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Finalized Course Overview

1. Review of Basics (finite → infinite)

2. Ideal Fluids and Magnetofluids A

3. Ideal Fluids and Magnetofluids B

4. Ideal Fluids and Magnetofluids C

5. Kinetic Theory – Canonization & Diagonalization, Continu-

ous Spectra, Krein-like Theorems

6. Metriplecticism: relaxation paradigms for computation and

derivation
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Action Principle

Hero of Alexandria (75 AD) −→ Fermat (1600’s) −→

Hamilton’s Principle (1800’s)

The Procedure:

• Configuration Space Q: qi(t) , i = 1,2, . . . , N ←−#DOF

• Kinetic - Potential: L = T − V : TQ× R→ R

• Action Functional: paths → R

S[q] =
∫ t1
t0
L(q, q̇, t) dt , δq(t0) = δq(t1) = 0

Extremal path =⇒ Lagrange’s equations



Variation Over Paths

S[qpath] = number

Functional Derivative: ⇔ vanishing first variation

δS[q]

δqi
= 0 =⇒

Lagrange’s Equations:

∂L

∂qi
−
d

dt

∂L

∂q̇i
= 0 .



Hamilton’s Equations

Canonical Momentum: pi = ∂L
∂q̇i

Legendre Transform: H(q, p) = piq̇
i − L

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
,

Failure of LT (not convex) =⇒ Dirac constraint theory

Phase Space Coordinates: z = (q, p)

żi = J ijc
∂H

∂zj
, (J ijc ) =

(
0N IN
−IN 0N

)
,

symplectic 2-form = (cosymplectic form)−1: ωcijJ
jk
c = δki ,



Phase-Space Action

Gives Hamilton’s equations directly

S[q, p] =
∫ t1
t0
dt
(
piq̇

i −H(q, p)
)

Defined on paths γ in phase space P (e.g. T ∗Q) parameterized

by time, t, i.e., zγ(t) = (qγ(t), pγ(t)). Then S : P → R. Domain

of S any smooth path γ ∈ P.

Law of nature, set Fréchet or functional derivative,to zero. Vary-

ing S by perturbing path, δzγ(t) , gives

δS[zγ; δzγ] =
∫ t1
t0
dt

[
δpi

(
q̇i −

∂H

∂pi

)
− δqi

(
ṗi +

∂H

∂qi

)
+

d

dt

(
piδq

i
)]
.

Under the assumption δq(t0) = δq(t1) ≡ 0 , with no restriction

on δp, boundary term vanishes.

Admissible paths in P have ‘clothesline’ boundary conditions.



Phase-Space Action Continued

δS ≡ 0 ⇒ q̇i =
∂H

∂pi
and ṗi = −

∂H

∂qi
, i = 1,2, . . . , N ,

Thus, extremal paths satisfy Hamilton’s equations.



Alternatives

Rewrite action S as follows:

S[z] =
∫ t1
t0
dt

(
1

2
ωcαβz

αżβ −H(z)
)

=:
∫
γ

(dθ −Hdt)

where dθ is a differential one-form.

Exercise: What are boundary conditions. General θ?

Exercise: Particle motion in given electromagnetic field B = ∇×A
and E = −∇φ− 1

c
∂A
∂t

S[r,p] =
∫ t1
t0
dt

[
p · ṙ−

1

2m

∣∣∣∣p− ecA(r, t)
∣∣∣∣2 − eφ(r, t)

]
.

Show Lorentz force law arises from S.



Generalized Hamiltonian Structure

Sophus Lie (1890) −→ PJM (1980)....

Noncanonical Coordinates:

żi = J ij
∂H

∂zj
= [zi, H] , [A,B] =

∂A

∂zi
J ij(z)

∂B

∂zj

Poisson Bracket Properties:

antisymmetry −→ [A,B] = −[B,A] ,

Jacobi identity −→ [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Matter models in Eulerian variables: J ij = c
ij
k z

k ← Lie− Poisson Brackets



Flow on Poisson Manifold

Definition. A Poisson manifold P is differentiable manifold with

bracket [ , ] : C∞(P) × C∞(P) → C∞(P) st C∞(P) with [ , ] is

a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii)

Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector

fields, JdH.

Because of degeneracy, ∃ functions C st [f, C] = 0 for all f ∈
C∞(P). Called Casimir invariants (Lie’s distinguished functions.)



Poisson Manifold P Cartoon

Degeneracy in J ⇒ Casimirs:

[f, C] = 0 ∀ f : P → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

∇C(α)

M

2N

C(α) = constant



Hamiltonian Reduction

Bracket Reduction:

Reduced set of variables (q, p) 7→ w(q, p)

Bracket Closure:

[w,w] = c(w) f(q, p) = f̂ ◦ w = f̂(w(q, p))

Chain Rule ⇒ yields noncanonical Poisson Bracket

Hamiltonian Closure:

H(q, p) = Ĥ(w)

Example: Eulerian fluid variables are noncanonical variables

(pjm & John Greene 1980)



Reduction Examples/Exercises

• Let q ∈ Q = R3 and define the angular momenta Li = εijkqjpk,

with i, j, k = 1,2,3. Show [Li, Lj] = fij(L). What is fij?

• Given wk = Lik(q)pi, with i = 1,2, . . . N , find a nontrivial

condition on Lik that ensures reduction.



Why Action/Hamiltonian?

• Beauty, Teleology, . . . : Still a good reason!

• 20th Century framework for physics: Plasma models too.

• Symmetries and Conservation Laws: energy-momentum . . . .

• Generality: do one problem ⇒ do all.

• Approximation: pert theory, averaging, . . . one function.

• Stability: built-in principle, Lagrange-Dirichlet, δW , . . . .

• Beacon: motivation, e.g. ∃ ∞-dim KAM theorem? . . . .

• Numerical Methods: structure preserving algorithms:

symplectic/conservative integrators, . . . .

• Statistical Mechanics: energy and measure.



Functionals

Functions: number 7−→ number e.g. f : Rn → R

example

Generalized Coordinate: q(t) = A cos(ωt+ φ) e.g. SHO

Functionals: function 7−→ number e.g. F : L2 → R

examples

General: F [u] =
∫
F(u, ux, uxx, . . . ) dx .

Hamilton’s Principle: S[q] = 1
2

∫ t1
t0
L(q, q̇, t) dt .

Vlasov Energy: H[f ] = m
2

∫
fv2 dxdv + 1

2

∫
E2 dx.



Functional Differentiation

First variation of function:

δf(z; δz) =
n∑
i=1

∂f(z)

∂zi
δzi =: ∇f · δz , f(z) = f(z1, z2, . . . , zn) .

First variation of functional:

δF [u; δu] =
d

dε
F [u+ ε δu]

∣∣∣∣
ε=0

=
∫ x1

x0

δu
δF

δu(x)
dx =:

〈
δF

δu
, δu

〉
.

dot product · ⇐⇒ scalar product <,>

index i ⇐⇒ integration variable x

gradient ∂f(z)
∂zi

⇐⇒ functional derivative δF [u]
δu(x)

Vary and Isolate −→ Functional Derivative



Functional Differentiation Examples/Exercises

• Given

H[u] =
∫
T
dx

(
u3

6
−
u2
x

2

)
, u : T→ R

What is δu/δx?

• Given

E[E] =
1

2

∫
R
d3x |E|2

What is δE/δE? For E = −∇φ, how are δE/δE and δE/δφ
related?



Relativistic N-Particle Action

Dynamical Variables: qi(t), φ(x, t), A(x, t)

S[q, φ,A] = −
N∑
i=1

∫
dt mc2

√
1−

q̇2
i

c2
←− ptle kinetic energy

coupling −→ −e
∫
dt

N∑
i=1

∫
d3x

[
φ(x, t) +

q̇i
c
·A(x, t)

]
δ (x− qi(t))

field ‘energy′ −→ +
1

8π

∫
dt
∫
d3x

[
E2(x, t)−B2(x, t)

]
.

