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Goal: Review metriplectic dynamics, a form of dynamical system

that blends noncanonical (Poisson) Hamiltonian and dissipative

systems. Investigate reduction in this setting in terms of a simple

example, the rigid body with a particular kind of dissipation. The

example has dissipation that aligns the rotation without using any

energy!



Metriplectic Dynamics

A dynamical model of thermodynamics that ‘captures’:

• First Law: conservation of energy

• Second Law: entropy production



Prototypes and Examples

• Kinetic theories: Vlasov Fokker-Planck equation, Lenard-Balescu

equation, etc.

• Fluid flows: various nonideal fluids, Navier-Stokes, MHD, etc.

• Finite-dimensional theories, rigid body, etc.

• Many more ...



“History”

• Rayleigh Dissipation (Theory of Sound, Ch. IV §81 1873)

• 20th Century gradient flows (Cahn-Hilliard, Otto, Ricci Flows,
Poincarè conjecture on S3, ...)

• pjm, pjm ∪ Kaufman 1982

• pjm, Kaufman, ... Grmela 1984

• pjm 1986 metriplectic dynamics

• Grmela ∪ Oetttinger 1997, generic ≡ metriplectic dynamics

• Many works since ... e.g. Bloch, pjm, Ratiu 2013



Usual Geometry

Dynamics takes place in phase space, Z (needn’t be T ∗Q), a
differential manifold endowed with a closed, nondegenerate 2-form
ω. A patch has canonical coordinates z = (q, p).

Hamiltonian dynamics ⇔ flow on symplectic manifold: iXω = dH

Poisson tensor (Jc) is bi-vector inverse of ω, defining the Poisson
bracket

{f, g} = 〈df, Jc(dg)〉 = ω(Xf , Xg) =
∂f

∂zα
Jαβc

∂g

∂zβ
, α, β = 1,2, . . .2N

Flows generated by Hamiltonian vector fields ZH = JdH, H a 0-
form, dH a 1-form. Poisson bracket = commutator of Hamiltonian
vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham &Marsden



Noncanonical Hamiltonian Definition

A phase space P diff. manifold with binary bracket operation
on C∞(P) functions f, g : P → R, s.t. { · , · } : C∞(P) × C∞(P) →
C∞(P) satisfies

• Bilinear: {f + λg, h} = {f, h}+ λ{g, h} , ∀f, g, h and λ ∈ R

• Antisymmetric: {f, g} = −{g, f} , ∀f, g

• Jacobi: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} ≡ 0 , ∀f, g, h

• Leibniz: {fg, h} = f{g, h}+ {f, h}g , ∀f, g, h.

Above is a Lie algebra realization on functions. Take fg to be
pointwise multiplication.

Eqs. Motion: ∂Ψ
∂t = {Ψ, H}, Ψ an observable & H a Hamiltonian.

Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....



Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

żα = Jαβ
∂H

∂zβ
= {zα, H} , {f, g} =

∂f

∂zα
Jαβ(z)

∂g

∂zβ
, α, β = 1,2, . . .M

Poisson Bracket Properties:

antisymmetry −→ {f, g} = −{g, f} ,

Jacobi identity −→ {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates
Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

J → Jd =

 0N IN 0
−IN 0N 0

0 0 0M−2N

 .



Flow on Poisson Manifold

Definition. A Poisson manifold P is differentiable manifold with

bracket { , } : C∞(P) × C∞(P) → C∞(P) st C∞(P) with { , } is

a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii)

Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields,

ZH = JdH.

Because of degeneracy, ∃ functions C st {f, C} = 0 for all f ∈
C∞(P). Called Casimir invariants (Lie’s distinguished functions.)



Poisson Manifold P Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f : P → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaf vector fields, Zf = {z, f} = Jdf are tangent to leaves.



Lie-Poisson Brackets

Coordinates:

Jαβ = cαβγ zγ

where c
αβ
γ are the structure constants for some Lie algebra.

