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Hot Magnetized PlasmasHot, magnetized plasmas	





Hot Magnetized Plasma

Ionized gas of charged particles where

Hot ⇒ collisions not important

Rare collisions i.e. when mean free path is very long

Magnetized ⇒ magnetic field important

Gyroradius small compared to other scale lengths



Maxwell-Vlasov System
Vlasov Equation:

∂fα(x,v, t)

∂t
+ v · ∇fα +

eα

mα

(
E + v ×B

)
· ∇vfα =

∂fα

∂t

)

c
≈ 0

where f is phase space density, α = e, i is species index, and the
sources, charge density and current density, are given by

ρ(x, t) =
∑

α
eα

∫

IR3
d3v fα , J(x, t) =

∑

α
eα

∫

IR3
d3v vfα ,

which couple into

Maxwell’s Equations:

∂B

∂t
= −∇× E , ∇ ·B = 0

ε0
∂E

∂t
= ∇×B− µ0J , ε0∇ · E = ρ



Vlasov Regularity

Vlasov-Poisson:

• (1952) 3D stellar dynamics. R. Kurth local existence in time.

• (1977) spherical symmetry. J. Batt, global existence.

• (1989) 3D compact support. K. Pfaffelmoser, B. Perthame,

J. Schaeffer, smooth global existence.

• ...

Maxwell-Vlasov:

• Open!



Maxwell- Vlasov Regularity

R. Glassey, J. Schaeffer, .....

“After 40 years we have precious little to show for it.”

Computation?
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Vlasov-Maxwell – Multiscale Computation

Range of scales	


Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 

⌦�1
e ⌦�1

i L/vte L/vti ⌧c

Gyromotion Turbulence Mean profiles 

Space scale (meters) 

10-5 10-3 10-1 103 10 

Gyromotion 

Turbulence 

⇢e ⇢i

Mean Profiles 

L

Collisions 

Collisions 



Curse of Dimension

Expense (brute force)	


Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 

Space scale (meters) 

10-5 10-3 10-1 103 10 

Temporal grid: ~1013 time steps 

Spatial grid: ~106 grid points x 3-D = 1018 grid points 

Velocity grid: ~10 grid points x 3-D = 103 grid points 

Total: ~1034 total grid points 

Collisions 

Velocity grid: ∼ 100 grid points

Total: ∼ 1037 total grid points



Feasibility

• petaflop=1015 opers
sec

• petaflop × 106 in parallel ⇒ 1021 opers
sec

• 1021 opers
sec × π × 107 sec

year = 1028 opers
year

• 1037 ÷ 1028 = 109 ∼ age of solar system < age of universe



Maxwell-Vlasov System (to scale)

∂fα(x, v, t)

∂t
+ v · ∂fα

∂x
+ . . . (1)

←− person



3D Vlasov-Poisson

∂f

∂t
= −v · ∇f + E · ∇vf Ω× (0, T ] ,

E = −∇Φ Ωx × (0, T ] ,

∆Φ =
∫

IR3
d3v f − 1 Ωx × (0, T ] .

Ω = Ωx × IR3



Vlasov Computational Methods
Computational methods

The VP system with the electrostatic force has been studied
extensively for the simulation of collisionless plasmas. Numerical
methods include but not limited

I Particle-In-Cell (PIC) (Birdsall, Langdon; Hockney, Eastwood,
1981)

I Semi-Lagrangian approach (Cheng and Knorr, 1976,
Sonnendrücker, et al, F. Filbet, et al, Qiu and Christlieb )

I Fourier-Fourier Spectral methods (Klimas et al), WENO FD
with Fourier collocation (Zhou et al.) , FEM, DG (see next
page).

For gravitational VP system,
I 1D problems, Fujiwara, 1981, White, 1986
I Spherical stellar systems, Fujiwara, 1983
I Stella disks, Nishida et al, 1984.
I Gravitational clustering, Bouchet, 1985

Computational challenges inlcude high dimensionality, large
computational cost, conservation of physical quantities, etc.