Variation:
δS

δqi(t)
= 0 =⇒ EOM & Fields ,

δS

δφ(x, t)
= 0 ,

δS

δA(x, t)
= 0 =⇒ ME & Sources



All done?



Irrelevant Information

Reductions, Approximations, Mutilations, . . . :

=⇒ Constraints (explicit or implicit) =⇒ Interesting!

Finite Systems

B-lines, ptle orbits, self-consistent models, . . .

Infinite Systems

kinetic theories, fluid models, mixed . . .

Lagrangian (material) or Eulerian (spacial) variables



Big Actions to Little Actions

Hamiltonian B-lines: Set φ = 0, specify B, let rG → 0

S[r] =
∫
A · dr Kruskal (52)

Hamiltonian ptle orbits: Specify φ and B non-selfconsistent

Standard ptle orbit action =⇒ tools

Hamiltonian self-consistent models: Specify φ and B partly

Single-Wave Model: OWM(71), Kaufman & Mynick (79), Ten-
nyson et al.(94), Balmforth et al. (2013), . . .

Multi-Wave Model: Cary & Doxas, Escande, del-Castillo, Finn,
. . . Evstatiev (2004)

Moment Models: Kida, Chanell, Meacham et al. (95), Shadwick
. . . , Perin et al. (2014).



Finite DOF Hamiltonian Vocabulary

Integrable 1 DOF

Poincare Section 1.5 DOF

KAM integrable limit

Invariant Tori good surfaces

Island Overlap broken surfaces

Chirkov-Taylor Map chaos

Greene’s Criterion tori far from integrable

Renormalization universality

Spectra no asymptotic stability

Stability Lagrange δ2W , Dirichlet δ2H, Energy-Casimir δ2F ,. . .

Normal Forms stable ⇒ H =
∑
ω(q2 + p2)/2, linear/nonlinear



Infinite DOF Hamiltonian Vocabulary

Integrable KdV, . . . , rare, Greene and Kruskal

KAM active area in mathematics

Spectra discrete, continuous

Stability δ2W , δ2H, δ2F

Normal Forms linear/nonlinear perturbation theories

Action Reduction direct method of calculus of variations

Noether’s Thm energy-momentum tensor only believable way

Hamiltonian Reduction little systems from big, exact/approximate
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Magnetofluid References

Numbers refer to items on my web page: http://www.ph.utexas.edu/∼morrison/ where all can
be obtained under ‘Publications’.

187. M. Lingam and P. J. Morrison, “The Action Principle for Generalized Fluid Motion
Including Gyroviscosity,” submitted (2014). Discusion of general models with gyroscopic
Lagrangians, including Eulerian variations.

186. I. Keramidas Charidakos, M. Lingam, P. J. Morrison, R. L. White, and A. Wurm,
“Action Principles for Extended MHD Models,” Physics of Plasmas (2014). Discussion of
two-fluid action and extended MHD. A complicated Lagrange to Euler map is described.

185. K. Kimura and P. J. Morrison, ”On Energy Conservation in Extended Magnetohydro-
dynamics,” Physics of Plasmas 21, 082101 (2014). A discussion of how ‘ordinary’ derivations
can lead to incorrect results.

184. P. J. Morrison, M. Lingam, and R. Acevedo, “Hamiltonian and Action Formalisms for
Two-Dimensional Gyroviscous MHD,” Physics of Plasmas 21, 082102 (2014). Derivation
of Braginskii MHD from an action principle, derivation of the gyromap, and Hamiltonian
reduction.

182. C. Tronci, E. Tassi, E. Camporeale, and P. J. Morrison, “Hybrid Vlasov-MHD Mod-
els: Hamiltonian vs. Non-Hamiltonian,” Plasma Physics and Controlled Fusion 56, 095008
(2014). Like item 185, models can be non-energy conserving. It is shown that lead non-
Hamiltonian models in the literature have false instabilities.

138. P. J. Morrison, “On Hamiltonian and Action Principle Formulations of Plasma Dy-
namics, in New Developments in Nonlinear Plasma Physics: Proceedings for the 2009 ICTP
College on Plasma Physics, eds. B. Eliasson and P. Shukla, American Institute of Physics
Conference Proceedings No.1188 (American Institute of Physics, New York, 2009) pp. 329–
344. Describes the procedure for building actions for magnetofluids etc.

91. P. J. Morrison, “Hamiltonian Description of the Ideal Fluid, Reviews of Modern Physics
70, 467–521 (1998). A comprehensive survey of Hamiltonian and action principles for fluids.



General Method for Building Actions

Applied to Magnetofluids

Ex Post Facto Discovery vs. Ab Initio Construction



Senior Progeny

Computability and Intuition

Reductions =⇒

Vlasov-Maxwell, two-fluid theory, MHD, ...

Neglect clearly identifiable dissipation =⇒

Action principles and Hamiltonian structure

identified ex post facto



Simplifications: Reduced Fluid Models

Approximations:

asymptotic expansions, systematic ordering

Model Building:

Mutilations, put it what one this is important, closures etc.

Other Progeny:

Gyrokinetics, guiding-center kinetics, gyrofluids, ... .

Hamiltonian? Action?



Building Action Principles Ab Initio

Step 1: Select Domain

For fluid a spatial domain; for kinetic theory a phase space

Step 2: Select Attributes – Eulerian Variables (Observables)

L to E, map e.g. MHD {v, ρ, s, B}. Builds in constraints!

Step 3: Eulerian Closure Principle

Terms of action must be ‘Eulerianizable’ ⇒ EOMs are!

Step 4: Symmetries

Traditional. Rotation, etc. via Noerther → invariants



Closure Principle

If closure principle is satisfied, then

i) Equations of motion obtained by variation are ‘Eulerianizable’.

ii) There exists a noncanonical Hamiltonian description.



Ideal Fluid and MHD



Fluid Action Kinematics

Giuseppe Luigi Lagrange, Mécanique analytique (1788)

Lagrangian Variables:

Fluid occupies domain D e.g. (x, y, z) or (x, y)

Fluid particle position q(a, t), qt : D → D

bijective, smooth, diffeomorphism, . . .

Particle label: a e.g. q(a,0) = a.

Deformation: ∂qi

∂aj
= qi,j

Determinant: J = det(qi,j) 6= 0⇒ a(q, t)

Identity: qi,ka
k
,j = δij



Volume: d3q = J d3a

Area: (d2q)i = J aj,i(d
2a)j

Line: (dq)i = qi,j(da)j

Eulerian Variables:

Observation point: r

Velocity field: v(r, t) =? Probe sees q̇(a, t) for some a.

What is a ? r = q(a, t) ⇒ a = q−1(r, t)

v(r, t) = q̇(a, t)|a=q−1(r,t)



IDEAL MHD

Attributes:

Entropy (1-form):

s(r, t) = s0|a=a(r,t) ,

Mass (3-form):

ρd3x = ρ0d
3a ⇒ ρ(r, t) =

ρ0

J

∣∣∣∣
a=a(r,t)

.

B-Flux (2-form):

B · d2x = B0 · d2a ⇒ Bi(r, t) =
qi,jB

j
0

J

∣∣∣∣∣∣
a=a(r,t)

.



Kinetic Potential
Kinetic Energy:

K[q] =
1

2

∫
D
d3a ρ0|q̇|2 =

1

2

∫
D
d3x ρ|v|2

Potential Energy:

V [q] =
∫
D
d3a ρ0V(ρ0/J , s0, |qi,jB

j
0|/J ) =

1

2

∫
D
d3x ρV(ρ, s, |B|)

=
∫
D
d3a ρ0U(ρ0/J , s0) +

1

2

|qi,jB
j
0|

2

J 2

Action:

S[q] =
∫
dt (K − V ) , δS = 0 ⇒ Ideal MHD

Alternative: Lagrangian variations induce constrained Eulerian
variations ⇒ Serrin, Newcomb, Euler-Poincaré, ...