Examples:

• free rigid body SO(3), Kida vortex SL(2,1), ...

• Infinite-dimensional theories - matter models: Ideal fluid flow,

MHD, shearflow, extended MHD, Vlasov-Maxwell, BBGKY, etc.



Lie-Poisson Geometry

Lie Algebra: g, a vector space with

[ , ] : g× g→ g ,

antisymmetric, bilinear, satisfies Jacobi identity

Pairing:

〈 , 〉 : g∗ × g→ R

with g∗ vector space dual to g

Lie-Poisson Bracket:

{f, g} =
〈
z,

[
∂f

∂z
,
∂g

∂z

]〉
, z ∈ g∗,

∂f

∂z
∈ g



Example so(3)

Lie Algebra is antisymmetric matrices, or L = (L1, L2, L3), a vec-
tor space with

[a,b] = a× b

where × is vector cross product.

Pairing between L ∈ so(3)∗ and ∂f/∂L ∈ so(3) yields the Lie-Poisson
bracket:

{f, g} = L ·
∂f

∂L
×
∂g

∂L
= εαβγ Lα

∂f

∂Lβ

∂g

∂Lγ
,

where εαβγ is the Levi-Civita (permutation) symbol, which denotes
the structure constants for so(3).

Casimirs (nested spheres S2 foliation):

C = L2
1 + L2

2 + L2
3

Note Li = Iiωi , not summed. Examples: spin system, free rigid
body with Euler’s equations



Metriplectic Manifold
(
M, {, }, (, )

)
Two structures:

• Poisson Manifold, with associated degenerate bi-vector J

• Degenerate ‘metric’ g

Metriplectic Vector Field in coordinate patch:

VMP = −{F , } − (F , ) =
∂F
∂zα

Jαβ
∂

∂zβ
+

∂F
∂zα

gαβ
∂

∂zβ

What are degeneracies? What is the ‘generator’ F ?



Entropy, Degeneracies, and 1st and 2nd Laws

• Casimirs of {, } are ‘candidate’ entropies. Election of particular
S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator (free energy): F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F) = 0 + (H,H) + (H,S) = 0

Degeneracy such that (H, f) = 0 ∀ f ∈ C∞(M).

• 2nd Law: entropy production

Ṡ = {S,F}+ (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilbrium state: δF = 0.



Metriplectic Dynamics

Equations of motion:

ż = {z,F}+ (z,F) = {z,H}+ (z, S)

Using degeneracies:

{S, g} ≡ 0 and (H, g) ≡ 0 ∀ g

First and Second Laws:

dH

dt
= 0 and

dS

dt
≥ 0

Seeks equilibria ≡ extermination of Free Energy F = H + S:

δF = 0



Example: Metriplectic Rigid Body
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5. Relaxing free rigid body 

In order to illustrate the formalism outlined in 
the previous section we treat an example. We 
begin by considering the motion of a rigid body 
with fixed center of mass under no torques. The 
motion of such a free rigid body is governed by 
Euler's equations 

WI = W2W3(I2 - 13), 

w2 = w3w1(I3 - II)' 

W3 = W1W2(I1 - 12)· 

(27) 

Here we have done some scaling, but the dynami­
cal variables Wi' i = 1,2,3, are related to the three 
principal axis components of the angular velocity, 
while the constants Ii' i = 1,2,3, are related to the 
three principal moments of inertia. 

This system conserves the following expressions 
for rotational kinetic energy and squared magni­
tude of the angular momentum: 

H = H I1wi + I2w~ + I3wD, 
[2=wi+w~+w~. 

(28a) 

(28b) 

The quantity H can be used to cast eqs. (27) into 
Hamiltonian form in terms of a noncanonical 
Poisson Bracket [4] that involves the three dynami­
cal variables, Wi. The matrix (Jil) introduced in 
section 3 has a null eigenvector that is given by 
J[2/Wi ; i.e. [2 is a Casimir. The noncanonical 
Poisson bracket is 

where f. ijk is the Levi-Civita symbol. Evidently 
eqs. (27) are equivalent to 

(30) 

and we have for an arbitrary function S(l2), [S, f] 
= 0 for all f. 