Discontinuous Galerkin MethodDG review

I Invented by Reed and Hill (73) for neutron transport.
Lesaint and Raviart (74).

I RKDG method by Cockburn and Shu (89, 90,...) for
conservation laws.

I Elliptic and Parabolic problems, (IP methods), Babus̆ka et al.
(73), Wheeler (78), Arnold (79), Bassi and Rebay (97),
Cockburn and Shu (98), Arnold et al. (02)...

DG methods for VP systems in electrostatic case have been considered

I Heath, Gamba, Morrison, Michler, JCP, 2011. Heath, 2007
I Ayuso, Carrillo, Shu, KRM, to appear; preprint.
I Qiu, Shu, JCP, 2011. Rossmanith, Seal, JCP, 2011, Crouseilles

et al., preprint.



DG Method – Conservation Laws
DG for nonlinear hyperbolic conservation laws

For ut +∇ · f(u) = 0, the DG method is: to find u ∈ V(K), such
that

∫

K
utv dA−

∫

K
f(u) · ∇v dA +

∫

∂K

̂f(u) · n v ds = 0

hold for any test function v ∈ V(K).

K

Upwinding



DG Method – Advantages

� Real Boundary Conditions

The main advantages of DG

I Use of FVM framework,
convection-dominated
problems.

I Flexibility with the mesh.
(hanging nodes,
nonconforming mesh)

I Compact scheme, highly
parallelizable.

I Polynomials of different
degrees in different
elements, even
non-polynomial basis.

semi-discrete:

M
df

dt
= V (f) , M−1 only once!



VP DG Error Estimates

for 

: the space of polynomials on a set K of degree less than  or equal to r,  

and Non-Symmetric Interior Penalty  (NIPG) method for the Poisson equation 

Error estimates for Vlasov Poisson  (Ross Heath,  PhD Thesis 2007): 

and 

Broken Sobolev spaces Hs(mesh) etc.



1D Vlasov-Poisson & Advection Equations

Vlasov-Poisson:

ft = −vfx + Efv Ω× (0, T ]

E = −Φx Ωx × (0, T ] ,

Φxx =
∫

R
dv f − 1 Ωx × (0, T ]

Linear Vlasov-Poisson:

(δf)t = −v(δf)x + Ef ′0 Ωx × (0, T ]

E = −Φx Ωx × (0, T ]

Φxx =
∫

R
dv δf Ωx × (0, T ]

Advection:

(δf)t = −v(δf)x Ω× (0, T ]

Ωx = [0, L] , Ω = Ωx × IR



ICs and BCs

f(x, v, t) = f0(v) + δf(x, v, t)

δf(x, v,0) = A cos(kx) f0(v) ,

δf(0, v, t) = δf(L, v, t) ,

Φ(0, t) = Φ(L, t) = 0 ,

Note, δf(L, v, t) need not be small. Sample equilibria:

Maxwellian : fM =
1√
2π

e−v
2/2

Lorentzian : fL =
1

π

1

v2 + 1
.



Advection

ρtot(x, t) = 1−
∫ ∞
−∞

dv f(x, v, t)

= 1−
∫ ∞
−∞

dv f̊(x− vt, v)

= −A
∫ ∞
−∞

dv cos [k(x− vt)] f0(v) ,



Maxwellian Advection

Choose:

f0 = fM , A = 0.1, k = 0.5, L = 4π

⇒

ρtot(x, t) = −A cos (kx) e−k
2t2/2

⇒

maxx |ρtot(x, t)| = 0.1 e−t
2/8



Maxwellian Advection

log10(maxx |ρtot(x, t)|) vs. t

exact solution (solid), (Nhx, Nhv) = (500,400)(dot),
(1000,800)(dash-dot), (2000,1600)(dash-dot-dot),
(4000, 400) (short dash), (8000, 400) (long dash).



