1

2!# , (370)

where v1,2.0 and a are constants. If a is set to zero,
Cherry’s system reduces to a linear system of two stable
simple harmonic oscillators. However, because of the
minus sign, ]2H/]zi]zj is not definite. Observe that this
minus sign cannot be removed by a time-independent
canonical transformation and in the typical case cannot
be removed by any canonical transformation. Oscillator
1 of this system is a negative-energy mode (NEM).

Negative-energy modes are important because, when
dissipation is added, they tend to become linearly un-
stable: If energy is removed from an NEM its amplitude
increases.34 Also, with the inclusion of nonlinearity
NEM’s can be driven unstable. The example of Cherry
demonstrates this; assuming aÞ0 and v252v1, we find
that Eq. (370) possesses a solution35 of the form

33There is an enormous literature on this subject. Early im-
portant papers are those of Hain et al. (1957), Bernstein et al.
(1958), and Laval et al. (1965).

34This is a fairly old idea that is sometimes called the Kelvin-
Tait theorem. See Thompson and Tait (1921), part 1, p. 388.
An early application appears in Poincaré (1885).

35See Whittaker (1937), Sec. 136, p. 101. Be warned, for there
are typographical errors.
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q15
A2

e2at
sin~v1t1g!,

p152
A2

e2at
cos~v1t1g!

q252
1

e2at
sin~2v1t12g!,

p252
1

e2at
cos~2v1t12g!. (371)

This is a two-parameter (a ,g) subfamily of the general
four-parameter solution set of Cherry’s system. These
solutions are of interest since they can diverge in finite
time. In fact, in any neighborhood of the equilibrium
point q15q25p15p250 there exist initial conditions
for solutions that diverge in finite time. Such behavior is
referred to as explosive growth and is characteristic of
systems that possess both NEMs and resonance. An-
other example is the well-known ‘‘three-wave’’
problem.36 The three-wave problem and Cherry’s ‘‘two-
wave’’ problem are examples of systems with order
three resonances that are driven unstable by cubic terms
in the Hamiltonian. These are in fact normal forms that
are obtained upon averaging a general class of
Hamiltonians.37 Thus explosive behavior is to be ex-
pected in systems with both positive- and negative-
energy modes that are in resonance. When the reso-
nance is detuned these systems generally are finite
amplitude unstable and systems with three or more de-
grees of freedom may in fact be unstable, although with
very small growth (Kueny, 1993).

1. Gyroscopic systems

One might think that systems with NEMs are artifacts
or unphysical, purely mathematical, oddities; this, how-
ever, is not the case. They occur in fluid and plasma
systems38 for a reason that will become clear below.
Generally, they occur in mechanical systems with gyro-
scopic forces, like the Coriolis force, and they occur in
the dynamics of particles in magnetic fields. An example
that exhibits both of these is described by a Lagrangian
of the form

L5 1
2 m~ ẋ21 ẏ2!1G~ ẏx2 ẋy !1 1

2 k~x21y2!, (372)

36See, for example, Weiland and Wilhelmsson (1977), Kueny
(1993), and Kueny and Morrison (1995a; 1995b), and many
references cited therein. Also, see Pfirsch (1993).

37The classification of normal forms for linear systems was
accomplished by Williamson (1936). For nonlinear systems see
Birkhoff (1927).

38In the context of fluids see Lamb (1945) Chaps. VIII and
XII, Cairns (1979), MacKay and Saffman (1986), Ripa (1993);
for MHD see Greene and Coppi (1965); for Vlasov theory see
Morrison and Pfirsch (1989, 1990, 1992); and in general see
Morrison and Kotschenreuther (1990).
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where G is a constant that is either proportional to the
constant angular speed of a rotating coordinate system
or to a constant magnetic field. Note that for k.0 the
potential-energy term corresponds to a hill and thus
without the gyroscopic term the system would be un-
stable. Upon Legendre transforming and scaling, the fol-
lowing Hamiltonian is obtained:

H5 1
2 ~p1

21p2
2!1vG~q2p12q1p2!

1 1
2 ~vG

2 2vk
2 !~q1

21q2
2!, (373)

where the two time scales of the problem are deter-
mined by the frequencies

vG :5
G

m
, vk :5Ak

m
. (374)

Assuming q1,2 , p1,2;eivt, it is easy to solve for the
eigenvalues,

v56vk~A«216A«!, (375)

where « :5vG
2 /vk

2 . This system possesses the three types
of Hamiltonian spectra:

(1) v56vR stable,
(2) v56ig unstable,
(3) v56vR6ivI unstable.
In Hamiltonian systems eigenvalues occur in doublets

or quartets. Case (1) is the only stable case. It occurs in
the example when «5vG

2 /vk
2.1, which means the rota-

tion or magnetic field is large enough to make the sys-
tem stable in spite of the destabilizing potential energy.
In this case we have two stable doublets, a fast one and
a slow one. The slow one is an NEM. For «.1 there
exists a canonical transformation (q ,p)→(Q ,P) that
takes H into

H~Q ,P !52 1
2 vs~Ps

21Qs
2!1 1

2 v f~Pf
21Qf

2!, (376)

which is the linear part of Cherry’s Hamiltonian. The
canonical transformation is effected by the following
mixed-variable generating function:

F2~q1 ,q2 ,Pf ,Ps!5c~q1Ps1q2Pf!1PfPs1
1
2 c2q1q2 ,

(377)
where c :5@4(vG

2 2vk
2)#1/4.

Case (2) occurs if G is set to zero. There exist two
unstable doublets, corresponding to the two directions
for falling off the hill.

Case (3) occurs when «,1. This case of the quartet
obviously requires two degrees of freedom and is obvi-
ously unstable.

A nice feature of the above example is that it displays
the two kinds of bifurcations that are generic to Hamil-
tonian systems. The first occurs when a doublet makes a
transition between cases (1) and (2). There is a steady-
state bifurcation where the frequencies go through the
origin of the v plane as shown in Fig. 17.

Here the stable pair is indicated by 3 and the un-
stable pair by ^ . This bifurcation generally occurs in
systems where the Hamiltonian is separable, i.e.,
H5p2/21V(q), for which Lagrange’s theorem applies.
It occurs in one-degree-of-freedom systems where the
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potential goes from concave up to concave down. The
arrows of the figure correspond to this case. For the sys-
tem of Eq. (373) it occurs when G50 and vk

2 →2 vk
2 .

The other bifurcation, which is something called a
Kreı̆n crash, is illustrated in Fig. 18. The arrows indicate
the path followed by the eigenvalues of system (373) as
« is decreased from some value greater than unity. At
«51 the fast and slow modes coalesce at a value uvku
Þ0. Two possibilities exist: either the modes go through
each other and remain on the real axis or they can mi-
grate off the real axis as shown in the figure. Kreı̆n’s
theorem39 states that a necessary condition for this latter
case is that the signature of the colliding modes be dif-
ferent, i.e., one of them must be an NEM. The proof of
Kreı̆n’s theorem is not difficult; it relies on the fact that
definite Hamiltonians cannot have instabilities.

Kreı̆n’s theorem provides a means for detecting the
occurrence of NEMs. If you have performed an eigenan-
alysis in some nondissipative system, one that you be-
lieve is Hamiltonian, and you observe the bifurcation
described above, there must exist an NEM. This bifur-
cation is very common in fluid and plasma models.
Why?

2. Ideal-fluid perturbation energy

To answer this question we return to the Hamiltonian
formulation of the ideal fluid in terms of the Lagrangian
variables q and p that we discussed in Sec. III. Since we
have defined an equilibrium point of a dynamical system
to be a solution obtained by setting time derivatives to
zero, it is evident that the sets of Lagrangian and Eule-
rian equilibria are not equivalent. Although static Eule-
rian equilibria, i.e., ones for which v50 for all r , cer-
tainly correspond to Lagrangian equilibria with p50
and q5const, stationary Eulerian equilibria, i.e., ones
for which v5v(r), do not correspond to Lagrangian
equilibria, but to a particular kind of time-dependent
trajectory, which we denote by

39Clear expositions are given by Moser (1958, 1968), who re-
discovered the theorem. English translations of Kreı̆n’s origi-
nal papers are given in Kreı̆n and Jakubovič (1980).