So far we have endowed the phase space, which 
has coordinates Wi' with a cosymplectic form. Let 

us now add to this a metric component. In this 
case a dynamical constraint manifold corresponds 
to a surface of constant energy, i.e. an ellipsoid. 
We wish to construct a (gil) that has aH/w i as a 
null eigenvector, while possessing two nonzero ei­
genvalues of tpe same sign. This is conveniently 
done by defining the bracket (,) in terms of a 
projection matrix; i.e. 

(j h)= _A[(aH aH _8. aH aH)J.LJ!!...]. 
, aWi aWl IJ aWl aWl aWi aWl 

(31) 

For now we take A to be constant, but it could 
depend upon w. Explicitly the (gil) is given by 

[ 

l?w~ + lfw~ -1112wl W2 

(g;j)=,\ -1112wlw2 112wi+lfw~ 

-lt l 3wl w3 -h I 3w j w3 

(32) 

Weare now in a position to display a class of 
metriplectic flows for the rigid body; i.e. 

(33) 

where F = H - S, H is given by eq. (28a) and S is 
an arbitrary function of [2. For the case i = 1 we 
have 

WI = w2W3(I2 - 13) + 2AS'(l2)w1 

X [I2(I2 - Il)W~ + I3(I3 - Il)W~]. (34) 

The other two equations are obtained upon cyclic 
permutation of the indices. By design this system 
conserves energy but produces the generalized en­
tropy S(l2) if A > 0, which could be chosen to 
correspond to angular momentum. 

It is well known that equilibria of Euler's equa­
tions composed of pure rotation about either of 
the principal axes corresponding to the largest and 
smallest principal moments of inertia are stable. If 
we suppose that II < 12 < 13, then stability of an 
equilibrium defined by WI = W2 = 0 and W3 = Wo 



Generator H + S:

H =
1

2
(I1ω

2
1+I2ω

2
2+I3ω

2
3) , C = I2

1ω
2
1+I2

2ω
2
2+I2

3ω
2
3 , S = S(C)412 P.J. Morrison / A paradigm for systems with dissipation 

the requirement that det(Jii) * 0 then in the 
vicinity of a point where the rank of (Jii) is 2M 

we can construct a coordinate system such that 
(Pi) --+ (J;ii) where (Jti) has the following form: 

(8) 

A system of equations is Hamiltonian in a gen­
eralized sense if it can be written in the form 

·i JiJ aH z = -
az i ' 

i=1,2, ... ,L, (9) 

where the only requirements on (Pi) are that the 
bracket it defines, 

[I g] = al]ii~ 
, az' az J ' 

(10) 

must be anti symmetric and satisfy the Jacobi iden­
tity. When (Pi) is not of the form of eq. (5) the 
bracket given by eq. (10) is called noncanonical. 
We note that L, the dimension of (]ii), need not 
be even; thus cases where det( Jii) = 0 are accept­
able. In fact, in these cases the phase space has an 
interesting structure. If the rank of (]ii) is equal 
to 2M in the vicinity of some point in phase space 
then there exists L - 2M null eigenvectors for 
(Pi). The possibility exists that one of these null 
eigenvectors can be written as the gradient of some 
phase space function C; i.e. 

(11) 

This turns out to be true. Moreover, it can be 
shown that the null space is spanned by such 
gradients: ac(a) / az i

, a = 1,2, ... , L - 2M. The 
quantities c(a) are called Casimirs. They are con­
stants of motion that are built into the phase space 
since given any Hamiltonian, H, the following 
holds: 

c(a)=[c(a),H]=O, a=1,2, ... ,L-2M. 