Lorentzian Advection

Choose:

f0 = fL, A = 0.01, k = 1/8,1/6,1/4,1/2 , L = 16π,12π,8π,4π

T = 75,75,50,50 , (Nx, Nv) = (1000,2000)

⇒

ρtot(x, t) = −A cos (kx) e−kt

⇒

maxx |ρtot(x, t)| = 0.01 e−kt



Lorentzian Advection

log10(maxx |ρtot(x, t)|) vs. t

k=1/8 (left) and k=1/6 (right)
exact solution (dash), numerical solutions (solid).

k=1/4 (left) and k=1/2 (right);
exact solution(dash), numerical solutions (solid).



Landau Damping

Assume:

f(x, v, t) = f0(v) + δf(x, v, t) , δf(x, v, t) ∼ exp(ikx− iωt)

Plasma ‘Dispersion Relation’:

ε(k, ω) = 1− 1

k2

∞∫

−∞

f ′0(v)

(v − ω/k)
dv ,

k real and positive, ω in UHP

Stable and unstable eigenmodes (and embedded modes) if they
exist satisfy

ε(k, ω) = 0 ⇒ ω(k) = ωR(k) + iγ(k)

Landau damping comes from analytically continuing into LHP
(deforming the contour). Not an eigenmode! Time asymptotics.



Landau Damping Maxwellian



Contour plots (left) and cross-sectional plots (right), x = 2π,
for δf at t = 0, t = 25, t = 50, t = 75 (descending order).



Landau Damping Maxwellian Decay Rate

Time decay plots of fundamental mode under mesh refinement:
(Nhx, Nhv) =(250, 200) (top left), (500, 400) (top right), (1000,
800) (bottom left) and (2000, 1600) (bottom right). The the-
oretical decay rate is -0.153 to three decimal-digit accuracy.



Landau Damping with Lorentzian

Plasma Dispersion Function:

ε(k, ω) = 1 +
2

πk2

∫ ∞
−∞

v

(v2 + 1)2(v − u)
dv ,

Residue calculus implies:

ε(k, u) = 1− 1

k2(u+ i)2
.

ε = 0 and u = ω/k implies

ω = ωR + iγ = ±1− ik ,



Landau Damping with Lorentzian: γ = k

Decay plots of fundamental modes: k=1/8 (top left), k=1/6
(top right), k=1/4 (bottom left) and k=1/2 (bottom right).



Recurrence in Advection

Given a map on a bounded domain D,

ft : D → D ,

with f measure preserving homeomorphism ⇒ recurrence.



Cheng-Knorr Recurrence Time
Recurrence time (Cheng and Knorr, 76)

ρ(x, t) =
∑

j

f(x, vj , t)4v =
∑

j

f0(x− vjt, vj)4v

=
∑

j

Afeq(vj) cos(k(x− vjt))4v

=
∑

j

Afeq(vj) cos(kx− k(j + 1/2)4vt)4v

This is a periodic function in time with period TR = 2π
k4v .

In this section, we consider the standard RKDG methods for this
equation with upwind numerical fluxes.



DG Recurrence Time Q1

fh = f
i−1

4,j+
1
4
χ1(x, v) + f

i−1
4,j−

1
4
χ2(x, v)

+f
i+1

4,j+
1
4
χ3(x, v) + f

i+1
4,j−

1
4
χ4(x, v),

χ1(x, v) = −4

(
x− xi
4xi

− 1

4

)(
v − vj
4vj

+
1

4

)

χ2(x, v) = 4

(
x− xi
4xi

− 1

4
)

)(
v − vj
4vj

− 1

4

)

χ3(x, v) = 4

(
x− xi
4xi

+
1

4

)(
v − vj
4vj

+
1

4

)