Stability: δW , Lagrangian, Eulerian, dynamical accessible, An-
dreussi, Pegoraro, pjm. (2010 – 2014)



Equations of Motion and Eulerianization



Hamiltonian Structure

Legendre Transformation:

p =
δL

δq̇
= ρ0 q̇ L→ H

H =
1

2

∫
D
d3a |p|2/ρ0 +

∫
D
d3a

ρ0U(ρ0/J , s0) +
1

2

|qi,jB
j
0|

2

J 2


Poisson Bracket:

{F,G} =
∫
D
d3a

(
δF

δqi
δG

δpi
−
δG

δqi
δF

δpi

)

EOM:

q̇ = {q,H} = p/ρ0 ṗ = {p,H} = ρ0q̈ = ....

Complicated pde for q(a, t). Exercise. Derive it.



Eulerianization

Momentum:

ρ
∂v

∂t
= −ρv · ∇v −∇p+

1

c
J ×B

Attributes:

∂ρ

∂t
= −∇ · (ρv)

∂s

∂t
= −v · ∇s

∂B

∂t
= −∇× E = ∇× (v ×B)

Thermodynamics:

p = ρ2∂U

∂ρ
s =

∂U

∂s



Infinite-Dimensional Hamiltonian Structure

Field Variables: ψ(µ, t) e.g. µ = x, µ = (x, v), . . .

Poisson Bracket:

{A,B} =
∫
δA

δψ
J (ψ)

δA

δψ
dµ

Lie-Poisson Bracket:

{A,B} =
〈
ψ,

[
δA

δψ
,
δA

δψ

] 〉

Cosymplectic Operator:

J · ∼ [ψ, · ]

Form for Eulerian theories: ideal fluids, Vlasov, Liouville eq,
BBGKY, gyrokinetic theory, MHD, tokamak reduced fluid mod-
els, RMHD, H-M, 4-field model, ITG . . . .

Whence?



Eulerian Reduction

F [q, p] = F̂ [v, ρ, s, B]

Chain Rule ⇒ yields noncanonical Poisson Bracket in terms of

Eulerian variables (pjm & John Greene 1980)

It is an algorithmic process. Manipulations like calculus.

Hamiltonian Closure:

H =
∫
D
d3x

(
ρ|v|2/2 + ρU(ρ, s) + |B|2/2

)



Chain rule to density Eulerian variables, {ρ, σ,M,B}

{F,G} = −
∫
D
d3r

Mi

 δF

δMj

∂

∂xj
δG

δMi
−

δG

δMj

∂

∂xj
δF

δMi


+ ρ

 δF
δM
· ∇

δG

δρ
−
δG

δM
· ∇

δF

δρ

+ σ

 δF
δM
· ∇

δG

δσ
−
δG

δM
· ∇

δF

δσ


+ B ·

[
δF

δM
· ∇

δG

δB
−
δG

δM
· ∇

δF

δB

]

+ +B ·
[
∇
(
δF

δM

)
·
δG

δB
−∇

(
δG

δM

)
·
δF

δB

]  ,

Eulerian Hamiltonian form:

∂ρ

∂t
= {ρ,H} ,

∂s

∂t
= {s,H} ,

∂v

∂t
= {v,H} , and

∂B

∂t
= {B,H} .

Densities:

M = ρv σ = ρs
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Magnetofluid B Overview

• Complete MHD

• Other magnetofluids. More ab initio construction



Infinite-Dimensional Hamiltonian Structure

Field Variables: ψ(µ, t) e.g. µ = x, µ = (x, v), . . .

Poisson Bracket:

{A,B} =
∫
δA

δψ
J (ψ)

δA

δψ
dµ

Lie-Poisson Bracket:

{A,B} =
〈
ψ,

[
δA

δψ
,
δA

δψ

] 〉

Cosymplectic Operator:

J · ∼ [ψ, · ]

Form for Eulerian theories: ideal fluids, Vlasov, Liouville eq,
BBGKY, gyrokinetic theory, MHD, tokamak reduced fluid mod-
els, RMHD, H-M, 4-field model, ITG . . . .

Whence?



Eulerian Reduction

F [q, p] = F̂ [v, ρ, s, B]

Chain Rule ⇒ yields noncanonical Poisson Bracket in terms of

Eulerian variables (pjm & John Greene 1980)

It is an algorithmic process. Manipulations like calculus.

Hamiltonian Closure:

H =
∫
D
d3x

(
ρ|v|2/2 + ρU(ρ, s) + |B|2/2

)



Chain rule to density Eulerian variables, {ρ, σ = ρs,M = ρv,B}

{F,G} = −
∫
D
d3r

Mi

 δF

δMj

∂

∂xj
δG

δMi
−

δG

δMj

∂

∂xj
δF

δMi


+ ρ

 δF
δM
· ∇

δG

δρ
−
δG

δM
· ∇

δF

δρ

+ σ

 δF
δM
· ∇

δG

δσ
−
δG

δM
· ∇

δF

δσ


+ B ·

[
δF

δM
· ∇

δG

δB
−
δG

δM
· ∇

δF

δB

]

+ +B ·
[
∇
(
δF

δM

)
·
δG

δB
−∇

(
δG

δM

)
·
δF

δB

]  ,
Eulerian Hamiltonian form

∂ρ

∂t
= {ρ,H} ,

∂σ

∂t
= {σ,H} ,

∂M

∂t
= {M,H} , and

∂B

∂t
= {B,H} .

What is

δρ(x)

δρ(x′)
= ?



Chain rule to density Eulerian variables, {ρ, σ,M,B}

{F,G} = −
∫
D
d3r

Mi

 δF

δMj

∂

∂xj
δG

δMi
−

δG

δMj

∂

∂xj
δF

δMi


+ ρ

 δF
δM
· ∇

δG

δρ
−
δG

δM
· ∇

δF

δρ

+ σ

 δF
δM
· ∇

δG

δσ
−
δG

δM
· ∇

δF

δσ


+ B ·

[
δF

δM
· ∇

δG

δB
−
δG

δM
· ∇

δF

δB

]

+ +B ·
[
∇
(
δF

δM

)
·
δG

δB
−∇

(
δG

δM

)
·
δF

δB

]  ,
Eulerian Hamiltonian form

∂ρ

∂t
= {ρ,H} ,

∂σ

∂t
= {σ,H} ,

∂M

∂t
= {M,H} , and

∂B

∂t
= {B,H} .

What is

δρ(x)

δρ(x′)
= δ(x− x′) ?



Chain rule to density Eulerian variables, {ρ, σ,M,B}

{F,G} = −
∫
D
d3r

Mi

 δF

δMj

∂

∂xj
δG

δMi
−

δG

δMj

∂

∂xj
δF

δMi


+ ρ

 δF
δM
· ∇

δG

δρ
−
δG

δM
· ∇

δF

δρ

+ σ

 δF
δM
· ∇

δG

δσ
−
δG

δM
· ∇

δF

δσ


+ B ·

[
δF

δM
· ∇

δG

δB
−
δG

δM
· ∇

δF

δB

]

+ +B ·
[
∇
(
δF

δM

)
·
δG

δB
−∇

(
δG

δM

)
·
δF

δB

]  ,
Eulerian Hamiltonian form

∂ρ

∂t
= {ρ,H} ,

∂σ

∂t
= {σ,H} ,

∂M

∂t
= {M,H} , and

∂B

∂t
= {B,H} .

What is

δρ(x)

δρ(x′)
= δ(x− x′)

∂qi

∂qj
= δij



Explicit Eulerian Reduction

Reduce Lagrangian Hamiltonian description to Eulerian Hamil-
tonian description.