FIG. 17. The eigenvalue plane showing a bifurcation through
the origin (zero frequency).
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qe5qe~a ,t !, pe5pe~a ,t !. (378)

The functions above are particular in that they have the
properties

r0~a !

J~a ,t ! U
a5qe

21~r ,t !

5re~r !, (379)

s0~a !ua5qe
21~r ,t !5se~r !, (380)

pe~a ,t !
r0

U
a5qe

21~r ,t !

5q̇e~a ,t !ua5qe
21~r ,t !5ve~r !, (381)

where we emphasize that, upon doing the substitutions
indicated on the left-hand sides of the above equations,
the resulting functions re , se , and ve are independent of
time.

Although (qe ,pe) does not constitute a Lagrangian
equilibrium state, it is a reference state about which we
can linearize. We set

q~a ,t !5qe~a ,t !1j~a ,t !,

p~a ,t !5pe~a ,t !1pj~a ,t ! (382)

and expand Eq. (120); however, the resulting equation
will have explicit time dependence due to that in
(qe ,pe). Even when the time dependence is periodic,
analysis of such linear equations is not trivial (recall
Mathieu’s equation).

We can get out of this bind of having to deal with
explicit time dependence by a trick (see, for example,
Frieman and Rotenberg, 1960, Newcomb, 1962, Van Ka-
mpen and Felderhof, 1967, and Pfirsch and Sudan,
1993). To see how this goes we turn to the action prin-
ciple of Eq. (104), insert

q~a ,t !5qe~a ,t !1j~1 !~a ,t !1j~2 !~a ,t !1••• ,

and expand as follows:

S@q#5S@qe#1dS@qe ;j~1 !#1dS@qe ;j~2 !#

1d2S@qe ;j~1 !#1••• . (383)

The first term of Eq. (383) is merely a number, while the
second term vanishes if the reference trajectory qe is
assumed to be a solution and if in addition j(1) is as-
sumed to satisfy the boundary condition j(1)

•n̂50,

FIG. 18. The eigenvalue plane showing a bifurcation between
eigenvalues of positive and negative signature.
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where n̂ is a unit vector normal to the boundary. The
third and fourth terms can be combined to give an ac-
tion principle for the linear dynamics relative to the ref-
erence state qe .

Newcomb (1962) observed a subtlety associated with
the derivation of this action principle. Usually action
principles are designed so that surface terms, obtained
from integration by parts, vanish upon variation. How-
ever, with the boundary condition j(1)

•n̂50 there are
surface terms that come from the fourth term of Eq.
(383) that do not vanish. To cure this malady it is nec-
essary to extract a piece from dS@qe ;j(2)# that is a per-
fect divergence, and hence a surface term, and then add
this to the third term. A ‘‘good’’ action principle is ob-
tained by letting j(2)5(1/2)(j(1)

•¹j(1))1 j̃ (2) and gath-
ering together all the terms that depend quadratically on
j(1).

We denote this action principle, which gives the linear
dynamics upon variation with respect to j, by s[j], where
for convenience we drop the superscript (1) on j.
Using40

d2S@qe ;j#5E
t0

t1
dtE

D
d3aH r0

2
j̇22@~] ij

i!~] jj
j!

1~] ij
j!~] jj

i!#
r0

2

2
Ur

J U
qe

2~] ij
i!~] jj

j!
r0

3

2
Urr

J 2 U
qe

J , (384)

where ] ij
j:5]j j/]qe

i , together with the surface term de-
scribed above gives

s@j#5E
t0

t1
dtE

D
J d3aFr2 j̇22~] ij

i!2re

]pe

]re

2~] ij
i!~j j] jpe!1~j i] ij

j!~] jpe!G , (385)

Note that Eq. (385) can be obtained from Eq. (384) by
integrating the term involving (] ij

j)(] jj
i) by parts and

blindly neglecting the surface term.

40The first term of Eq. (384) obviously comes from the kinetic
energy; the other terms come from expanding the potential
energy to second order:

d 2W@j#5E
D
Fr2Ur~J 1

2/J2J2!1
r3

2
Urr~J 1

2/J!Gd3a ,

where J1 and J2 are the first-and second-order pieces of the
Jacobian, respectively, obtained upon inserting q5qe1j and
expanding. They are given by

J15
1
2

ekjle
imn

]jk

]ai

]qe
j

]am

]qe
l

]an
5Ak

i ]jk

]ai
5J

]j i

]qe
i

and

J25
1
2

e jkle
imn

]qe
l

]an

]jk

]ai

]j j

]am5
J
2 S ]j i

]qe
i

]j j

]qe
j 2

]j j

]qe
i

]j i

]qe
j D .
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It is important to observe that in Eq. (384), or Eq.
(385), the terms involving Ur and Urr , or pe and re ,
possess the explicit time dependence arising from
qe(a ,t). The trick mentioned above is to view the per-
turbation of a trajectory in a frame of reference moving
with the reference trajectory. This can be done since
qe5qe(a ,t) is invertible. Thus we define

h~r ,t !:5j~a ,t !ua5qe
21~r ,t ! . (386)

The quantity h(r ,t) is a sort of Eulerian field for the
Lagrangian displacement variable. A time derivative of
Eq. (386) yields

j̇~a ,t !5
]h~r ,t !

]t
1

]h~r ,t !
]r

•q̇eU
a5qe

21~r ,t !

(387)

or in light of Eq. (381)

j̇~a ,t !5
]h~r ,t !

]t
1ve~r !•¹h~r ,t !. (388)

Note that we have used • for time derivatives at constant
a and ]/]t for time derivatives at constant r . Since in Eq.
(388) ve(r), the equilibrium velocity, is time indepen-
dent, no explicit time dependence is introduced by this
transformation.

It is interesting and revealing to compare Eq. (388)
with the transformation for time derivatives when going
into a rotating frame of reference,

]

]tU
fixed

5
]

]tU
rot

1V3 . (389)

Just as the second term of Eq. (389) gives rise to nonin-
ertial (or fictional) forces, notably the Coriolis force that
gives rise to the gyroscopic term in the Hamiltonian of
Eq. (373), the second term of Eq. (388) will give rise to
a noninertial type of force in the fluid Hamiltonian.
Transforming Eq. (385), using Eqs. (386) and (388),
yields

s@h#5 1
2 E

t0

t1
dtE

D
d3r@reuḣ1ve•¹hu22h•Ve•h# ,

(390)

where Ve is an operator, although one without explicit
time dependence because it is now a function of the
equilibrium quantities re and se . The second term of
Eq. (390), the potential energy, can be written as

d2W8@h# :5 1
2 E

D
d3r@h•Ve•h#

5 1
2 E

D
d3rF ~¹•h!2re

]pe

]re

1~¹•h!~h•¹pe!2~h•¹h!•¹pe) G ,

(391)

where pe(re ,se) is the equilibrium pressure expressed as
a function of the equilibrium density and entropy.

We can now obtain the (time-independent) Hamil-
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tonian by Legendre transformation. The canonical mo-
mentum is given by

ph5
dL

dḣ
5re~ ḣ1ve•¹h!, (392)

whence the Hamiltonian is seen to be

d2H@ph ,h#5
1
2ED

d3rFph
2

re
22ph•~ve•¹h!

1h•Ve•hG , (393)

which has the ‘‘noninertial’’ term 2phi ve
j ]h i/]xj that is

reminiscent of the gyroscopic term of Eq. (373).
Now, it should come as no surprise that ideal fluid

equilibria typically have negative-energy modes, and gen-
erally d2H is not positive definite as required for Di-
richlet’s theorem. In spite of the indefiniteness of d2H the
system can be spectrally stable; Lagrange’s theorem,
which is a necessary and sufficient condition for stability,
does not in general apply, since the Hamiltonian is not of
the separable form.

