WAVE Action,
Action-Angle Variables,
& Adiabatic Invariance

for the
Continuous Spectrum of Vlasov Poisson

P. J. Morrison w/ N. Balmforth
& B. Shadwick

IFS, UTexas, Austin
WHY WAVE Action?

It is useful for describing wave propagation in inhomogeneous time varying media, for example. For slowly varying media wave action is nearly constant, but the energy & frequency can change a lot.

WHENCE WAVE Action?

* Wave quanta, e.g. plasmons; analogy w/ q. mechanics. (where there?)
* Average Lagrangian techniques — Whitham e.g.
* Fooling around

* Hamiltonian idea: Wave Action = Action Variable
 Fundamental? = Adiabatic Invariant
LIMITATIONS

* quantum analogy is silly - where there?
* fooling around is good method for smart people
* Lagrangian techniques: 1) £ strange action principles
e.g. £\psi = 0 has

Where is \(\text{F=ma} \)?

\[S_1[\psi] = \int (\dot{\psi})^2 \]
\[S_2[\psi] = \int \psi + \dot{\psi} \text{ etc.} \]

2) Must develop methods of proof, beyond all orders etc. - lack Hamiltonian intuition

3) Methods for continuous spectrum?

These tools exist for Hamiltonian approach! The fundamental degrees of freedom are not "waves"

4) Problem is easy for fluid theories w/o wave-particle resonance
Vlasov–Poisson = Hamiltonian Field Theory

\[\frac{\delta f (x, v, t)}{\delta t} + \{ f, \phi \} = 0 \]

\[\{ f, \phi \} = \frac{\partial f}{\partial x} \frac{\partial \phi}{\partial t} - \frac{\partial f}{\partial t} \frac{\partial \phi}{\partial x} \]

\[H[f] = \int \frac{m v^2}{2} f \, dx \, dv + \frac{1}{8\pi} \int E^2 \, dx \]

\[\frac{\delta H}{\delta f} = \varepsilon = \frac{m v^2}{2} \]

\[\frac{\partial f}{\partial t} = \{ f, H \} \]

\[\{ f, H \} = \int f \left[\frac{\partial F}{\partial f} \delta G \right] \, dx \, dv \]

\[L \text{ noncanonical Poisson Bracket} \]

\[C[f] = \int c(t) \, dx \, dv \]

\[\{ C, F \} = 0 \quad \forall F \]
Linear Theory (about homogeneous equilibria)

\[f = f_0(u) + \sum_{k} \frac{i}{2} f_k(u, t) e^{ikx} \]

\[2 F, G F_L = \frac{4i}{mv} \sum_{k=1}^{\infty} \int_{-\infty}^{\infty} du \frac{d f_0}{d u} \left(\frac{\partial F \partial G - \partial F \partial G}{\partial f_k \partial f_k - \partial f_k \partial f_k} \right) \]

\[\frac{df_k}{dt} = [f_k, H_L] \]

\[H_L = S^2 F = S^2 H + S^2 C \]

Kruskal-Oberman energy

\[S^2 F = -\frac{m}{4} \int_{-\infty}^{\infty} \sum_{k} v \frac{d f_0}{d u} \frac{d f_k}{d u} \frac{|f_k|^2}{2} du \]

\[+ \frac{1}{16} \sum_{k} |E_k|^2 \]

\[= \int \sum_{k} f_k(u) \Theta(v/u') f_k(u') du' du \]

Not Diagonal
Diagonalization

Mixed Variable Generating Function:

\[F[P_k, Q_k] = \sum_k \int_{-\infty}^{\infty} du \int_{-\infty}^{\infty} dv \, Q_k(u) P_k(u) Y_k(u,v) \]

New \quad Old

\[Y_k(u,v) = E_{I(k,v)} \frac{1}{\Pi} \frac{1}{u-v} + E_{R(k,v)} S(u-v) \]

\[\frac{SF}{S_{Q_k(u)}} = P_k(u) = \int_{-\infty}^{\infty} P_k(u) Y_k(u,v) \, du \]

\[\frac{SF}{S_{P_k(u)}} = Q_k(u) = \int_{-\infty}^{\infty} Q_k(u) Y_k(u,v) \, dv \]

Basic Identity: \[\int_{-\infty}^{\infty} Y_k(u,u') Y_k(u,v) \, du = S(u-v') \]
\[G_k(u,v) = \frac{1}{|E_k(u)|^2} \{ E_I(k,u) \frac{1}{\Pi} \frac{P}{u-v} + E_R(k,u) S(u-v) \} \]

Inserting \(Q_k(u) \) & \(P_k(u) \) into into \(H \) into diagonal form

\[H[Q_k, P_k] = \int du \sum_k (-i k u) Q_k P_k \]

Action-Angle Variables

\[Q_k = \sqrt{J_k} e^{-i \theta_k(u)} \quad P_k = i \sqrt{J_k(u)} e^{i \theta_k(u)} \]

\[H[J_k, \theta_k] = \int du \sum_k (k u) J_k(u) \]

(like SHO \(\sum_k \omega_k J_k \))
Adiabatic Invariance for Continuous Spectra?

Suppose \(f_0 (\nu, et) \) has a slow time dependence \(\Rightarrow \text{ slow} \)

\[(Q_x, P_x) \leftrightarrow (Q_x, P_x) \text{ is an explicitly time dependent transformation (Since } E_{I, R} (k, \nu, \epsilon t)) \Rightarrow \]

\[H(Q_x, P_x) = \int du \sum_k (-i k \nu) Q_x P_x + \frac{\partial F}{\partial \epsilon} \]

\[\frac{\partial F}{\partial \epsilon} = \int du \int du' \int du'' Q_x (u') P_x (u'') \bar{\Phi} (u, u') \frac{\partial \Phi (u, u')}{\partial \epsilon} \]

\[\frac{\partial F}{\partial \epsilon} = \int du \int du' \int du'' \sqrt{J_x (u')} \ e^{-i \Phi (u')} \ e^{i \Phi (u)} \sqrt{J_x (u'')} \ \bar{\Phi} (u', u'') \frac{\partial \Phi (u', u'')}{\partial \epsilon} \]

\[\dot{J}_x = - \frac{\delta H}{\delta \theta_x} = - \frac{\partial}{\partial \theta_x} \left(\frac{\partial F}{\partial \epsilon} \right) = O(\epsilon) \]

\[\text{Small} \]
Consider an arbitrary time T & integrate \Rightarrow

\[
\Delta J_{kT} := \int_0^T \dot{J}_k \, dt = -\int_0^T \sum_{\theta} \frac{\partial F}{\partial \theta_k} \, dt \quad \text{W. T. S.}
\]

\[
1 \Delta J_{kT} \leq \frac{CE}{|\kappa u|} \sim \frac{d \phi_0}{T}
\]

C must be indep. of T!

With this, the action remains arbitrarily small with large changes in $\Delta \phi_0$ if T is large, i.e. the change in ϕ_0 is made very slowly over a long time.

Question

Can other wave actions (Kaufman, Bizard, Tracy, Crawford, ...) that are functions of $x \text{ & } t$ be represented as a sum over these continuum action variables?