Recall.

Hamiltonian:

H =
1

2

∫
D
d3a |p|2/ρ0 +

∫
D
d3a

ρ0U(ρ0/J , s0) +
1

2

|qi,jB
j
0|

2

J 2


Poisson Bracket:

{F,G} =
∫
D
d3a

(
δF

δqi
δG

δpi
−
δG

δqi
δF

δpi

)

EOM:

q̇ = {q,H} = p/ρ0 ṗ = {p,H} = ρ0q̈ = −
δV

δq



Functional Chain Rule

Suppose functionals F and G are restricted to Eulerian variables

F [q, p] = F̂ [ρ, s, v, B] .

Then, variation gives

δF =
∫
D
d3a

(
δF

δq
· δq +

δF

δp
· δp

)
= δF̂

=
∫
D
d3x

(
δF̂

δρ
δρ+

δF̂

δs
δs+

δF̂

δv
· δv +

δF̂

δB
· δB

)
.

Here, {δρ, δs, δv, δB} induced by (δq, δp). How?

Recall

ρ(r, t) =
ρ0

J

∣∣∣∣
a=a(r,t)

=
∫
D
d3a ρ0(a) δ (r − q (a, t)) .

Thus

δρ = −
∫
D
d3a ρ0∇δ(r − q) · δq , δs , δB , δv = . . .



Insertion of δρ etc. gives

∫
D
d3a

(
δF

δq
· δq +

δF

δp
· δp

)
= −

∫
D
d3x

δF̂

δρ

∫
D
d3a ρ0∇δ(r−q)·δq+. . . .

Interchange integration order, remove
∫
Dd

3a since δq arbitrary

gives

δF

δq
= Oρ

δF̂

δρ
+Os

δF̂

δs
+Ov

δF̂

δv
+OB

δF̂

δB
,

where the O’s are operators involving integration over d3x and

Dirac delta functions. Upon insertion with similar expression for

δF/δp, doing some rearrangement, and dropping the hats, yields

−→



{F,G} = −
∫
D
d3x

δF
δρ
∇ ·

δG

δv
−
δG

δρ
∇ ·

δF

δv


+

∇× v
ρ
·
δG

δv
×
δF

δv

+
∇s
ρ
·

δF
δs

δG

δv
−
δG

δs

δF

δv


+ B ·

[
1

ρ

δF

δv
· ∇

δG

δB
−

1

ρ

δG

δv
· ∇

δF

δB

]

+ B ·
[
∇
(

1

ρ

δF

δv

)
·
δG

δB
−∇

(
1

ρ

δG

δv

)
·
δF

δB

]  .

Then M = ρv and σ = ρs gives Lie-Poisson form.



Other Magnetofluids



Braginskii MHD

ρ (vt + v · ∇v) = −∇p+ J ×B +∇ ·Π

Gyroviscosity Tensor: Πij = p
BNjsik

∂vs
∂xk

Action:

S[q] =
∫
dt (K +G− V ) ,

Gyroscopic Term:

G[q] =
∫
D
d3aΠ∗ · q̇ =

∫
D
d3xM∗ · v

where

Π∗ = ∇× L∗ =
m

2e
J b̂×∇

(
p

B

)

δS[q] = 0 ⇒ Braginskii MHD

pjm, Lingam, Acevedo, Wurm 2014



Inertial MHD (Tassi)

Basic Idea: Can ‘freeze-in’ anything one likes! (2-form attribute)

Choose:

Be = B + d2
e∇× J,

Action:

S =
∫
dt
∫
d3x

(
ρ
v2

2
− ρU(ρ, s)−Be ·B

)
.

Attributes:

ρd3x = ρ0d
3a, Bie =

B
j
e0

J
∂qi

∂aj

δS[q] = 0 ⇒ IMHD



Eulerian Reduction

F [q, p] = F̂ [ω, ψ]

Chain Rule ⇒ yields noncanonical Poisson Bracket in terms of

Eulerian variables (ω, ψ)

It is an algorithmic process.

Example: 2D IMHD

{F,G} = −
∫
d3x

(
ω[Fω, Gω] + ψe([Fω, Gψe]− [Gω, Fψe])

)
H =

∫
d2x(d2

e(∇2ψ)2 + |∇ψ|2 + |∇ϕ|2)

Produces 2D incompressible IMHD (Ottaviani-Porcelli model)!

Above, Fω := δF/δω, [f, g] := fxgy−gygx], ω = ẑ·∇×v, B = ẑ×∇ψ.



Two-Fluid Action
Keramidas Charidakos, Lingam, pjm, R. White and A. Wurm

S [qs ,A, φ] =
∫
dt

∫
d3x

[ ∣∣∣∣∣−1

c

∂A(x, t)

∂t
−∇φ(x, t)

∣∣∣∣∣
2

− |∇ ×A(x, t)|2
]

1

8π
(1)

+
∑
s

∫
d3a ns0(a)

∫
d3x δ (x− qs(a, t))

×
[
es

c
q̇s ·A(x, t)− esφ(x, t)

]
(2)

+
∑
s

∫
d3a ns0(a)

[
ms

2
|q̇s|2

−msUs (msns0(a)/Js, ss0)
]
. (3)

Eulerian Observables:

{n±, v±, A, φ}



Reduced Variables

New Lagrangian Variables:

Q(a, t) =
1

ρm0(a)
(mini0(a)qi(a, t) +mene0(a)qe(a, t))

D(a, t) = e (ni0(a)qi(a, t)− ne0(a)qe(a, t))

ρm0(a) = mini0(a) +mene0(a)

ρq0(a) = e (ni0(a)− ne0(a)) .

Consistent Expansion:

vA
c
<< 1 ,

me

mi
<< 1 ⇒ quasineutrality

Eulerian Closure:

{n, s, se, v, J}



Extended MHD

Ohm’s Law:

E +
v ×B
c

=
me

e2n

(
∂J

∂t
+∇ · (vJ + Jv)

)
−
me

e2n
(J · ∇)

(
J

n

)
+

(J ×B)

enc
−
∇pe
en

.

Momentum:

nm

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+

J ×B
c

−
me

e2
(J · ∇)

(
J

n

)
.



Extended MHD

Ohm’s Law:

E +
v ×B
c

=
me

e2n

(
∂J

∂t
+∇ · (vJ + Jv)

)
−
me

e2n
(J · ∇)

(
J

n

)
+

(J ×B)

enc
−
∇pe
en

.

Momentum:

nm

(
∂v

∂t
+ (V · ∇)v

)
= −∇p+

J ×B
c

−
me

e2
(J · ∇)

(
J

n

)
.

Consistent with an ordering of Lüst (1958)
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Noether → Energy Conservation

Energy:

H =
∫
d3x

[
|B|2

8π
+ nUi + nUe +mn

|v|2

2
+

me

ne2

|J |2

2

]

Energy conservation requires

me

e2
(J · ∇)

(
J

n

)
in momentum equation. Otherwise inconsistent.

Physical dissipation is real. Fake dissipation is troublesome, par-

ticularly for reconnection studies. Kimura and pjm (2014).
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Overview

• Solve stable linearized Vlasov-Poisson as a Hamiltonian sys-
tem.

• Normal Form:

H =
N∑
i

ωi
2

(
p2
i + q2

i

)
=

N∑
i

ωi Ji →
∞∑
k=1

∫
R
duωk(u)

(
P2
k (u) +Q2

k(u)
)

When stable ∃ a canonical transformation to this form. NEMs
and Krein-Moser.

• Continuous Spectrum: Transform G[f ] (generalization of
Hilbert transform) that diagonalizes Vlasov.

• General Diagonalization: General transform for a large class
of Hamiltonian systems.

• Continuous spectra and Krein bifurcations.