B. Stability and noncanonical Hamiltonian systems

In noncanonical Hamiltonian systems it is still the
case that equilibria occur at extremal points of the
Hamiltonian,

ż i5Jij
]H

]zj
5@zi,H#50, (394)

but the situation is more complicated. To see that some-
thing is amiss, consider the variation of the energy for a
barotropic fluid, where

H@r ,v#5E
D

@ 1
2 rv21rU~r!#d3r ; (395)

namely,

dH

dv
5rv ,

dH

dr
5

v2

2
1U~r!1rUr~r!. (396)

Setting the right-hand side of Eq. (396) to zero results in
the trivial equilibrium state with v50 and r5const.41 If
this were the only equilibrium state, fluid mechanics
would not be a very interesting discipline. Where are the
other equilibria? Why are they not extremal points of
the Hamiltonian? Since Dirichlet’s stability theorem
uses the fact that equilibria are extremal points of the
Hamiltonian, is there a noncanonical analog of this theo-
rem?

41The term equilibrium is used here to mean both static and
stationary equilibria.
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1. General formulation

To answer these questions, compare Eq. (394) with its
counterpart for the canonical case:

ż i5Jc
ij ]H

]zj
50. (397)

Since detJc51, it is evident that ż50 implies
]H/]zj50. Thus all equilibria are extremal points of the
Hamiltonian. However, in the noncanonical case this is
not so when detJ50. In the vicinity of points where the
rank of J does not change, the null space of J is spanned
by ]Ca/]zi, a51,2, . . . ,n , where n is the co-rank of J . In
this case the general solution to Eq. (397) is given by

]F

]zi U
ze

:5
]H

]ziU
ze

1la

]Ca

]zi U
ze

50. (398)

Here la are Lagrange multipliers, which are determined
by choosing the values of the constants of motion Ca.
Thus Eq. (398) gives those equilibria that lie on the sym-
plectic leaf with the chosen values. Later we shall see
how F :5H1laCa is related to the energy.

Not surprisingly, the linear dynamics obtained by set-
ting z5ze1dz and expanding to first order exhibit be-
havior arising from detJ50, namely, the existence of
zero-frequency modes (Morrison and Eliezer, 1986).
The equation for the linear dynamics is easily seen to be

d ż i5Ak
i ~ze!dzk, (399)

where

Ak
i ~ze!:5Jij~ze!

]2F~ze!

]zj]zk
5 :Je

ijF ,jk . (400)

Note, this linear dynamics has a Hamiltonian structure
with the Poisson bracket defined by Je (which is con-
stant) and the Hamiltonian given by

d2F :5 1
2 F ,jkdzjdzk. (401)

Upon assuming dz;eivt, we obtain an eigenvalue
problem with a characteristic equation given by

det~ ivI2A !50, (402)

where, evidently, zero frequency modes satisfy

detA50. (403)

In the canonical case, A is given by

Ack
i 5Jc

ijH ,jk (404)

and

det~Ack
i !5det~Jc

ij! det~H ,jk!5det~H ,jk!. (405)

Thus all the zero eigenvalues of Ac arise from
det(H ,jk)50. These zero eigenvalues correspond to (lo-
cal) troughs in the energy surface.

In the noncanonical case zero eigenvalues can arise
from two places, namely, det(Jij)50 and det(F ,ij)50.
An accounting of these zero eigenvalues is given by
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Rank~Ak
i !<min$ Rank~Jij!, Rank~F ,jk!%. (406)

Thus for every Casimir there exists a null eigenvector,
which we denote by dz0

k . To avoid complication sup-
pose that det(F ,jk)Þ0, i.e., that there are no troughs in
F ; then all the null eigenvectors come from degeneracy
in the bracket and they are given by

dz0
k5~F21! ,kj

]C~ze!

]zj
, (407)

where (F21),kjF ,jl5d l
k . Evidently, with dz0 given by

Eq. (407),

Ak
j dz0

k5JijF ,jk~F21! ,kl
]C

]zl
5Jij

]C

]zj
50. (408)

In spite of the existence of null eigenvalues, a version
of Dirichlet’s theorem goes through in the noncanonical
case. Since F is a constant of motion, it potentially could
be used to define the subneighborhoods in the definition

of stability given above. When d2F5 1
2 F ,jkdzjdzk5

const defines compact surfaces (as depicted in Fig. 19) in
the vicinity of ze , then ze is a stable equilibrium point.
This will be the case if F ,jk(ze) is definite.

It is of interest to note that this prescription for sta-
bility places no restrictions on dz , even though dynami-
cally dz is confined to surfaces of constant Ca (as de-
picted in Fig. 19). We shall see in the next subsection
that sometimes it is useful to take advantage of this in-
formation.

Although the picture described above for the equilib-
rium and stability of noncanonical Hamiltonian systems
may seem nice and tidy, there is a complication that
occurs at places where the rank of J changes. Generally,
this happens at isolated points, but it can happen on
curves or surfaces. When the rank changes it is no longer
true that setting ż i50 and solving for ze is equivalent to
solving Eq. (398) for all choices of la . If the rank were
to change and become smaller on an open set, but re-
main constant there, then there would be no problem in
obtaining new Casimirs whose gradients span the null
space of J on the open set. However, when the rank
changes at (for example) a point, new null eigenvectors
of J appear, eigenvectors that cannot be written as gra-
dients in the normal way.

FIG. 19. Depiction of phase space, showing energy and Ca-
simir surfaces, in the vicinity of an equilibrium point.
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2. Examples

Now consider some examples that display how Di-
richlet’s theorem works for noncanonical systems, and
the effect of the rank-changing pathology. We consider
here two examples: a modification of the rigid body and
the 2D Euler equation. We note, however, that ex-
amples that demonstrate the character of stability in
noncanonical systems are not difficult to find: as is clear
from Sec. IV, essentially all systems that describe fluids
and plasmas in terms of Eulerian variables possess a de-
scription in this form, and the features present in the
examples given here are typical.

a. Rigid body

We take up the free rigid body of Sec. IV, but with a
Hamiltonian that has the following modified form (Kan-
drup and Morrison, 1993):

H5(
i51

3 S l i
2

2Ii
1Bil iD , (409)

where we have added the second term that is linear in
l i . The quantities Bi are assumed to be constant and
nonzero for i51,2,3. This Hamiltonian is a sort of mix-
ture between that of a spin system and that of a free
rigid body. This form serves our purpose and we shall
not dwell on the physics, although it is not hard to imag-
ine a physical system in which Hamiltonians of this form
might arise. The equations of motion are now

l̇ i52e ijkl k

]H

]l j
52e ijkl kS l j

I j
1BjD , (410)

and it is clear that equilibria must satisfy

l 1~I2
21l 21B2!2l 2~I1

21l 11B1!50,

l 1~I3
21l 31B3!2l 3~I1

21l 11B1!50,

l 2~I3
21l 31B3!2l 3~I2

21l 21B2!50. (411)

From Eqs. (411) it is also clear that a nonrotating con-
figuration with l 15l 25l 350 is an equilibrium point,
but there are other, uniformly rotating equilibria as well.

Now, consider the equilibria that arise upon extrem-
izing F5H1lC , where C is given by Eq. (165). (Note
that the Casimir remains the same as in Sec. IV since we
have not altered the bracket—only the Hamiltonian.)
From ]F/]l i50 for i51,2,3, respectively, we obtain

l 1~I1
211l!52B1 ,

l 2~I2
211l!52B2 ,

l 3~I3
211l!52B3 . (412)

It is evident from Eqs. (412) that there exists no choice
of l for which the equilibrium point
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l 15l 25l 350 (413)

extremizes F . Observe, also, that the inequivalence of
Eqs. (411) and (412) occurs for an equilibrium, namely
Eq. (413), that corresponds to a point where
Jij52e ijkl k changes from rank 2 to rank 0.

Those equilibria that are extremal points of F can be
tested by calculating F ,ij to see if Dirichlet’s theorem
provides a sufficient condition for stability; the other
equilibria for this example will be discussed in Sec. VI.C.

b. Two-dimensional Euler equation

The second example, the 2D Euler equation for fluid
motion42 (see Sec. IV), also has the property that the
variation dF50 does not yield all equilibria. Because
this example is infinite dimensional, there are some ad-
ditional issues that arise, which we briefly comment on.