χ4(x, v) = −4

(
x− xi
4xi

+
1

4

)(
v − vj
4vj

− 1

4

)

fij = (fi−1/4,j+1/4, fi−1/4,j−1/4, fi+1/4,j+1/4, fi+1/4,j−1/4)T



DG Recurrence Time Q1

dfij

dt
=
4v
4x

(
Smfij + Tmfi−1,j

)
=
4v
4x

(
Sm + Tme

−ik∆x
)
fij

Sm =




−49
96 −

7m
8

7
96 − 7

32 −
3m
8

1
32

− 7
96

49
96 −

7m
8 − 1

32
7

32 −
3m
8

77
96 + 11m

8 −11
96 −21

32 −
9m
8

3
32

11
96 −77

96 + m
8 − 3

32
21
32 −

9m
8



,

Tm =




−35
96 −

5m
8

5
96

35
32 + 15m

8 − 5
32

− 5
96

35
96 −

5m
8

5
32 −35

32 + 15m
8

7
96 + m

8 − 1
96 − 7

32 −
3m
8

1
32

1
96 − 7

96 + m
8 − 1

32
7

32 −
3m
8



,

with m = 2j −Nv − 1 = 1,3,5 . . .



DG Recurrence Time Q1

The initial condition is fij(0) = Re(AeikxiΛ), where

Λ = (e−ik4x/4feq(vj+1/4), e
−ik4x/4feq(vj−1/4),

eik4x/4feq(vj+1/4), e
ik4x/4feq(vj−1/4))

T

Hence the general expression for the numerical solution is

fij(t) = Re(eikxi(a1e
η1tV1 + a2e

η2tV2 + a3e
η3tV3 + a4e

η4tV4))

where η1, . . . η4 are eigenvalues of Gj , and V1, . . . V4 are
corresponding eigenvectors.

Eigenvectors independent of m = 2j −Nv − 1⇒

Exact solution:

Recurrence TR ≈ 2π/k∆v, modulation, and decay O(k2∆x2).



DG Recurrence Time Q1

t

ρ
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Figure: Top left: Maxwellian, Q1. Top right: Lorentzian, Q1. Bottom
left: Maxwellian, Q2. Bottom right: Lorentzian, Q2.



Landau Damping – Q2 Recurrence Time

t

E
_

m
a

x

0 50 100 150 200

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

HL = −1

2

∫ 4π

0
dx
∫

IR
dv

v (δf)2

f ′0
+

1

8π

∫ 4π

0
dx E2 .



Nonlinear Computations – Analysis of Results



Nonlinear Landau Damping

Maxwellian, amplitude A = .5: k=.5 (top left), k=1 (top right),
k=1.5 (bottom left) and k=2 (bottom right). Bounce time ≈ 40.



Nonlinear Landau Damping

Maxwellian, amplitude A = .5. First mode. γ smaller than linear

Landau damping because nonlinear coupling matters early.



Nonlinear Two-Stream Instability

Equilibrium:

fTS(v) =
1√
2π

v2 e−v
2/2

Manipulations:

ε = 1− 2

k2

[
1− 2z2 + 2zZ(z)

(
1− z2

)]
.

where z = ω/k.

Plasma Z-function:

Z(z) =
1√
π

∫ ∞
−∞

e−w
2 dw

w − z = 2ie−z
2
∫ iz
−∞

e−t
2
dt

first expression =(z) > 0 and the value of Z for =(z) < 0 is
obtained by analytic continuation; second expression valid for all
complex z good for numerics. ε = 0 implies instability! γ agrees!





Invariants

Particle Number:

N =
∫ L

0
dx
∫

R
dv f(x, v, t) ,

Total Momentum:

P =
∫ L

0
dx
∫

R
dv vf(x, v, t) ,

Total Energy:

H =
1

2

∫ L
0
dx
∫

R
dv |v|2f(x, v, t) +

1

2

∫ L
0
dx |E(x, t)|2 ,

Casimir Invariants:

C =
∫ L

0
dx
∫

R
dv C(f) .



Invariants – Relative Error

Total particle number (left). Total momentum (right).

Enstrophy (left). Total energy (right).



BGK Mode Potential

The electrostatic potential up to Φ(x, t = 100)



Scatter Plot f versus E(x, v)

At t = 100 for every x, v, know Φ⇒ E(x, v) = v2/2−Φ(x,100).
Make scatter plot of 9 million pairs (x, v) of f100 versus E(x, v):

f100 a graph over E(x, v) to within line thickness. Green positive
velocities; red negative velocities.