Vlasov-Poisson

Phase space density f(x, v, t) (1 + 1 + 1 field theory):

f : X × R× R→ R≥0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
−
e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = −4π
[
e
∫
R
f(x, v, t) dv − ρB

]
Energy:

H =
m

2

∫
T

∫
R
v2f dxdv +

1

8π

∫
T

(φx)2 dx

Boundary Conditions:

periodic ⇐⇒ X = T := [0,2π)



Linear Vlasov-Poisson

Linearization:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
−
e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = −4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal and Oberman, 1958):

HL = −
m

2

∫
T

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
T

(δφx)2 dx



Solution of Linear VP by Transform

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk − ikφk
e

m

∂f0

∂v
= 0

k2φk = 4πe
∫
R
fk(v, t) dv (LVP)

Three methods:

• Laplace Transforms (Landau and others 1946)

• Normal Modes (Van Kampen, Case,... 1955)

• Coordinate Change ⇐⇒ Integral Transform (pjm, Pfirsch,

Shadwick, Balmforth, Hagstrom, 1992 −→ 2013)



Summary

The Transform,

G[g](v) := εR(v) g(v) + εI(v)H[g](v) ,

where H is the Hilbert transform and εR,I are functions that

depend on f0, has an inverse Ĝ that maps (LVP) into

∂gk
∂t

+ iku gk = 0

whence

fk(v, t) = G
[
Ĝ[
◦
fk]e−ikut

]
,

where
◦
fk(v) := fk(v, t = 0)

.



Good Equilibria f0 and Initial Conditions
◦
fk

Definition (VP1). A function f0(v) is a good equilibrium if

f ′0(v) satisfies

(i) f ′0 ∈ L
q(R) ∩ C0,α(R), 1 < q <∞ and 0 < α < 1,

(ii) ∃ v∗ > 0 st |f ′0(v)| < A|v|−µ ∀ |v| > v∗, where A,µ > 0 , and

(iii) f ′0/v < 0 ∀ v ∈ R or f0 is Penrose stable. Assume f ′0(0) = 0.

Definition (VP2). A function,
◦
fk(v), is a good initial condition

if it satisfies

(i)
◦
fk(v), v

◦
fk(v) ∈ Lp(R) ,

(ii)
∫
R
◦
fk(v) dv <∞ .



Hilbert Transform

Definition

H[g](x) :=
1

π
−
∫
R

g(t)

t− x
dt ,

−
∫
R denotes Cauchy principal value.

∃ theorems about Hilbert transforms in Lp and C0,α. Plemelj,

M. Riesz, Zygmund, and Titchmarsh · · · (Can be extracted from

Calderón-Zygmund theory.) Recent tome by King.



Hilbert Transform Theorms

Theorem (H1).

(ii) H : Lp(R)→ Lp(R), 1 < p <∞, is a bounded linear operator:

‖H[g]‖p ≤ Ap ‖g‖p ,

where Ap depends only on p,

(ii) H has an inverse on Lp(R), given by

H[H[g]] = −g ,

(iii) H : Lp(R) ∩ C0,α(R)→ Lp(R) ∩ C0,α(R).



Theorem (H2). If g1 ∈ Lp(R) and g2 ∈ Lq(R) with 1
p + 1

q < 1,

then

H[g1H[g2] + g2H[g1]] = H[g1]H[g2]− g1g2 .

Proof : Based on the Hardy-Poincaré-Bertrand theorem, Tricomi.

Lemma (H3). If vg ∈ Lp(R), then

H[vg](u) = uH[g](u) +
1

π

∫
R
g dv .

Proof : v
v−u = u+v−u

v−u = u
v−u + 1 �



The Transform

Definition (G1). The transform is defined by

f(v) = G[g](v)

:= εR(v) g(v) + εI(v)H[g](v) ,

where

εI(v) = −πω2
pf
′
0(v)/k2 , εR(v) = 1 +H[εI](v) .



Remarks

1. We suppress the dependence of ε on k throughout. Note,

ω2
p := 4πn0e

2/m is the plasma frequency corresponding to an

equilibrium of number density n0.

2. ε = εR + iεI (complex extended, appropriately) is the plasma

dispersion relation whose vanishing ⇒ discrete normal eigen-

modes. When ε 6= 0 ∃ only continuous spectrum; there is no

dispersion relation.



Transform Theorems

Theorem (G2). G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator:

‖G[g]‖p ≤ Bp ‖g‖p ,

where Bp depends only on p.

Theorem (G3). If f0 is a good equilibrium, then G[g] has an

inverse,

Ĝ : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = Ĝ[f ](u)

:=
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u) ,

where |ε|2 := ε2R + ε2I .



Proof : First we show g ∈ Lp(R), then g = Ĝ[G[g].

If εR(u)/|ε(u)|2 and εI(u)/|ε(u)|2 are bounded, then clearly g ∈
Lp(R). For good equilibria the numerators are bounded and

everything is Hölder, so it is only necessary to show that |ε| is

bounded away from zero. Either of the conditions of (VP1)(iii)

assures this. Consider the first (monotonicity) condition,

|f ′0| > 0 for v 6= 0 and f ′0(0) = 0. We need only look at v = 0

and v =∞. At v = 0

εR(0) = 1−
ω2
P

k2

∫
R

f ′0
v
dv > 1 > 0 ,

while as v →∞, εR → 1.

That Ĝ is the inverse follows directly upon inserting G[g] of (G1)

into g = Ĝ[G[g]], and using (H2) and εR(v) = 1 +H[εI]. �



That Ĝ is the inverse follows directly upon inserting G[g] of (G1)

into g = Ĝ[G[g]], and using (H2) and εR(v) = 1 +H[εI].

g(u) = Ĝ[f ](u) =
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u)

=
εR(u)

|ε(u)|2
[εR(u) g(u) + εI(u)H[g](u)]−

εI(u)

|ε(u)|2
H
[
εR(u′) g(u′) + εI(u

′)H[g](u′)
]

(u)

=
ε2
R(u)

|ε(u)|2
g(u) +

εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H [H[εI] g + εI H[g]] (u)

=
ε2
R(u)

|ε(u)|2
g(u) +

εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
[H[εI](u)H[g](u)− g(u) εI(u)]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g]−

εI(u)

|ε(u)|2
H[g]−

εI(u)

|ε(u)|2
H[εI]H[g]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u) [1 +H[εI](u)]

= g(u) +
εR(u)εI(u)

|ε(u)|2
H[g](u)−

εI(u)

|ε(u)|2
H[g](u)εR(u) = g(u)

�



Lemma (G4). If εI and εR are as above, then

(i) for vf ∈ Lp(R),

Ĝ[vf ](u) = u Ĝ[f ](u)− εI
|ε|2

1
π

∫
R f dv ,

(ii) Ĝ[εI](u) = εI(u)
|ε|2(u)

(iii) and if f(u, t) and g(v, t) are strongly differentiable in t; i.e.
the mapping t 7→ f(t) = f(t, ·) ∈ Lp(R) is differentiable, (the
usual difference quotient converges in the Lp sense), then

a) Ĝ
[
∂f
∂t

]
= ∂Ĝ[f ]

∂t = ∂g
∂t ,

b) G
[
∂g
∂t

]
= ∂G[g]

∂t = ∂f
∂t .

Proof : (i) goes through like (H3), (ii) follows from εR = 1+H[εI],
and (iii) follows because G is bounded and linear. �



Solution

Solve like Fourier transforms: operate on EOM with Ĝ ⇒,

∂gk
∂t

+ iku gk = 0

and so

gk(u, t) = ◦
gk(u)e−ikut

Using ◦
gk = Ĝ[

◦
fk] we obtain the solution

fk(v, t) = G[gk(u, t)]

= G
[ ◦
gk(u)e−ikut

]
= G

[
Ĝ[
◦
fk]e−ikut

]

Theorem (S1). For good initital conditions and equilibria,

fk(v, t) = G
[
Ĝ[
◦
fk]e−ikut

]
is an Lp(R) solution of (LVP).