The equation of motion yields the equilibrium rela-
tion

]v

]t
5@v ,c#50, (414)

which is satisfied if v and c are functionally dependent:
if S5S(x ,y) is an arbitrary function, then the equilib-
rium relation is satisfied if ve5ve(S) and ce5ce(S).
Note that ve need not be a monotonic function of ce
and vice versa. Assuming ve5ve(ce) we can write

¹2ce5ve~ce!, (415)

where ve(ce) is an arbitrary, not necessarily monotonic,
function of ce .

Let us contrast the equilibrium equation (415) with
the equation obtained upon varying the functional
F5H1C , which for the 2D Euler equation is given by

F@v#52
1
2ED

cvd2r1E
D
C~v!d2r . (416)

The functional derivative dF/dv50 implies

ce5C8~ve!. (417)

Assuming C8(v) is monotonic we can solve for v as
follows:

ve5¹2ce5C821~ce!. (418)

Thus here, in contrast to Eq. (415), the vorticity must be

42This example is credited to Arnold (1966a, 1966b, 1969),
whose name is invoked in the popular terminology ‘‘Arnold’s
method’’ or ‘‘Arnold’s theorem’’ for the application of these
ideas to this and other situations. However, the method was
used in earlier papers: Fjortoft (1950), Newcomb, in Appendix
of Bernstein (1958), Kruskal and Oberman (1958), Fowler
(1963), Gardner quoted in Fowler (1963), and Gardner (1963).
A better terminology is the ‘‘energy-Casimir method.’’
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a monotonic function of the stream function—if it is not,
then it does not satisfy Eq. (417) and hence is not
extremal.43

In order to apply Dirichlet’s theorem it is necessary
for the equilibrium to be extremal. When this is the case,
as it is for the monotonic equilibria above, one can cal-
culate the second variation,

d2F@ve ;dv#5 1
2 E

D
@ u¹dcu21C9~dv!2#d2r

5 1
2 E

D
F u¹dcu2

1~dv!2S ]ve~ce!

]ce
D 21Gd2r , (419)

where the second equality follows upon differentiation
of Eq. (417) with respect to ce . Formally, if we have an
equilibrium for which ]ve(ce)/]ce.0, then d2F is posi-
tive definite, and in analogy with finite-degree-of-
freedom systems we could claim stability. In infinite di-
mensions, care must be taken in defining what is meant
by a neighborhood: a natural definition is in terms of the
‘‘norm’’ defined by d2F .

It is also possible for d2F to be positive definite when
]ve(ce)/]ce,0; this would happen if the second term
of Eq. (419) could be shown always to dominate the first
when dv lies in some space of functions. This case,
which is typical of localized vortices, corresponds to an
energy maximum.

In either case, the situation would be pretty good, but
in infinite dimensions things can still be slippery. Recall
that in Sec. III.A we gave an example of a functional
with positive second variation at a point that was not a
minimum. The condition of strong positivity is needed to
show convexity. A rigorous stability analysis requires
more than formal manipulations like those given above;
in particular, it requires the definition of a Banach space
in which the solution must be shown to exist. Convexity
is one technical piece that is needed in a complete rig-
orous proof of stability.

If the first variation exists and does not vanish on the
equilibrium of interest, then it is impossible for F@ve# to
be convex and thus impossible to obtain a norm as dis-
cussed above. It can turn out, however, that the func-
tional is not differentiable at the equilibrium of interest,
but still can be proven to be stable by using F to obtain
appropriate bounds (Rein, 1994). Another technique is
to restrict the class of variations so that they lie within
symplectic leaves, which we have mentioned above. In
the next subsection we shall see how this removes prob-
lems related to the rank-changing behavior of J .

C. Dynamic accessibility

Here we discuss dynamically accessible variations,
variations for which all the Casimir invariants are

43It is easy to prove this by contradiction. Suppose c0Þc1
and v(c0)5v(c1)5v* . Then Eq. (417) implies
c05C8(v* )5c1, which is the contradiction.
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unchanged.44 As depicted in Fig. 20, these variations lie
in the surfaces defined by Ca5const for all a . In Sec.
VI.C.1 we show how to generate these variations and
how to use them to obtain the missing equilibria as ex-
tremals. We revisit the two examples of Sec. VI.B.2. In
Sec. VI.C.2 we describe the analog of Dirichlet’s theo-
rem for dynamically accessible variations, and in Sec.
VI.C.3 we treat the 3D ideal fluid; in particular, the
second-order energy, constrained to dynamically acces-
sible variations, is calculated and compared to the en-
ergy expression of Eq. (391).

1. General discussion

In the prescription described above for obtaining
equilibria of noncanonical systems from a variational
principle, the energy was extremized subject to a selec-
tion of Casimir invariants, and the values of these invari-
ants were determined by the Lagrange multipliers (and
vice versa). In contrast, dynamically accessible varia-
tions are direct variations, i.e., they have a form that
automatically satisfies the constraints. Particular values
of the Casimir constraints are not selected a priori, but
are selected a posteriori by the choice of the equilibrium
point, rather than by the choice of Lagrange multipliers.

44The essential idea here has been rediscovered many times
in varied contexts. Gardner (1963) uses it in essence in his
rearrangement argument for stability of Vlasov equilibria; it is
(at least) implicit in Arnold’s (1966b,1969) treatment of the 2D
Euler equation; it is fully developed in the context of stellar
dynamics as governed by the Vlasov (Jeans) equation by Bar-
tholomew (1971). Filippov and Yan’kov (1986) use it in their
discussion of electron vortices. In Morrison (1987), Morrison
and Pfirsch (1989,1990,1992), and Morrison and Kotschen-
reuther (1990) it is described in general and used in a variety of
plasma and fluid contexts; Nycander (1992) discusses it in the
context of modon stability; and Zeitlin and Kambe (1993) use
it in the context of 2D MHD. The discussion here follows the
general development given in Kandrup and Morrison (1993),
which also applies the idea in the context of the Vlasov-
Einstein equation. The terminology ‘‘dynamically accessible’’
was introduced by Morrison and Pfirsch (1990) because such
variations can be generated by inserting some Hamiltonian
into the Poisson bracket, and thus these variations are acces-
sible by some dynamics, while variations that leave the sym-
plectic leaves cannot be generated this way.

FIG. 20. Dynamically accessible and nonaccessible variations.
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Since the cosymplectic form, Jij, projects (co)vectors
onto the symplectic leaves, it is natural to use this object
to construct dynamically accessible variations: such
variations to first order are given by

dzda
i 5@G,zi#5Jji~z !gj , (420)

where G:5zigi . Here the arbitrariness in the variation is
embodied in the arbitrariness of the generating function
gj . However, because of the presence of Jij, the varia-
tion dz da is arbitrary only within the symplectic leaf; its
components that are not tangent to the leaf are forced to
vanish. Observe that Jij can be evaluated at any point z ,
but in practice it will be evaluated at a candidate equi-
librium point, which will be determined after setting the
first variation to zero.

It is easy to see that dynamically accessible variations
of the form of Eq. (420) automatically preserve the Ca-
simir constraints to first order. Inserting Eq. (420) into
the first variation of C(z) yields

dC~z !5
]C

]zi
dzda

i 5
]C

]zi
Jjigj[0, (421)

where the last equality follows for any Casimir C , by its
definition, and this equality is true for arbitrary g .

Let us return to the two examples of Sec. VI.B.2 and
show how dynamically accessible variations yield all
equilibria. The example of the rigid body with the modi-
fied Hamiltonian of Eq. (409) has dynamically accessible
variations of the form

dl i
da5e ijkl kgj . (422)

Using this we obtain

dF5
]F

]l i
dl i

da5
]H

]l i
dl i

da

5~Ii
21l i1Bi!e ijkl kgj

~1 !50, (423)

for the extremal equilibrium condition. Equation (423)
yields a result that is identical to Eq. (411), the equilib-
rium condition obtained upon setting l̇ i50 in the equa-
tion of motion.

