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Spectral Reduction: A Statistical Description of Turbulence
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A method is described for predicting statistical properties of turbulence. Collections of Fourier
amplitudes are represented by nonuniformly spaced modes with enhanced coupling coefficients. The
statistics of the full dynamics can be recovered from the time-averaged predictions of the reduced
model. A Liouville theorem leads to inviscid equipartition solutions. Excellent agreement is obtained
with two-dimensional forced-dissipative pseudospectral simulations. For the two-dimensional enstrophy
cascade, logarithmic corrections to the high-order structure functions are observed.

PACS numbers: 47.27.Eq, 47.27.Gs, 47.27.Jv
Many practical applications for spectral simulations of
turbulence exist where it would be desirable to evolve
modes that are distributed nonuniformly in Fourier space,
devoting most of the computational resources to the length
scales of greatest physical interest. This idea has led to
the development of a new reduced statistical description
of turbulence, called spectral reduction [1], which dra-
matically reduces the number of spectral modes that must
be retained in simulations of turbulent phenomena. It ex-
ploits the fact that statistical moments are much smoother
functions of wave number than are the underlying stochas-
tic amplitudes.

The concept of wave-number reduction is not new. In
the method of constrained decimation [2–4], a stochastic
forcing term is added to model the effect of the deleted
modes on the retained modes. She and Jackson have
proposed a reduction scheme in which the linear (vis-
cous) term is modified [5]. In spectral reduction, a third
alternative is chosen: the nonlinear coefficients are en-
hanced to account for the effect of the discarded modes
on the explicitly evolved modes. There have been other
more heuristic attempts at wave-number reduction [6–9];
these methods typically neglect nonlocal wave-number
triad interactions (which play a particularly important role
in two-dimensional turbulence). Unlike the renormaliza-
tion group [10] method, which retains only large-scale
modes and attempts to express the effect of the small-scale
modes using a self-similarity ansatz, spectral reduction re-
tains certain modes from all scales, while discarding other
modes associated with these same scales. The general-
ity of the formulation allows one to refine the partition
wherever the physics dictates.

In this Letter we restrict our attention to homogeneous
and isotropic incompressible turbulence in two dimen-
sions. The appropriate spectral transform in this limit
is the integral Fourier transform, under which the two-
dimensional Navier-Stokes vorticity equation becomes
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Here nk models time-independent linear dissipation or
forcing and the interaction coefficient ekpq � �ẑ ? p 3

q�d�k 1 p 1 q� is antisymmetric under permutation of
any two indices (� denotes complex conjugation, �
indicates a definition, and ẑ is the unit normal to the
plane of motion). We restrict the integration to a bounded
wave-number domain D that excludes a neighborhood of
k � 0. As a consequence of the antisymmetry of ekpq , in
the inviscid limit �nk � 0� Eq. (1) conserves the energy
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believed that the energy and enstrophy play fundamental
roles in the dynamics of the turbulent cascade.

We introduce an arbitrary coarse-grained grid that
partitions D into connected regions called bins. The bins
are labeled by capital letters to distinguish them from
the continuum wave numbers, which we represent by
lowercase letters. To this grid, we associate new variables
VK � D
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K vk dk, where DK is the area of bin K.

The exact evolution of VK is given by
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where �?�K denotes a bin average and the operator
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depends only on the bin geometry. The geometric factors
� f�KPQ can be efficiently computed using a combination
of analytical and numerical methods [11–13]. Since they
are independent of both time and initial conditions, they
need only be computed once for each new wave-number
partition. The reality condition VK � V

�
2K , where 2K

denotes the inversion of bin K through the origin, will be
respected for partitions that possess inversion symmetry.

Equation (2) is unfortunately not closed. If vk were
naively approximated by its bin-averaged value VK , one
would obtain
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In the inviscid limit, Eq. (4) conserves the coarse-grained
enstrophy 1

2

P
K jVK j

2DK since �ekpq�q2�KPQ is anti-
symmetric in K $ P . However, the coarse-grained
energy 1