VP Hamiltonian Structure

Energy is quadratic ⇒ SHO? However, V-P equation is quadrat-

ically nonlinear. Canonically conjugate variables?

Noncanonical Poisson Bracket (pjm 1980):

{F,G} =
∫
f

[
δF

δf
,
δG

δf

]
dxdv

F and G are functionals. VP ⇐⇒

∂f

∂t
= {f,H} = [f, E].

where E = mv2/2 + eφ and

[f, E] =
1

m

(
∂f

∂x

∂E
∂v
−
∂E
∂x

∂f

∂v

)

Organizes: VP, Euler, QG, Defect Dyn, Benny-Dirac, ....



Linear Hamiltonian Structure

Linearization:

f = f0(v) + δf

where f0(v) assumed stable (NEMs ok) =⇒

{F,G}L =
∫
f0

[
δF

δδf
,
δG

δδf

]
dx dv ,

which with the Kruskal and Oberman energy,

HL = −
m

2

∫
T

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
T

(δφx)2 dx ,

LVP ⇐⇒
∂δf

∂t
= {δf,HL}L .



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv .

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonize:

qk(v, t) =
m

ikf ′0
fk(v, t) , pk(v, t) = f−k(v, t)

=⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv .



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate Change (q, p)←→ (Q′, P ′):

pk(v) =
δF[q, P ′]

δqk(v)
= G[Pk](v) , Q′k(u) =

δF[q, P ′]

δPk(u)
= G†[qk](u)

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

where ωk(u) = |ku| and the signature is

σk(v) := − sgn(vf ′0(v))



Sample Homogeneous Equilibria

← Maxwellian

BiMaxwellian →



Hamiltonian Spectrum

Hamiltonian Operator:

∂tfk = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: Hkfk ,

Complete System:

∂tfk = Hkfk and ∂tf−k = H−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω,

for purely real and imaginary cases, respectively, or quartets,

λ = ±γ ± iω, for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized

around some equilibrium solution, with the phase space of solu-

tions in some Banach space B, is spectrally stable if the spectrum

σ(H) of the time evolution operator H is purely imaginary.

Theorem If for some k ∈ R+ and u = ω/k in the upper half

plane the plasma dispersion relation,

ε(k, u) := 1− k−2
∫
R
dv

f ′0
u− v

= 0 ,

then the system with equilibrium f0 is spectrally unstable. Oth-

erwise it is spectrally stable.



Nyquist Method

f ′0 ∈ C
0,α(R)⇒ ε ∈ Cω(uhp).

Therefore, Argument Principle ⇒ winding # = # zeros of ε

Stable →



Nyquist Method Examples

Winding number of u ∈ R 7→ ε, or

lim
u→0+

1

π

∫
R
dv

f ′0
v − u

= H[f ′0](u)− if ′0(u) ,
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Spectral Theorem

Set k = 1 and consider H : f 7→ ivf− if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions ‖f‖1,1 =
‖f‖1 + ‖f ′‖1 =

∫
R dv(|f |+ |f ′|). Contains all functions in L1(R)

with weak derivatives in L1(R). H is densely defined, closed, etc.

Definition Resolvent of H is R(H, λ) = (H−λI)−1 and λ ∈ σ(H).
(i) λ in point spectrum, σp(H), if R(H, λ) not injective. (ii) λ

in residual spectrum, σr(H), if R(H, λ) exists but not densely
defined. (iii) λ in continuous spectrum, σc(H), if R(H, λ) exists,
densely defined but not bounded.

Theorem Let λ = iu. (i) σp(H) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(H) consists of all

λ = iu with u ∈ R \ (−iσp(H) ∩ R). (iii) σr(H) contains all the
points λ = iu in the complement of σp(H) that satisfy f ′0(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



Structural Stability

Definition Consider an equilibrium solution of a Hamiltonian
system and the corresponding time evolution operator H for the
linearized dynamics. Let the phase space for the linearized dy-
namics be some Banach space B . Suppose that H is spectrally
stable. Consider perturbations δH of H and define a norm on
the space of such perturbations. Then we say that the equilib-
rium is structurally stable under this norm if there is some δ > 0
such that for every ‖δH‖ < δ the operator H+ δH is spectrally
stable. Otherwise the system is structurally unstable.

Definition Consider the formulation of the linearized Vlasov-
Poisson equation in the Banach space W1,1(R) with a spectrally
stable homogeneous equilibrium function f0. Let Hf0+δf0

be the
time evolution operator corresponding to the linearized dynamics
around the distribution function f0 + δf0. If there exists some ε

depending only on f0 such that Hf0+δf0
is spectrally stable when-

ever ‖Hf0
−Hf0+δf0

‖ < ε, then the equilibrium f0 is structurally
stable under perturbations of f0.



All f0 are Structurally Unstable in W1,1

True in space where Hilbert transform unbounded, e.g. W1,1.

Small perturbation ⇒ big jump in Penrose plot.

Theorem A stable equilibrium distribution is structurally unsta-

ble under perturbations of f ′0 in the Banach spaces W1,1 and

L1 ∩ C0.
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Easy to make ‘bumps’ in f0 that are small in norm. What to do?



Krein-Like Theorem for VP

Theorem Let f0 be a stable equilibrium distribution function

for the Vlasov equation. Then f0 is structurally stable under

dynamically accessible perturbations in W1,1, if there is only one

solution of f ′0(v) = 0. If there are multiple solutions, f0 is struc-

turally unstable and the unstable modes come from the roots of

f ′0 that satisfy f ′′0(v) < 0.

Remark A change in the signature of the continuous spectrum

is a necessary and sufficient condition for structural instability.

The bifurcations do not occur at all points where the signature

changes, however. Only those that represent valleys of the dis-

tribution can give birth to unstable modes.



Summary – Conclusions

• Described the Vlasov-Poisson system.

• Described G transform and its properties.

• Canonized, diagonalized, and defined signature for σc.

• Variety of Krein-like theorems, e.g. valley theorem.
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Overview

1. Dissipative Structures

(a) Rayleigh, Cahn-Hilliard

(b) Hamilton Preliminaries

(c) Hamiltonian Based Dissipative Structures

i. Metriplectic Dynamics

ii. Double Bracket Dynamics

2. Computations

(a) XXXX Contour Dynamics

(b) 2D Euler Vortex States



Rayleigh Dissipation Function

Introduced for study of vibrations, stable linear oscillations, in

1873 (see e.g. Rayleigh, Theory of Sound, Chap. IV §81)

Linear friction law for n-bodies, Fi = −bi(ri)vi, with ri ∈ R3.

Rayleigh was interested in linear vibrations, F =
∑
i bi ||vi||2/2.

Coordinates ri → qν etc. ⇒

d

dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+

(
∂F
∂q̇ν

)
= 0

Ad hoc, phenomenological, yet is generalizable, geometrizable

(e.g. Bloch et al.,...)



Cahn-Hilliard Equation

Models phase separation, nonlinear diffusive dissipation, in binary
fluid with ‘concentrations’ n, n = 1 one kind n = −1 the other

∂n

∂t
= ∇2δF

δn
= ∇2

(
n3 − n−∇2n

)

Lyapunov Functional

F [n] =
∫
d3x

[
1

4

(
n2 − 1

)2
+

1

2
|∇n|2

]
dF

dt
=
∫
d3x

δF

δn

∂n

∂t
=
∫
d3x

δF

δn
∇2δF

δn
= −

∫
d3x

∣∣∣∣∇δFδn
∣∣∣∣2 ≤ 0

For example in 1D

lim
t→∞

n(x, t) = tanh(x/
√

2)

Ad hoc, phenomenological, yet generalizable and very important
(Otto, Ricci Flows, Poincarè conjecture on S3, ...)