In the case of the 2D Euler fluid (Arnold, 1969)

dvda5$G,v%52@g ,v# , (424)

where G:5*Dvgd2r with g arbitrary, and

dFda :5dF@v ;dvda#52E
D

cdvdad
2r

5E
D

c@g ,v#d2r52E
D

g@c ,v#d2r50, (425)

which implies @c ,v#50—the condition obtained upon
setting ]v/]t50 in Eq. (414).

Although it is clearly nice how dynamically accessible
variations produce all equilibria, before proceeding to a
stability analysis, which we discuss in Sec. VI.C.2, it
makes sense to stop and consider whether or not it is
appropriate to restrict to such variations. After all, dy-
namically accessible variations correspond physically
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to a restricted class of perturbations of the equilibrium
state. Whether or not the physics calls for such restric-
tion may need to be determined on a case-by-case basis.

In some situations the restriction may be called for.
This occurs if the equilibrium state is physically well pre-
pared, i.e., it is known in precise mathematical terms,
and it is also known that fluctuations or external agents
that cause perturbations to the equilibrium state pre-
serve the constraint of dynamical accessibility. For ex-
ample, in the case of the 2D Euler equation, dynamical
accessibility means that the only permissible dynamics
are those which rearrange the vorticity. If no physical
mechanism exists for violating this constraint, then dy-
namically accessible variations are appropriate. This
would be the case if viscosity or other means of dissipa-
tion such as Ekman friction caused changes on a time
scale much longer than that of interest.

In the situation where external agents or fluctuations
produce variations that are not dynamically accessible,
the first comment to be made is that one should reexam-
ine the model equation to see if the constraint-breaking
physics should be incorporated into the dynamics. How-
ever, there are physical situations where such incorpora-
tion is not necessary. For example, it may be that there
is an initial shock to a system that produces a nondy-
namically accessible perturbation, but the subsequent
dynamics lies within a Casimir constraint surface. When
this is the case it may turn out that there is an equivalent
dynamics that corresponds to a new equilibrium with a
perturbation that is dynamically accessible.

Equivalent dynamics means that a nondynamically ac-
cessible variation dz , about an equilibrium point ze , is
equivalent to a dynamically accessible variation about a
new equilibrium point ze* ; i.e., ze1dznda5ze* 1dzda . If
linear stability is under consideration, then we can de-
compose the perturbation as follows: dz5dznda1dzda ,
where dznda is equal to dz0, a null eigenvector of the
cosymplectic form (cf. Sec. VI.B.1 and Fig. 20). The new
equilibrium point, to within linear order, is given by
ze* 5ze1dz0. Because of the existence of the null eigen-
vector there exists a family of neighboring equilibria,
and thus a nondynamically accessible perturbation fol-
lowed by dynamics at constant Casimirs can be con-
verted into the situation described above. This proce-
dure fails if the neighboring equilibrium has different
stability properties from the original one, i.e., if the equi-
librium is at criticality.

In order to investigate stability by a Dirichlet-like ar-
gument it is necessary to obtain an expression for the
perturbation energy, which is a second-order quantity.
Thus it is necessary to obtain expressions for dynami-
cally accessible variations to (at least) second order. The
following is the needed second-order expression:

dzda
i 5Jijgj

~2 !1 1
2 Jjl

]Jti

]zl
gt

~1 !gj
~1 ! . (426)

Here we have added the superscripts (1) and (2) to dis-
tinguish the first- and second-order generating functions.
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A variation of the form of Eq. (426) preserves the Ca-
simir invariants to second order. This can be seen upon
inserting Eq. (426) into d2C , manipulating, and using the
fact that Jij]C/]zi50.

When the Poisson bracket is of Lie-Poisson type,
Jij5cij

k wk , the first- and second-order dynamically ac-
cessible variations have the forms

dwi
da5cji

k wkg ~1 !
j ,

d2wi
da5cji

k wkg ~2 !
j 1 1

2 cti
l c jl

k wkg ~1 !
t g ~1 !

j . (427)

Here we are using the notation introduced in Sec. V.B.2.
Sometimes it is useful to use finite-amplitude dynami-

cally accessible variations. For Lie-Poisson brackets a
convenient form for this is given by

ŵi5egjcji
k
wk , (428)

where Dw :5ŵ2w is a finite variation. Observe that ex-
pansion of both g5g(1)1g(2)1••• and the exponential
of Eq. (428) yields Eqs. (427) to second order. Thus it is
clear now how to obtain expressions for dynamically ac-
cessible variations, analogous to Eqs. (427), to all orders.
An expression similar to Eq. (428) exists for general
noncanonical Poisson brackets.

Finite variations can be used for probing phase space
to find the boundaries for finite-amplitude stability; i.e.,
one can use these variations to find the boundary of the
neighborhood of an equilibrium point, for which the in-
tersection of the Casimir constraint surface with the en-
ergy surface is compact. Also, finite leaf variations of the
form of Eq. (428) can be used in infinite-dimensional
systems for proving convexity (see Sec. III.A). [How-
ever, it should be noted that in infinite dimensions, in
contrast to finite dimensions, there are mathematical is-
sues regarding variations of the form of Eq. (428); not
all variations can be represented in this form.]

2. Energy and stability: d2Fda[d2Hda

Thus far we have argued that the positive definiteness
of two different kinds of energy expressions is sufficient
for stability: d2H@qe ,pe ;dq ,dp# of Sec. VI.A for canoni-
cal systems and d2F@ze ;dz# of Sec. VI.B for noncanoni-
cal systems. In the latter case dz was arbitrary, but the
equilibrium ze needed to be one of those obtainable
from dF5dH1ldC50 for some C . Here we consider
another expression, d2Hda , which is obtained upon ex-
panding the energy about any equilibrium, but with the
expansion restricted to the dynamically accessible varia-
tions of Sec. VI.C.1. If d2Hda is positive definite, then we
have stability of a restricted type (at least).

We describe the restricted expansion procedure here,
revisit the rigid-body-like example, and then show that
d2Hda[d2F@ze ;dzda#5 :d2Fda . This means that insert-
ing first-order dynamically accessible variations into the
unrestricted expansion d2F is equivalent to the expan-
sion of the energy H with second-order dynamically ac-
cessible variations. This is a good thing to know, since in
practice it is easier to calculate d2Fda .
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Expanding H through second order and then restrict-
ing the variations to be dynamically accessible yields

D2Hda :5
]H

]zi
dzda

i 1
]H

]zi
d2zda

i 1
1
2

]2H

]zi]zj
dzda

i dzda
j .

(429)

Inserting Eqs. (420) and (426) into Eq. (429), observing
that the first term of Eq. (429) vanishes when evaluated
on the equilibrium, and likewise for those terms involv-
ing g(2), results in

d2Hda5
1
2

]2H

]zi]zj
Je

ligl
~1 !Je

kjgk
~1 !1

1
2

]H

]zi

]Je
ti

]ze
l

Je
jlgt

~1 !gj
~1 ! .

(430)

Equation (430) represents the energy content of a dy-
namically accessible perturbation. If this quantity is
positive definite for all g(1), then the system is stable
against this type of perturbation.

Let us now proceed to the task of showing that
d2Hda[d2Fda . Decomposing a general first-order varia-
tion as

dz5dzda1dznda (431)

and inserting into d2F yields

d2F5d2Fda1d2Fnda , (432)

where

d2Fda5
1
2S ]2H~ze!

]zi]zj
1la

]2Ca~ze!

]zi]zj D
3Jli~ze!gl

~1 !Jkj~ze!gk
~1 ! . (433)

It is always the case that d2F da depends only on the
first-order g’s.