(12) 

Fig. 1. Depiction of the metriplectic phase space for the relax­
ing free rigid body. Symplectic leaves are concentric spheres 
while constant energy surfaces are ellipsoids. 

Thus trajectories are confined to lie in surfaces 
defined by the constancy of the c(a) 'so These 
surfaces have dimension 2M and are im­
bedded in the whole phase space of dimension L. 
They are actually symplectic manifolds. A pic­
turesque phraseology that has emerged is to say 
when (]ii) is degenerate, phase space foliates into 
symplectic leaves. In fig. 1 we depict this foliation 
for Euler's equations (cf. section 5) where the 
leaves are concentric spheres. 

3. Metric systems 

Prior to defining a metric system, let us briefly 
recall some definitions of stability for a dynamical 
system 

ii=pi(Z), i=1,2, ... ,N, (13) 

where z == (zl, Z2, ... , ZN). A phase space point Ze 
is clearly an equilibrium point for eq. (13) if 
Pi(ze) = 0 for i = 1,2, ... , N. Such an equilibrium 
point is stable if for every neighborhood N of Ze 
there is a neighborhood M of Ze such that if 
initially z(O) is in M, then the solution will remain 
in N for all time. Here we are interested in 
asymptotic stability. A system is asymptotically 
stable if in addition limt~ooz(t)=ze' These types 



Metriplectic Motor

Servomotors at axles of Cardan suspension, Ḣ = 0 ⇒ no energy
used to align angular momentum. Application? Use a very small
amount of electronic energy to redirect energy from axle to axle.



Usual Reduction

Rigid Body has canonical 6D phase space T ∗G where configuration

space G is SO(3). Coordinates can be, e.g., the Euler angles χ

and conjugate momenta pχ.

Standard Reduction: T ∗G/G ∼= g∗

Momentum map: (χ, pχ) 7→ L = (I1ω1, I2ω2, I3ω3)

Bracket closure: {Lα, Lβ} = εαβγLγ

Hamiltonian closure: H(χ, pχ) = H̄(L)

Dynamics via Euler’s Equations: L̇ = {L, H̄}



What is Mertriplectic Reduction?

As rigid body is relaxing to rotation about a single axis, the coordi-

nates (χ, pχ) are changing until χ has the simple time dependence

of rotation.

What are the possible dynamics in the inverse image of the mo-

mentum map, that reduce to the metriplectic dynamics?

Metriplectic momentum map takes

χ̇ = {χ,H} + ? and ṗχ = {pχ, H} + ?

into the reduced metriplectic dynamics.

What is the unreduced relaxation? Limit cycle? Other?



Recall rigid body formulas:

ω = Σ−1 · L with Σ = dia(I1, I2, I3)

ω = A (χ) · pχ or ω = D (χ) · χ̇
and

D (χ) =

 cosχ3 sinχ1 sinχ3 0
− sinχ3 sinχ1 cosχ3 0

0 cosχ1 1

 , A (χ) = Σ−1 ·
(
D−1

)T

Example of Unreduced Dynamics:

χ̇ = D−1 · A · pχ ,

ṗχ = −pT
χ · AT ·Σ ·

∂A
∂χ
· pχ

+S′A−1 · Γ ·Σ2 · A · pχ .
S′ measures relaxation time scale, Γ a matrix related to the axis
of rotation. Note, dissipation is in the momentum equation where
it usually is.



Conclusion

Metriplectic reduction takes special dissipation in a canonical Hamil-

tonian system into metriplectic dissipation.

Recall question:

What is the unreduced relaxation? Limit cycle? Other?

Answer:

Not a limit cycle, but an attracting cylinder S×R of periodic

orbits.

M. Materassi and pjm, Cybernetics and Physics 7, 78–86 (2018).

Extensions: Navier-Stokes for entropy producing fluid, where La-

grange to Euler map is usual reduction; various kinetic theories.

Anything with a momentum map!