Hamiltonian Preliminaries

Finite → Infinite degrees of freedom



Canonical Hamiltonian Dynamics

Hamilton’s Equations:

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
,

Phase Space Coordinates: z = (q, p)

żi = J ijc
∂H

∂zj
, (J ijc ) =

(
0N IN
−IN 0N

)
,

Symplectic Manifold Zs:

ż = ZH = [z,H]

with Hamiltonian vector field generated by Poisson bracket

[f, g] =
∂f

∂zi
J ijc

∂g

∂zj

symplectic 2-form = (cosymplectic form)−1: ωcijJ
jk
c = δki ,



Noncanonical Hamiltonian Dynamics

Noncanonical Coordinates:

żi = J ij
∂H

∂zj
= [zi, H] , [A,B] =

∂A

∂zi
J ij(z)

∂B

∂zj

Poisson Bracket Properties:

antisymmetry −→ [A,B] = −[B,A] ,

Jacobi identity −→ [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Eulerian Media: J ij = c
ij
k z

k ←− Lie− Poisson Brackets



Poisson Manifold Zp

Degeneracy ⇒ Casimir Invariants:

[C, g] = 0 ∀g : Zp → R

Foliation by Casimir Invariants:

∇C(α)

M

2N

C(α) = constant

Leaf Hamiltonian vector fields:

Z
p
f = [z, f ]



Example 2D Euler

Noncanonical Poisson Brackets:

{F,G} =
∫
dxdy ζ

[
δF

δζ
,
δG

δζ

]
= −

∫
dxdy

δF

δζ
[ζ, ·]

δG

δζ

ζ = vorticity, ψ = 4−1ζ =streamfunction

[f, g] = J(f, g) = fxgy − fygx =
∂(f, g)

∂(x, y)

Hamiltonian:

H[ζ] =
1

2

∫
dx v2 =

1

2

∫
dx |∇ψ|2

Equation of Motion:

ζt = {ζ,H}

PJM (1981) and P. Olver (1982)



Dirac Constrained Hamiltonian Dynamics

Ingredients:

Two functions D1,2 : Z → R and good Poisson bracket

Generalized Dirac:

[f, g]D =
1

[D1, D2]

[D1, D2][f, g]− [f,D1][g,D2] + [g,D1][f,D2]



Degeneracy ⇒ D’s are Casimir Invariants:

[D1,2, g]D = 0 ∀ g : Zp → R

Foliation again and Dirac Hamiltonian vector fields:

Zdf = [z, f ]D



Hamiltonian Based Dissipation



Metriplectic Dynamics

A dynamical model of thermodynamics that ‘captures’:

• First Law: conservation of energy

• Second Law: entropy production

pjm (1984,1986,...), Ottinger GENERIC (1997)



Entropy, Degeneracies, and 1st and 2nd Laws

• Casimirs of [, ] are ‘candidate’ entropies. Election of partic-
ular S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = [H,F] + (H,F) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H with (H, f) = 0 ∀ f ∈ C∞(M).

• 2nd Law: entropy production

Ṡ = [S,F] + (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilbrium state: δF = 0.



Metriplectic Dynamics

Natural hybrid Hamiltonian and dissipative flow on that embodies
the first and second laws of thermodynamics;

ż = (z, S) + [z,H]

where Hamiltonian, H, is the energy and entropy, S, is a Casimir.

Degeneracies:

(H, g) ≡ 0 and [S, g] ≡ 0 ∀ g

First and Second Laws:
dH

dt
= 0 and

dS

dt
≥ 0

Seeks equilibria ≡ extermination of Free Energy F = H + S:

δF = 0



Examples

• Finite dimensional theories, rigid body, etc.

• Kinetic theories: Boltzmann equation, Lenard-Balescu equa-

tion, ...

• Fluid flows: various nonideal fluids, Navier-Stokes, MHD,

etc.
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5. Relaxing free rigid body 

In order to illustrate the formalism outlined in 
the previous section we treat an example. We 
begin by considering the motion of a rigid body 
with fixed center of mass under no torques. The 
motion of such a free rigid body is governed by 
Euler's equations 

WI = W2W3(I2 - 13), 

w2 = w3w1(I3 - II)' 

W3 = W1W2(I1 - 12)· 

(27) 

Here we have done some scaling, but the dynami­
cal variables Wi' i = 1,2,3, are related to the three 
principal axis components of the angular velocity, 
while the constants Ii' i = 1,2,3, are related to the 
three principal moments of inertia. 

This system conserves the following expressions 
for rotational kinetic energy and squared magni­
tude of the angular momentum: 

H = H I1wi + I2w~ + I3wD, 
[2=wi+w~+w~. 

(28a) 

(28b) 

The quantity H can be used to cast eqs. (27) into 
Hamiltonian form in terms of a noncanonical 
Poisson Bracket [4] that involves the three dynami­
cal variables, Wi. The matrix (Jil) introduced in 
section 3 has a null eigenvector that is given by 
J[2/Wi ; i.e. [2 is a Casimir. The noncanonical 
Poisson bracket is 

where f. ijk is the Levi-Civita symbol. Evidently 
eqs. (27) are equivalent to 

(30) 

and we have for an arbitrary function S(l2), [S, f] 
= 0 for all f. 

So far we have endowed the phase space, which 
has coordinates Wi' with a cosymplectic form. Let 

us now add to this a metric component. In this 
case a dynamical constraint manifold corresponds 
to a surface of constant energy, i.e. an ellipsoid. 
We wish to construct a (gil) that has aH/w i as a 
null eigenvector, while possessing two nonzero ei­
genvalues of tpe same sign. This is conveniently 
done by defining the bracket (,) in terms of a 
projection matrix; i.e. 

(j h)= _A[(aH aH _8. aH aH)J.LJ!!...]. 
, aWi aWl IJ aWl aWl aWi aWl 

(31) 

For now we take A to be constant, but it could 
depend upon w. Explicitly the (gil) is given by 

[ 

l?w~ + lfw~ -1112wl W2 

(g;j)=,\ -1112wlw2 112wi+lfw~ 

-lt l 3wl w3 -h I 3w j w3 

(32) 

Weare now in a position to display a class of 
metriplectic flows for the rigid body; i.e. 

(33) 

where F = H - S, H is given by eq. (28a) and S is 
an arbitrary function of [2. For the case i = 1 we 
have 

WI = w2W3(I2 - 13) + 2AS'(l2)w1 

X [I2(I2 - Il)W~ + I3(I3 - Il)W~]. (34) 

The other two equations are obtained upon cyclic 
permutation of the indices. By design this system 
conserves energy but produces the generalized en­
tropy S(l2) if A > 0, which could be chosen to 
correspond to angular momentum. 

It is well known that equilibria of Euler's equa­
tions composed of pure rotation about either of 
the principal axes corresponding to the largest and 
smallest principal moments of inertia are stable. If 
we suppose that II < 12 < 13, then stability of an 
equilibrium defined by WI = W2 = 0 and W3 = Wo 



Generalized Vlasov-Lenard-Balescu

GVLB equation:

∂f

∂t
(x, v, t) = −v · ∇f +∇φ(x; f) ·

∂f

∂v
+
∂f

∂t
(x, v, t)

∣∣∣∣
c

Energy Entropy:

H =
1

2

∫
dxdvm|v|2 +

1

2

∫
dx |E|2 S =

∫ ∫
dxdv s(f)

Symmetric Bracket:

(A,B) = −
∫
dxdv

∫
dx′dv′

[
∂

∂vi

δA

δf
−

∂

∂v′i

δA

δf ′

]
Tij

[
∂

∂vi

δB

δf
−

∂

∂v′i

δB

δf ′

]

Entropy Matching:

Tij = wij(x, v, x
′, v)M(f)M(f ′)/2 with M

∂2s

∂f2
= 1



Collision Operator

Two counting dichotomies:

• Exclusion vs. Nonexclusion

• Distinguishability vs. Indistinguishability

⇒ 4 possibilities

IE → F−D

IN → B− E

DN → M−B

DE → ?