We note that d2F can be indefinite because of the
presence of d2Fnda , even if d2Fda , which involves only
variations of the form Jij(ze)gi

(1) , is of definite sign. An
example is given by the free-rigid-body-like system with
the equilibrium

l 1
e52

BI1

lI111
, l 2

e5l 3
e50, (434)

where we set B15B and B25B350. In this case

d2F52
B

2l 1
e ~dl 1!21

1
2S 1

I2
2

1
I1

D ~dl 2!2

1
1
2S 1

I3
2

1
I1

D ~dl 3!2. (435)

If I1,I2,I3, the last two terms are positive; however,
the first term can have either sign. Dynamically acces-
sible variations satisfy

dl i
da5e ijkl j

egk5e ijkl j
egk ; (436)

hence dl 1
da50. Therefore d2Fda is definite, even though

d2F need not be.45 Observe, also, that the nondynami-
cally accessible variation corresponds to the null eigen-
vector described above.
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To see that in general d2Fda is identical to d2Hda , we
expand some Casimir Ca to second order about the
equilibrium:

D2Ca5
]Ca

]zi
dzi1

]Ca

]zi
d2zi1

1
2

]2Ca

]zi]zj
dzidzj, (437)

which when restricted to the constraint surface reduces
to

D2Cda
a 5

]Ca

]zi
Je

ligl
~1 !1

]Ca

]zi
Je

ligl
~2 !

1
1
2

]Ca

]zi

]Je
ti

]z0
l

Je
jlgt

~1 !gj
~1 !

1
1
2

]2Ca

]zi]zj
Je

ligl
~1 !Je

kjgk
~1 ! . (438)

The first and second terms in Eq. (438) clearly vanish
because of

Jij
]Ca

]zj
50. (439)

By the definition of dynamical accessibility, the last two
terms must cancel; thus, to second order D2Cda

a vanishes
identically. Indeed, one can realize Eq. (439) as a Taylor
series about the equilibrium point ze and observe that,
since this equation holds for all z (at least in a neighbor-
hood of ze), each power of dz in the expansion

05Jij
]Ca

]zj
(440)

5Je
ij ]Ca

]ze
j

1dzlS ]Je
ij

]ze
l

]Ca

]ze
j

1Je
ij ]2Ca

]ze
l ]ze

j D 1•••

must vanish identically. The first term in Eq. (440) is
clearly zero, while the vanishing of the second term, the
one linear in dzl, yields a desired relation

]Je
ij

]ze
l

]Ca

]ze
j

52Je
ij ]2Ca

]ze
l ]ze

j
, (441)

between the first and second partial derivatives of Ca. In
this way it follows immediately that D2Cda[0.

It is evident that the first term of Eq. (430) is the same
as the first term of the free energy d2Fda of Eq. (433),
but in order to compare the second terms in these equa-
tions, one must use Eq. (441) and the equilibrium con-
dition (398) involving the Lagrange multipliers. Indeed,
by summing Eq. (441) over la and then exploiting Eq.
(398), we conclude that

45It is important to keep in mind that the existence of an
indefinite conserved quadratic form does not imply instability.
Dirichlet-like theorems give only a sufficient condition for sta-
bility; negative-energy modes provide the counterexample that
precludes necessity (cf. Sec. VI.A).
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laJe
ij ]2Ca

]ze
l ]ze

j
52la

]Je
ij

]ze
l

]Ca

]ze
j

5
]Je

ij

]ze
l

]H

]ze
j

. (442)

It thus follows, as was asserted, that d2Hda[d2Fda .
Note that although the two energy expressions are

equivalent, the derivation of the d2Fda is valid only for
those equilibria that are extremal points of F5H1lC
for some C , while d2Hda has no such restriction.

3. Dynamically accessible fluid energy: d2Hda

By now it should be clear that there exist three differ-
ent kinds of energy expressions: d2H , d2F , and d2Hda .
The expression d2H@qe ,pe ;dq ,dp# occurs in the canoni-
cal description and lives on the largest phase space, the
expression d2F@we ;dw# occurs in the noncanonical de-
scription and lives on the reduced phase space, and the
expression d2Hda@we ;g# occurs in the noncanonical de-
scription and, because it is constrained to symplectic
leaves which are subsurfaces of the reduced phase space,
lives on the smallest phase space. Below we compute
d2Hda for the general 3D compressible fluid. To this end
we construct first- and second-order dynamically acces-
sible variations, show how such first-order variations
give rise to all fluid equilibria as extremals of the energy,
calculate the second variations of the potential and ki-
netic energies, and thus obtain d2Hda . Lastly, we com-
pare d2Hda with d2H , the Lagrangian variable expres-
sion for the second-order fluid energy as calculated in
Sec. VI.A.2, and briefly comment on its utility.

a. Dynamically accessible variations

To obtain dynamically accessible variations for the
fluid, the functional

G:5E
D

~M•h1hr1ks!d3r (443)

can be inserted into the bracket of Eq. (209). Here the
arbitrariness of variation within the symplectic leaf is
described by the functions of h , h , and k , which are free
functions of position. Following are expressions for the
first-order variations of the momentum density, mass
density, and entropy per unit mass, respectively:

dMda5$G,M%5@M ,h#†1r¹h1s¹k ,

drda5$G,r%5¹•S r
dG
dM D5¹•~rh!,

dsda5$G,s%5¹•S s
dG
dM D5¹•~sh!. (444)

Recall that @M ,h# i
† :5M•] ih1¹•(Mih), where

] i :5]/]xi, satisfies the identities ^M ,@f ,g#&
5^@M ,g#†,f#&52^@M ,f#†,g#&, where @ , # is defined by
Eq. (355). These identities require that one of M•n̂ , f•n̂ ,
and g•n̂ vanish on the boundary, where we recall that n̂
is a vector normal to the boundary. We assume
Me•n̂[0 and h•n̂[0, and thus drda and dsda do not
change the total mass and entropy.
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Observe that the variations drda and dsda of Eq. (444)
are identical to dr and ds of Eq. (323) if we make the
identification dq5j(a ,t)5h(r ,t). Therefore, for these
quantities, first-order dynamically accessible variations
are precisely the same as Eulerian variations induced by
underlying Lagrangian variable variations. Also, upon
identifying M5p/J and comparing dM of Eq. (323)
with dMda of Eq. (444), we obtain

dp i52p•] ih2r0] ih2s0] ik , (445)

i.e., if dp satisfies Eq. (445), then the dM obtained from
Eq. (323) will be dynamically accessible. Because dp is
arbitrary on the Lagrangian level, not all Lagrangian
variations will be of the form of Eq. (445), and thus not
all induced Eulerian variations will be dynamically ac-
cessible.

In order to calculate the energy expression, we need
the following expressions for dynamically accessible
variations to second order:

d2Mdai5
1
2 $G,ˆG,M%‰i

5 1
2 $†@M ,h#†,h‡i

†1¹•~rh!] ih

1¹•~rh] ih !1r~] jh !~] ih j!

1¹•~sh!] ik1¹•~sh] ik !

1s~] jk !~] ih j!%,

d2rda5
1
2 ˆG,$G,r%‰5 1

2 ¹•@h¹•~rh!# ,

d2sda5
1
2 ˆG,$G,s%‰5 1

2 ¹•@h¹•~sh!# . (446)

These second-order variations should include depen-
dence upon second-order generating functions as in Sec.
VI.C.1, but the second-order pieces do not contribute
below, so we neglect them.

b. Equilibria

Now we show how all 3D fluid equilibria are gotten
from the vanishing of the first-order dynamically acces-
sible variation of the fluid energy,

H@r ,s ,M#5E
D
S M2

2r
1rŨ~r ,s! Dd3r , (447)

where we recall that Ũ(r ,s) is the internal energy per
unit mass. Here we have used the tilde to indicate that
the dependence is upon r and s instead of r and s . In
terms of Ũ(r ,s) the equation of state for the pressure is
given by

p̃ ~r ,s!5r2S ]Ũ

]r
1

s

r

]Ũ

]s
D . (448)

The first variation of H is

dH5E
D
FM

r
•dM2

M2

2r2
dr1drS Ũ1r

]Ũ

]r
D

1dsS r
]Ũ

]s
D Gd3r . (449)
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Inserting Eq. (444), integrating by parts, and using
M5rv yields

dHda@h ,h ,k#5E
D

~h j@2M•] jv2] i~rv iv j!

1r] j~v2/2!2r] j~Ũ1rŨr!