Scatter Plot Detail

Blow-up of f100(E) near E = 0. Is cusp universal trapping feature?



BGK Modeling

Model Distribution:

ffit = A(E + ΦM)(E + E∗)e−βE .
Here ΦM = max(Φ). Since E = v2/2 − Φ, min(E) = −ΦM .
f > 0⇒ E∗ > ΦM .

5 10 15

0.05

0.10

0.15

0.20

Rough guess:
ΦM = 1 and E∗ = 2 uniformly good fit. f ′(EM) = 0. For β = 1,
EM = 1/γ , where γ is the golden mean!



Pseudo-potential

ρ(Φ) =
∫

IR
dvf(E) =

∫ ∞
−Φ

dE f0(E)√
2(E + Φ)

Poisson’s Equation:

Φxx = −ρ(Φ) = −dV
dΦ

Integrable Newton’s second law: Φ ∼ x, x ∼ t. Oscillation if

pseudo-potential V has local minimum etc. Compares well.



Dynamically Accessible IC

Vlasov with Drive:

ft = −vfx +
(
E + Ed(x, t)

)
fv , Ex = 1−

∫

IR
dv f

External Drive:

Ed(x, t) = Ad(t) cos(kx− ωt)

Drive Created IC:

used for the PF drive, there is a rough threshold for the PF
drive strength, above which KEEN wave can be produced
readily and below which no enduring KEEN wave would
result. Conversely, for a given PF drive strength, a suffi-
ciently long PF drive envelope effective duration Teff is re-
quired for producing a self-sustaining KEEN wave �here we
define the effective drive duration as Teff=Tplateau+Ttrans,
which is the effective time during which the drive is at its
maximum�.

The available simulation results suggest that a criterion
of necessary drive strength and duration for producing a sur-
viving KEEN wave can be established in terms of the char-
acteristic electron bounce �or trapping� time �B relevant to
the formation of an electron trapping vortex in �X ,V� phase
space. When electron trapping is discussed, usually only
electrostatic electric fields are involved. In calculating the
electron bounce �trapping� time �B when both ponderomotive
drive and the induced electrostatic field coexist, as here, one
needs to obtain the result including the dynamics of coexist-
ence in a self-consistent way. A reasonable concept is to
estimate the response of the untrapped particles using linear
theory. It turns out that the electron plasma response for un-
trapped electrons proves to be well approximated by linear
theory over a sufficiently long �up to �B /2� time during the
drive. The resulting normalized electron bounce �or trapping�
time �B�p in the plasma is obtained �see Appendix A� as
�B�p=2��p /�B=2���1+	e� /k�Da�1/2, where a is the nor-
malized �dimensionless� ponderomotive drive amplitude
and 	e�� /�p ,k�D� is the electron susceptibility. The factor
1+	e is a large correction at the low frequencies for the case
at hand. The plasma response is essentially that of an
imperfect but fairly effective shield. For our usual param-
eters � /�p=0.37, k�D=0.26 we have 	e=−1.21+9.59i, and
the normalized trapping time is then �B�p

=2��9.6 / �0.26a��1/2=38.2a−1/2. This is the formula used to
indicate �B in Figs. 1–3 �and later for Figs. 6 and 7�.

First, in Fig. 1, one has a typical subthreshold result
when the drive is evidently unsuccessful in producing a long-
lived KEEN wave. The trapping period �B �as indicated by
the length of the double-headed arrow labeled �B in Fig. 1,
between the EF �electrostatic force� and PF �ponderomotive
force� frames� for the net force during the drive is in this case
considerably greater than the effective drive duration �about
twice� and the drive is ineffective. For unsuccessful drive
cases like this, after the drive is switched off, the electrostatic
field in the plasma becomes far less than the value induced
during the drive, being rather comparable to the net force
during the drive, and decreases in an irregular manner. Note
also that during the drive period, as predicted from the linear
response theory, the net force acting on electrons �EF+PF� is
far less than either the drive or the resultant electrostatic
force EF, which in fact acts mostly to cancel the ponderomo-
tive drive. To produce a KEEN wave one would have to
drive harder or longer or both.