Collision Operator

Two counting dichotomies:

• Exclusion vs. Nonexclusion

• Distinguishability vs. Indistinguishability

⇒ 4 possibilities

IE → F−D

IN → B− E

DN → M−B

DE → L−B

Lynden-Bell (1967) proposed this for stars which are distinguishable.



Collision Operator

Kadomstev and Pogutse (1970) collision operator

with formal H-theorm to F-D ?

Metriplectic formalism → can do for any monotonic distribution

Conservation (mass,momentum,energy) and Lyapunov:

wij(z, z
′) = wji(z, z

′) wij(z, z
′) = wij(z

′, z) giwij = 0 ,

where z = (x, v) and gi = vi − v′i.

‘Entropy’ Compatibility:

S[f ] =
∫
dz s(f) ⇒ M

d2s

df2
= 1



Collision Operator Examples

Landau kernel:

w
(L)
ij = (δij − gigj/g2)δ(x− x′)/g

Landau Entropy Compatibility

S[f ] =
∫
dz f ln f ⇒ M

d2s

df2
= 1⇒M = f

Lynden-Bell Entropy Compatibility

S[f ] =
∫
dz s(f) ⇒ M

d2s

df2
= 1⇒M = f(1− f)



Good Dissipative Models are Metriplectic!



Double Brackets



Double Brackets and Simulated Annealing

Good Idea:

Vallis, Carnevale, and Young; Shepherd, (1989)

‘Simulated Annealing’ Bracket:

((f, g)) = [f, z`][z`, g] =
∂f

∂zi
J i`J`j

∂g

∂zj
,

Use bracket dynamics to do extremization ⇒ Relaxing Rearrangement

dF
dt

= ((F , H)) = ((F ,F)) ≥ 0

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Generalized Simulated Annealing

‘Simulated Annealing’ Bracket:

((f, g))D = [f, zm]D gmn [zn, g]D =
∂f

∂zi
J inD gmn J

nj
D

∂g

∂zj
,

Relaxation Property: dH
dt = ((H,H))D ≥ 0 at constant Casimirs

General Geometric Construction:

Suppose manifold Z has both Riemannian and Symplectic struc-
ture: Given two vector fields Z1,2 the following is defined:

g(Z1, Z2)

If the two vector fields are Hamiltonian, e.g., Zf , then we have
the bracket

((f, g)) = g(Zf , Zg)

which produces a ‘relaxing’ flow. Such flows exist for Kähler
manifolds.



Contour Dynamics Calculations



Calculation of V-States in Contour Dynamics

Goal:

CD/Waterbag Hamiltonian Reduction:

vorticity, ω(x, y, t) −→ X(σ), vortex patch boundary

Calculation:

V-States by simulated annealing



Contour Dynamics/Waterbags

Plane Curve:

X(σ) = (X(σ), Y (σ))

parameter σ arbitrary

(arc length not conserved)

←− The Onion



V-States

−→ Equilibria in rotation frame; δ(H + ΩL) = 0

Kirchoff Ellipse:
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Hamiltonian Form

Observables are Parameterization Invariance Functionals:

F [X,Y ] =
∮
dσF(X,Y,Xσ, Yσ, Yσσ, Xσσ, . . . )

Xσ := ∂/∂σ, etc.Invariance (equivalence relation):∮
dσF(X,Y,Xσ, Yσ, Yσσ, Xσσ, . . . )

=
∮
dτ F(X,Y,Xτ , Yτ , Yττ , Xττ , . . . )

σ = φ(τ), dφ(τ)/dτ 6= 0

Lie Algebra Realization:

V over R is set of parameterization invariant functionals
with Poisson Bracket { , }

Bianchi identitiy:

δF

δX(σ)
Xσ +

δF

δY (σ)
Yσ ≡ 0 ,

Noether & isoperimetric problems



Hamiltonian Form (cont)

Poisson Bracket:

{F,G} =
∮
dσ

Yσ δFδX −XσδFδY
X2
σ + Y 2

σ

 ∂

∂σ

Yσ δGδX −XσδGδY
X2
σ + Y 2

σ



Area/Casimir:

Γ =
1

2

∮
(XYσ − Y Xσ) dσ , {Γ, F} = 0 ∀ F

Area Preservation:

{Γ, F} =
∮

∂

∂σ

Yσ δFδX −XσδFδY
X2
σ + Y 2

σ

 dσ = 0

Dynamics of closed curves with fixed areas for any H.



Contour Dynamics Clips – DSA

Built-in Invariants:

• Angular momentum:

L =
∫
D

(x2 + y2) d2x

• Strain moment (2-fold symmetry):

K =
∫
D
xy d2x

{1-Kellipse, 2-two.stationary, 3-two}



2D Euler Calculations



Four Types of Dynamics

Hamiltonian :
∂F

∂t
= {F,F} (1)

Hamiltonian Dirac :
∂F

∂t
= {F,F}D (2)

Simulated Annealing :
∂F

∂t
= σ{F,F}+ α((F,F)) (3)

Dirac Simulated Annealing :
∂F

∂t
= σ{F,F}D + α((F,F))D (4)

F an arbitrary observable, F generates time advancement. Equa-

tions (1) and (2) are ideal and conserve energy. In (3) and

(4) parameters σ and α weight ideal and dissipative dynamics:

σ ∈ {0,1} and α ∈ {−1,1}. F, can have form

F = H +
∑
i

Ci + λiPi ,

Cs Casimirs and P s dynamical invariants.



DSA is Dressed Advection

∂ζ

∂t
= −[Ψ, ζ] ,

Ψ = ψ +Aici and Ai = −
∫
dx cj[ψ, ζ]∫
dx ζ[ci, cj]

.

with constraints

Cj =
∫
dx cj ζ .

“Advection” of ζ by Ψ, with Ai just right to force constraints.

Easy to adapt existing vortex dynamics codes!!



2D Euler Clip, 2-fold Symmetry – H

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

{(fig3)els-1-m0}



Filamentation leading to ‘relaxed state’. How much? Which state?
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2D Euler Clip, 2-fold Symmetry – SAσ=0

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

{(fig6)els-2-m0}



Constants vs. t; Kelvin’s H-Maximization
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2-fold Symmetry – HD vs. DSA0,1

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

• Angular momentum:

L =
∫
D

(x2 + y2) d2x

• Strain moment (2-fold symmetry):

K =
∫
D
xy d2x

{(fig8)els-3-m0, (fig10)els-4-m0,(fig12)els-4-m1}



Constants vs. t for DSA0
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Kelvin’s Sponge

Uniform positive vorticity inside circle. Net vorticity maintained.
But, angular momentum not conserved? With Dirac, angular
momentum conserved. Then what?



2-fold Symmetry – Minimizing SA vs. DSA0

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

• Angular momentum:

L =
∫
D

(x2 + y2) d2x

• Strain moment (2-fold symmetry):

K =
∫
D
xy d2x

{(fig14)els-2-p0,(fig16)els-4-p0}



Constants vs. t for SA0
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3-fold Symmetry and Dipole DSA

skipping details

{(fig21)tri-db2, (fig27)dip-4-m0}



Underview

1. Dissipative Structures

(a) Rayleigh, Cahn-Hilliard

(b) Hamilton Preliminaries

(c) Hamiltonian Based Dissipative Structures

i. Metriplectic Dynamics

ii. Double Bracket Dynamics

2. Computations

(a) XXXX Contour Dynamics

(b) 2D Euler Vortex States