2s] j~rŨs!#2h@¹•M#

2k@¹•~sM/r!#!d3r . (450)

Since h , h , and k are arbitrary, dHda[0 implies that the
@ . . . # terms of Eq. (450) vanish individually. These are
easily shown to imply the usual Eulerian equilibrium
equations for a compressible fluid:

] j~rv iv j!1] ip50,

] j~rv j!50,

v j] js50. (451)

c. Potential energy

Now consider the expansion of the potential-energy
functional,

W@r ,s#5E
D

rŨ~r ,s!d3r , (452)

to second order. Upon Taylor expansion, we obtain

d2W5 1
2 E

D
@~dr!2~rŨrr12Ũr!1~ds!2~rŨss!

12~dsdr!~rŨrs1Ũs!12~d2r!~rŨr1Ũ !

12~d2s!~rŨs!#d3r , (453)

where subscripts denote partial differentiation. Inserting
Eq. (444) and (446) into Eq. (453) creates a relatively
complicated formula, one with several terms that look
similar, but simplification is not obvious. What we have
is a sort of integration-by-parts puzzle. We shall not give
all the details here of a calculation that gets us to the
desired end, but only a few ‘‘moves’’ and ‘‘landmarks.’’
The first move is to integrate the second-order varia-
tions by parts. Next, the terms are grouped as follows:

d2Wda@h#5 1
2 E

D
@~¹•h!2~r3Ũrr12r2Ũr1s2rŨss

12sr2Ũsr12srŨs!

1~¹•h!~h•¹s!~srŨss1r2Ũrs1rŨr!

1~¹•h!~h•¹r!~r2Ũrr12rŨr

1srŨrs1sŨs!#d3r , (454)

which upon making use of Eq. (448) can be put into the
form
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d2Wda@h#5 1
2 E

D
@~¹•h!2~r p̃ r1s p̃ s!

1~¹•h!~h•¹ p̃ !#d3r . (455)

The definition p(r ,s):5 p̃(r ,s) and the chain rule imply
r p̃ r1s p̃ s5rpr , which when used in Eq. (455) yields,
finally,

d2Wda@h#5 1
2 E

D
@~¹•h!2~rpr!1~¹•h!~h•¹p !#d3r .

(456)

This expression, when evaluated on r5re and s5se , is
precisely that calculated in the footnote following Eq.
(384), which was obtained in the strictly Lagrangian
variable context. This is to be expected, since the dy-
namically accessible variations of density and entropy
are the same as those induced by Lagrangian variations.

d. Kinetic energy

Now consider the expansion of the kinetic-energy
functional,

T@r ,M#5E
D

M2

2r
d3r , (457)

to second order. Upon Taylor expansion, we obtain

d2T5E
D
FM

r
•d2M2

M2

2r2
d2r1

M2

2r3
~dr!2

2dr
M

r2
•dM1

~dM !2

2r Gd3r . (458)

We shall reduce this expression to a familiar form by
solving another integration-by-parts puzzle. Making use
of dM5rdv1vdr , which is a valid identity whether or
not the variations dr and dM are dynamically
accessible,46 yields the simplified expression

d2T5E
D
Fv•d2M2

v2

2
d2r1

r

2
~dv !2Gd3r . (459)

Now restricting ourselves to dynamically accessible
variations by inserting Eqs. (444) and (446) into Eq.
(459) yields

46Using Eq. (444) yields dvdai5v•] ih1h•¹v i1] ih1s] ik ,
which is different from the expression for dv in terms of the
displacement: dv5ḣ1v•¹h2h•¹v .
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d2Tda@h ,h ,k#5
1
2ED

H v•†@M ,h#†
‡

†1¹•~rh!~v•¹h !

1v i¹•~rh] ih !1r~v•¹h i!~] ih !

1¹•~sh!~v•¹k !1v i¹•~sh] ik !

1s~v•¹h i!~] ik !2
v2

2
¹•@h¹•~rh!#

1r~dvda!
2J d3r . (460)

Making use of the identity ^@x ,g#†,f&5^x ,@f ,g#&, effect-
ing some cancellation, and rearranging, gives

d2Tda@h ,h ,k#5
1
2ED

@rdvda•~@v ,h#1dvda!

1drda@v•¹h1v•~v•¹h!#

1dsda~v•¹k !#d3r . (461)

Introducing

Pi :5rv•] ih1r] ih1s] ik , (462)

which satisfies rdvda5rh•¹v1P , we obtain from Eq.
(461)

d2Tda@h ,h ,k#5
1
2ED

FP2

r
1Pi~v•¹h i1h•¹v i!

1r~h•¹v i!~v•¹h i!

1drda@v•¹h1v•~v•¹h!#

1dsda~v•¹k !Gd3r . (463)

After several integrations by parts and making use of
the equilibrium relations of Eq. (451), we obtain our
desired result,

d2Tda@h ,h ,k#5
1
2ED

FP2

r
12P•~v•¹h!

2~h•¹h!•¹p Gd3r . (464)

e. Total energy

Adding Eqs. (456) and (464) gives the following ex-
pression for the total, dynamically accessible energy of a
perturbation to an Eulerian equilibrium state:

d2Hda@h ,h ,k#5
1
2ED

FP2

re
12P•~ve•¹h!

1~¹•h!2~reper!1~¹•h!~h•¹pe!

2~h•¹h!•¹peGd3r . (465)

It is interesting to compare the energy d2Hda of Eq.
(465) with its counterpart d2H of Eq. (393), which was
derived within the Lagrangian variable context. If we
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observe that Pi[2dp i /J, where dp i is given by Eq.
(445), and identify P with 2ph , then these energy ex-
pressions are identified. However, as noted above there
is a difference in that ph at fixed h is completely arbi-
trary in the Lagrangian variable context, while the free-
dom of P at fixed h is constrained to be determined by
Eq. (462), which contains only the two free functions h
and k .

The energy expression d2Hda can be rewritten in
many different ways by integration by parts and by mak-
ing use of the equilibrium equations (451). We shall not
pursue this further here, but it is clear how to obtain
Dirichlet-like stability criteria: if for some equilibrium
d2Hda@h ,h ,k# can be manipulated into a positive defi-
nite form, then we have stability against dynamically ac-
cessible perturbations. One can proceed with d2Hda in a
manner similar to that used in MHD analyses of the
stability of plasma devices (see, for example, Newcomb,
1960; Hazeltine and Meiss, 1992), where minimizations
are carried out in order to ascertain whether or not the
energy functional is positive definite.47

The sufficient conditions for stability that result from
the procedure described above are equivalent to Ray-
leigh or Fjortoft-type criteria, which are usually stated as
necessary conditions for instability. Criteria such as the
Rayleigh inflection point criterion for fluid shear flow
are in essence conditions for the positive definiteness of
the energy. This explains why similar criteria occur in a
variety of fluid and plasma contexts. The expression
d2Hda is a quite general starting point for doing this kind
of stability analysis for a wide variety of equilibria and
dynamics.

VII. CONCLUSION

One thing that is clear from the above section, indeed
from this entire article, is that there are many different
ways of writing the equations that describe fluid phe-
nomena. These different ways amount to the choice of
variables employed, such as Lagrangian, Eulerian, or
Clebsch, and the different variables give rise to the dif-
ferent kinds of Hamiltonian structure. Although one can
argue that underlying it all is Newton’s second law to-
gether with constraints, such as mass conservation or the
constancy of entropy, the different ways of describing a
fluid imply different phrasings of the constraints. This
difference in phrasing gives rise to differences in the
usual analyses of fluid phenomena, notably stability
analyses. Generally speaking, when two things are dif-
ferent, each has advantages. In closing we explore this
and related stability issues a bit.

One consequence of phrasing the constraints in differ-
ent ways is the occurrence of the different kinds of en-
ergy expressions that we have described. The use of d2F
for obtaining stability criteria, the energy-Casimir
method, is relatively simple, direct, and extendable to

47Sun and Finn (1987), Pfirsch (1990), and Isichenko (1997)
have done calculations of this sort for MHD.