2

P
K jVK j

2DK�K2 is not conserved since
�ekpq�q2�KPQ�K2 is not antisymmetric in K $ Q (here
K denotes the magnitude of some characteristic wave
number in bin K). However, both of these desired
symmetries can be reinstated by replacing the factor
�ekpq�q2�KPQ in Eq. (4) with the slightly modified co-
efficient �ekpq�KPQ�Q2. The relative error introduced
by this modification is negligible in the limit of small
bin size, being on the order of the squared relative
variation in the wave-number magnitude over a bin. The
result,
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which we call the spectrally reduced Navier-Stokes equa-
tion, is a more acceptable alternative than Eq. (4) as a
closure of Eq. (2): not only does it reduce to the Navier-
Stokes equation in this limit, but it also conserves both
energy and enstrophy, even when the bins are large. The
final modification leading to Eq. (5) partially compen-
sates for the error introduced by the crude approxima-
tion vk � VK and leads to the same general structure
and symmetries as Eq. (1); in this sense spectral reduction
may be regarded as a renormalization.

If the bins are large, the true vorticity will vary rapidly
with wave number within each bin and it is unlikely
that Eq. (5) will yield a reasonable description of the
instantaneous dynamics. However, the time-averaged (or
ensemble-averaged) moments of Eq. (5) satisfy equations
that closely approximate the equations governing the
exact bin-averaged statistics. For example, a time average
(denoted by an overbar) of the bin-averaged enstrophy
equation derived from Eq. (1) leads to
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If the true vorticity is a continuous function of wave
number, the mean value theorem for integrals guaran-
tees the existence of a wave number k in bin K such
that VK � vk . Furthermore, time-averaged quantities
such as jvkj2 are generally smooth functions of the wave
number k. We thus deduce that jVK j2 � jvkj2 � jvkj2

for all k in bin K. Similarly, the triplet correlation
v
�
kv�

pv�
q is a smooth function of k, p, q when re-

stricted to the surface defined by the triad condition
k 1 p 1 q � 0.

To good accuracy the statistical averages in Eq. (6) may
therefore be evaluated at the characteristic wave numbers
K, P , Q of each bin, yielding
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Moreover, to the extent that the wave-number magnitudes vary slowly over a bin, Eq. (6) may equally well be reduced
to the (nonlinearly conservative) approximation
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which is precisely the evolution equation for the time-
averaged enstrophy obtained from Eq. (5). Similar argu-
ments for the higher-order statistical moments can also be
made, suggesting that spectral reduction can indeed pro-
vide an accurate statistical description of turbulence, even
when each bin contains many statistically independent
modes. As the partition is refined, one expects the so-
lutions of Eq. (8) to converge to those of Eq. (6).

In the absence of forcing and dissipation, the (un-
truncated) two-dimensional Euler equations can be
written in a noncanonical Hamiltonian framework [14]
as �vk �
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then follows immediately from the properties of ekpq .
When nk � 0, Eq. (5) can be written in a simi-
lar form as �VK �
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It is an open question whether (an untruncated version of)
Eq. (9) satisfies the Jacobi identity, which would make
spectral reduction a Hamiltonian approximation. What is
certain is that the respective Liouville theorem
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is obeyed, as a consequence of the antisymmetry of
�ekpq�KPQ. If the dynamics is mixing, the inviscid system
will then evolve toward equipartition [15,16]; this was
verified for spectral reduction numerically, using a fifth-
order conservative Runga-Kutta integration algorithm that
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conserves quadratic invariants to all orders in the time
step [17,18]. When using nonuniform bins it is neces-
sary to rescale the time derivative ≠�≠t in Eq. (5) to
�D0�DK�≠�≠t, where D0 is the minimum bin area, to ob-
tain an equipartition of modal (instead of bin) energies.
This modification to the transient evolution will be dis-
cussed further in a future paper.

Upon adding to Eq. (5) a random stirring force for k [
�5, 7� and adopting the dissipation function nk � nLu�7 2

k� 1 nHk2 (u is the Heaviside function), we graph in
Fig. 1 the time-averaged saturated energy spectra for four
wave-number partitions to test how rapidly spectral re-
duction converges. The excellent agreement demonstrated
between the predictions of spectral reduction and a (com-
putationally more expensive) full dealiased pseudospectral
simulation is obtained without fitting or the introduction
of adjustable parameters. We also show the predictions of
the realizable test field model (RTFM) [13], using wave
number binning and setting the eddy-damping multiplier
in this heuristic statistical closure to one.