The probe results for the case when the drive is suffi-
ciently strong to produce a sustained KEEN wave are shown
in Fig. 2, obtained with a drive which is five times stronger
than that of Fig. 1. For this drive the trapping time is found
to be about the effective duration of the drive. For successful

drive cases like this, the net force �EF+PF� initially follows
the linear theory prediction, being far less than the drive PF
or the electrostatic force EF, but, at about half the trapping
period �B, when the nonlinearity becomes significant, the net
force on the electrons begins to rise dramatically, approach-
ing the sustaining amplitude and shape before the drive ends.

We found that the electron trapping and the associated
nonlinearity, essential for the formation of a self-sustaining
KEEN wave, is fairly well established during the driving
phase by t=�B /2, but that to reach a well-established KEEN
state, one should at least continue to drive the plasma to
about t=�B. This is the threshold criterion we adopt for the
PF-driven KEEN waves. As shown directly in Fig. 2 �and
also in Fig. 3 to be discussed next�, between �B /2 and �B the
waveforms of the plasma field become markedly nonsinusoi-
dal, indicating nonlinearity, and there is also �in Figs. 2 and
3� a very characteristic change in the net force which be-
comes comparable to the maximum ponderomotive driving
force. Further increasing the drive amplitude nearly always
gives little increase in KEEN amplitude. �We return to this
topic in Sec. VI, when discussing emergent resonance.�

In Fig. 3 the behavior during and just after the driving
phase is examined in greater detail. In Fig. 3�a� the energy

FIG. 1. �Color online� Unsuccessful KEEN wave field results for subthresh-
old drive �plateau drive time of 150�p

−1 �transitions of 50�p
−1�, tFP=150�p

−1�,
with the trapping time �B�380�p

−1 �as shown by double-headed arrow be-
low the EF plot� being about 2.5 times the effective drive duration. Shown
�vs T= t�p

−1�, from the top down, are the frequency �FREQ�, the net force
�EF and PF or EF+PF�, the EF, and the ponderomotive drive force �PF�.

042105-4 Johnston et al. Phys. Plasmas 16, 042105 �2009�

Downloaded 10 May 2011 to 128.83.179.208. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

Ad(t) = .052 and Td = 200

Johnston et al., Afeyan, Rose, PJM, ...



Weak Drive: E(t) = E(t+ T )

Ad(t) = .052 and Td = 200

Appears to settle into periodic orbit – travelling BGK hole.



Strong Drive

800 850 900 950 1000 1050 1100 1150 1200 1250 1300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

E(
t)

E(t) at x−center point−  Basis functions P2

Ad(t) = .4 and Td = 200

Higher Order Periodic/Quasiperiodic Orbit: E(t) = A(t)E0(t)

A(t) = A(t+ T/4) with E0(t) = E0(t+ T )

E0(t) like weak drive



Strong Drive Fourier





Open Mathematics Problems

• Prove nonlinear Landau damping rate, growth, bounce – say
anything about general phenomenology.

• Prove stability of any BGK mode. Mine?

• Prove ‘weak’ asymptotic stability.

• Prove existence/nonexistence of cusp.

• Prove existence of weak drive periodic orbit. Stability. Weak
asymptotic stability.

• Prove existence of strong drive periodic/quasiperiodic orbit.
Stability. Weak asymptotic stability.



How?

• Finite-Dimensional Hamiltonian Systems:

. ∃ periodic orbits near equilibria

Lyapunov, Weinstein, Moser, ...

. variational methods

Rabinowitz, Ekland, ...

• Infinite-Dimensional Hamiltonian VP-Like Systems:

. ∃ Hamilton-Jacobi Variational Principle for VP

PJM, ... tutorial web page, online ICERM lecture

. techniques: viscosity solutions, weak KAM, ...

Villiani, Gangbo, Li, ...

Time is Ripe!