518 P. J. Morrison: Hamiltonian description of the ideal fluid
nonlinear stability analysis, but is limited to a restricted
class of equilibrium states, viz., those that arise as extre-
mals of F5H1lC . However, the use of d2Hda has no
such restriction and it can be calculated for all equilibria,
but this approach has difficulties that need to be over-
come in a rigorous mathematical analysis.48

A consequence of the above is that the restricted class
of equilibria obtained by extremizing F5H1lC is
singled out. Thus it is natural to ask, is there something
special about these equilibria? One thing for certain is
that this class includes the dynamical equilibrium state
that corresponds to thermodynamic equilibrium. For ex-
ample, for the 3D compressible fluid, the equilibrium
equations (396) yield the state of thermodynamic equi-
librium corresponding to zero mean flow and uniform
density. In fact the condition dF50, in the case where
v50, can be made to be identical to the thermodynamic
minimum-energy principle (Callen, 1960), and d2F posi-
tive definite corresponds in this case to thermodynamic
stability (Le Châtelier’s principle). Similarly for Vlasov
theory, dF50 can be made to yield the Maxwellian
phase-space density. Generally speaking it appears that
these special equilibria are more likely to be stable than
other equilibria, and proofs of nonlinear stability for
them are possible in many cases. Indeed for both the 2D
Euler equation and for Vlasov theory the restricted class
corresponds to equilibria where the vorticity and phase-
space density are monotonic functions of the stream
function and energy, respectively. These equilibria do
not have negative-energy modes (NEMs).

Any of the various energy expressions can be used to
determine the existence of NEMs, but additional infor-
mation is required. In particular, if it is known by some
means that the system is spectrally stable and that the
energy functional, whichever type, is not positive defi-
nite, then the system can have a NEM. By definition, if
the eigenfunction of a NEM is substituted into the en-
ergy functional, then one obtains a negative expression.
Similarly, if the eigenfunction of a positive-energy mode
is substituted, then one obtains a positive expression. In
both these cases mode means a stable pure oscillation—
the energy associated with an unstable eigenfunction
necessarily is zero. Thus associated with an eigenfunc-
tion is a signature.

Signature is important in that it gives an indication of
possible behavior, as illustrated by the examples of Secs.
VI.A and VI.A.1. From many examples, both finite and
infinite, one can infer a general two-part principle re-
garding systems with NEMs (see, for example, Morrison
and Kotschenreuther, 1990): (i) ideal stable systems with
both positive- and negative-energy modes tend to be
nonlinearly unstable, and (ii) if an ideal system with a

48Namely, to attempt a nonlinear dynamically accessible sta-
bility analysis one must define the class of functions that are
representable by the exponential of Sec. VI.C.1, and this is
difficult. Also, this class of functions is not closed under the
usual operations, and so the taking of limits is difficult to de-
fine (see, for example, de la Llave, 1993).
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NEM is perturbed by adding terms to the dynamical
system that extract energy, then a NEM (which by defi-
nition is neutrally stable) becomes unstable. This prin-
ciple is clearly not a theorem: additional invariants can
preclude the existence of nonlinear instability, and one
must be sure that the dissipation actually extracts energy
from a NEM in order for it to be destabilized.

Systems with symmetry possess other invariants, con-
stants of motion that commute with the particular
Hamiltonian (unlike Casimir invariants, which commute
with all Hamiltonians). Extremization of the energy with
these constants held fixed, which can be achieved by us-
ing Lagrange multipliers, yields relative equilibria, i.e.,
equilibria in frames of reference generated by the invari-
ants. For example, extremization of H1l•P , where P is
the momentum, gives a state that is uniformly translat-
ing at the velocity l. Alternatively, one can interpret the
extremal points obtained from extremizing the Hamil-
tonian at fixed invariants as being the equilibrium of
interest observed in a different frame of reference. If
there exists any frame of reference in which the energy
functional is definite, then both linear and, for finite sys-
tems, nonlinear instability are precluded. Further, one
can analyze the energy with the variations restricted to
lie within the surfaces defined by the invariants, in a
manner similar to that used in Sec. VI.C where dynami-
cal accessibility was discussed.49 In general, if any com-
bination of known invariants implies the existence of a
family of compact invariant sets about an equilibrium,
then from the definition of Sec. VI.A that equilibrium is
nonlinearly stable.

The existence of different frames of reference also af-
fects the second part of our two-part principle because
dissipation is frame dependent. This is easily demon-
strated by an example due to Poincaré (1885). Consider
a particle subjected to gravity and confined within a
clear, spherical, rotating bowl. Clearly the point at the
bottom of the bowl is an equilibrium point in any frame
of reference. If there is no friction between the particle
and the bowl, then the particle will oscillate about the
bottom point, whether or not the bowl is rotating. How-
ever, if friction is added (by, for example, applying hair-
spray), then a stationary observer who is unable to dis-
cern the bowl, will see a strange effect of the
‘‘dissipation.’’ Rather than seeing the friction damp the
oscillation, the stationary observer will see the particle
leave the vicinity of the bottom equilibrium point as it
grabs onto the side of the bowl. Clearly care must taken
when defining dissipation, since in this example the sta-
tionary observer sees energy being put into the particle,
while a rotating observer sees the particle attempting to
come to rest with the rotating bowl.

The energy-Casimir (Arnold’s) method or any energy
method for obtaining sufficient conditions for stability
provides an incomplete analysis of a problem. It is in-
complete because the indefiniteness of the energy func-

49See, for example, Ilgisonis and Pastukhov (1996) and Ilgiso-
nis (1996) for a recent use of this idea in the context of MHD.



519P. J. Morrison: Hamiltonian description of the ideal fluid
tional implies either the existence of NEMs or instabil-
ity, and, as noted above, there is no way in general of
distinguishing from any of the energy expressions alone
which is the case. More importantly, it is incomplete be-
cause stability is not the whole issue: a complete analysis
would determine the dynamics given an initial condition.
Thus to finish the linear problem one must find a com-
plete set of eigenfunctions; i.e., a normal-mode analysis
must be done.

This normal-mode analysis is rather difficult because
usually fluid and plasma systems possess continuous
eigenspectra, unlike the complete discrete spectrum that
occurs in elementary quantum mechanics problems. In
the Hamiltonian setting, finishing the linear problem
amounts to finding a transformation to action angle vari-
ables, variables that are related to the eigenfunctions of
the continuous spectrum. For systems that are nonca-
nonical this transformation has two parts: canonizing
and diagonalizing. One must find a set of canonical vari-
ables on the symplectic leaf and then one must find the
canonical transformation that diagonalizes the Hamil-
tonian. This program has been carried out for the Vla-
sov system (Morrison and Pfirsch, 1992; Morrison and
Shadwick, 1994) using Van Kampen singular eigenfunc-
tions (see, for example, Van Kampen and Felderhoff,
1967). The necessary mathematical tools have been gen-
eralized (Balmforth and Morrison, 1995) and applied to
inviscid shear flow with a broad class of fluid equilibrium
flow profiles. This is a long story, one that will be re-
ported elsewhere (Balmforth and Morrison, 1998).
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Poincaré, H., 1885, Acta Math. VII, 259.
Ramani, A., B. Grammaticos, and T. Bountis, 1989, Phys. Rep.

180, 161.
Rein, G., 1994, Math. Methods Appl. Sci. 17, 1129.
Ripa, P., 1981, Nonlinear Properties of Internal Waves, AIP

Conference Proceedings No. 76, edited by B. J. West (AIP,
New York), p. 281.

Ripa, P., 1993, Geophys. Astrophys. Fluid Dyn. 70, 85.
Saletan, E., and A. Cromer, 1971, Theoretical Mechanics

(Wiley, New York).
Salmon, R., 1982, in Mathematical Methods in Hydrodynamics

and Integrability in Related Dynamical Systems, AIP Confer-
ence Proceedings No. 88, edited by M. Tabor and Y. Treve
(AIP, New York), p. 127.

Salmon, R., 1988a, Annu. Rev. Fluid Mech. 20, 225.
Salmon, R., 1988b, J. Fluid Mech. 196, 345.
Sanz-Serna, J. M., and M. P. Calvo, 1994, Numerical Hamil-

tonian Problems (Chapman and Hall, London, New York).
Serrin, J., 1959, in Handbuch der Physik, edited by S. Flügge
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