High-order moments are also accurately described by
spectral reduction. A quantity of interest is the angular
average Sn�r� of the nth (time-averaged) moment of ve-
locity increments jv�r� 2 v�0�jn, or structure function. In
Fig. 2 we illustrate the scaling with distance r of a typical
high-order structure function, S10�r�, for the runs depicted
in Fig. 1. Slight variations in the predicted large-scale ve-
locities are evident as overall vertical offsets. Note that
the (discrete) pseudospectral calculation is an approxima-
tion to Eq. (1) at the large scales.

One can readily investigate high-Reynolds number tur-
bulence with spectral reduction, using a polar partition in

FIG. 1. Comparison of the turbulent energy spectra obtained
with 16 3 8, 32 3 8, 64 3 8, and 16 3 16 (logarithmically
spaced radial 3 uniformly spaced angular) wave-number parti-
tions, the RTFM, and a full 683 3 683 dealiased pseudospec-
tral simulation (1024 3 1024 total modes).
which the bins are logarithmically spaced in the radial
wave number. A saturated turbulent state can be evolved
for thousands of eddy turnover times to obtain statistically
meaningful moments for comparison with theoretical pre-
dictions. For example, Kolmogorov’s idea of self-similar
energy transfer in the inertial range [19] led Kraichnan
[20] to propose a logarithmically corrected asymptotic
form for the energy spectrum E�k� of the enstrophy cas-
cade. In a simulation with viscous dissipation active only
at the smallest scales (to yield a pristine inertial range)
and forcing via a linear instability (negative nk), we apply
spectral reduction to demonstrate the recent extension
E�k� 	 k23x21�3�k� of Kraichnan’s result to the entire
inertial range, where k1 is the smallest inertial-range wave
number, x�k� � ln�k�k1� 1 x1, and the positive constant
x1 is set by the large-scale dynamics [21]. We verify in
Fig. 3 the linear behavior of �k3E�k��23 with respect to
ln�k�k1�, using the values k1 � 16.4 and x1 � 0.67 de-
termined by a least-squares fit. The inertial-range energy
spectrum is thus well described by Kraichnan’s logarith-
mically corrected k23 law.

For the second simulation, we demonstrate in Fig. 4
the linear behavior of �r2nSn�r��3�n with ln�r1�r� on
the interval 0.043 # r # r1 � 0.26 for various values
of n. The implied scaling Sn�r� 	 rn�ln�r1�r� 1 x 0

n�n�3,
where x 0

n is a constant, is in agreement with both
the asymptotic theory of Falkovich and Lebedev [22]
and the recent experimental results of Paret et al. [23],
lending support to the claim that there are no high-order
intermittency corrections in two-dimensional turbulence.
The universality of this result will be investigated in a
future paper.

In this Letter, we propose a new technique that dramati-
cally decreases the number of degrees of freedom required
to simulate homogeneous turbulence. The statistically
stationary state described by Fig. 3, which would require

FIG. 2. Angle-averaged structure function S10�r�.
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FIG. 3. Linearity of �k3E�k��23 with respect to ln�k�k1� for
an enstrophy inertial range between k1 � 16.4 and k � 330.
The solid triangles are the predictions of spectral reduction.

2048 3 2048 dealiased (3071 3 3071 total) pseudo-
spectral modes, can be successfully modeled using only
32 3 8 bins. A notable feature of spectral reduction
that distinguishes it from other statistical theories of
turbulence is the existence of a control parameter (bin
size) that can be varied to increase the accuracy of a
solution. Moreover, spectral reduction does not make a
closure assumption on the triplet correlation V

�
KV

�
PV

�
Q

appearing in Eq. (8); it circumvents the closure problem
entirely by reducing the number of triplet correlations to
a tractable number, instead of eliminating them in favor
of lower-order statistical variables. Unlike statistical
closures, spectral reduction thus does not destroy the
phase information embodied in the triplet correlation.

Spectral reduction appears to be a promising candidate
as a statistical description of turbulence. We propose

FIG. 4. Linearity of �r2nS�r��3�n with respect to ln�r1�r� for
0.043 # r # r1 � 0.26.
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that it could be used to assess the effect of various
dissipation mechanisms in large-eddy simulations, as a
subgrid model, or even as a substitute for full simulation
of high-Reynolds number turbulence. However, as it does
not provide explicit insight into underlying dynamical
processes, spectral reduction should be considered more
as a computational tool than as a true analytical theory of
turbulence. The latter challenge still awaits us.
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