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Goal: Review metriplectic dynamics, a form of dynamical system
that blends noncanonical (Poisson) Hamiltonian and dissipative
systems. Investigate reduction in this setting in terms of a simple
example, the rigid body with a particular kind of dissipation. The
example has dissipation that aligns the rotation without using any
energy!




Metriplectic Dynamics

A dynamical model of thermodynamics that ‘captures’:

e First Law: conservation of energy

e Second Law: entropy production



Prototypes and Examples

Kinetic theories: Vlasov Fokker-Planck equation, Lenard-Balescu
equation, etc.

Fluid flows: various nonideal fluids, Navier-Stokes, MHD, etc.

Finite-dimensional theories, rigid body, etc.

Many more ...



“History”

Rayleigh Dissipation (Theory of Sound, Ch. IV §81 1873)

20th Century gradient flows (Cahn-Hilliard, Otto, Ricci Flows,
Poincare conjecture on S3, ...)

pjm, pjm U Kaufman 1982
pjm, Kaufman, ... Grmela 1984

pjm 1986 metriplectic dynamics

Grmela U Oetttinger 1997, generic = metriplectic dynamics

Many works since ... e.g. Bloch, pjm, Ratiu 2013



Usual Geometry

Dynamics takes place in phase space, Z (needn't be T*Q), a
differential manifold endowed with a closed, nondegenerate 2-form
w. A patch has canonical coordinates z = (q, p).

Hamiltonian dynamics < flow on symplectic manifold: ixw = dH

Poisson tensor (J.) is bi-vector inverse of w, defining the Poisson
bracket

Of 50
{f7 g} — <df7 JC(dg)> — w(Xfan) — —Jc 58—,2.’95’

o a,B=1,2....2N
Z

Flows generated by Hamiltonian vector fields Zy = JdH, H a O-
form, dH a 1-form. Poisson bracket = commutator of Hamiltonian
vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham & Marsden



Noncanonical Hamiltonian Definition

A phase space P diff. manifold with binary bracket operation
on C°°(P) functions f,g: P —» R, s.t. {-,-}: C®(P) x C®°(P) —
C>®°(P) satisfies

e Bilinear: {f 4+ Xg,h} ={f,h}+ Ng,h}, Vf,g,hand AeR
e Antisymmetric: {f,g9} = —{9g, f}, Vf, g
e Jacobi: {f,{g,h}} +{g,{h, f}} +{h.{f,9}} =0, Vf,9,h

o Leibniz: {fg,h} = fig,h} + {f h}g, Vf,g,h.

Above is a Lie algebra realization on functions. Take fg to be
pointwise multiplication.

Eqgs. Motion: %—‘f = {W,H}, W an observable & H a Hamiltonian.

Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....



Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

BOH _ ¢ a W
azﬁ_{z 7H}7 {fag}_

Poisson Bracket Properties:

o Jo af —
=J = ()aﬁ’ a,8=1,2...M

antisymmetry — 1f,9) =9, f},

Jacobi identity — {f,{g,h}} +{g,{h, f}} +{h,{f,9}} =0

G. Darboux: detJ =0 — J — J. Canonical Coordinates
Sophus Lie: detJ = 0 —— Canonical Coordinates plus Casimirs

On In O
J = Jg= —In Oy O
0 O Op-2on




Flow on Poisson Manifold

Definition. A Poisson manifold P is differentiable manifold with
bracket {,} : C®°(P) x C®°(P) — C®(P) st C®°(P) with {, } is
a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii)
Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields,

Because of degeneracy, 3 functions C st {f,C} = 0 for all f €
C>°(P). Called Casimir invariants (Lie's distinguished functions.)



Poisson Manifold P Cartoon

Degeneracy in J = Casimirs:
{f,C}=0 Vf:P—=R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C: Cons'l‘.'

Leaf vector fields, Z; = {2, f} = Jdf are tangent to leaves.



Lie-Poisson Brackets

Coordinates:
Job — C%éﬁzV

where cfi‘ﬁ are the structure constants for some Lie algebra.

Examples:

e free rigid body SO(3), Kida vortex SL(2,1), ...

e Infinite-dimensional theories - matter models: Ideal fluid flow,
MHD, shearflow, extended MHD, VlIasov-Maxwell, BBGKY, etc.



Lie-Poisson Geometry

Lie Algebra: g, a vector space with

[, ]:gxg—9,

antisymmetric, bilinear, satisfies Jacobi identity

Pairing:

(,):g-xg—R

with g* vector space dual to g

Lie-Poisson Bracket:




Example s0(3)

Lie Algebra is antisymmetric matrices, or L = (L1, Lo, L3), a vec-
tor space with

[a,b] =axDb

where x is vector cross product.

Pairing between L € s0(3)* and 9f /0L € s0(3) yields the Lie-Poisson

bracket:
of 0Og of dg

. — I
oL oL~ PV 9LgoL,

where ¢,z is the Levi-Civita (permutation) symbol, which denotes
the structure constants for so(3).

{f,g} =L

Casimirs (nested spheres S2 foliation):
C=L%+L3+ 13

Note L; = Iw; , not summed. Examples: spin system, free rigid
body with Euler’s equations




Metriplectic Manifold (M, {,},(,))

Two structures:
e Poisson Manifold, with associated degenerate bi-vector J
e Degenerate ‘metric’ g

Metriplectic Vector Field in coordinate patch:

OF o o
V — _{F —(F — 045 af =
mp=—{F, }—(F ) =-2J" 5+ 8zag 5.5

What are degeneracies? What is the ‘generator’ F7



Entropy, Degeneracies, and 1st and 2nd Laws

Casimirs of {, } are ‘candidate’ entropies. Election of particular
S € {Casimirs} = thermal equilibrium (relaxed) state.

Generator (free energy): F=H + S

1st Law: identify energy with Hamiltonian, H, then

H={HF}+ (HF)=0+ (H,H)+ (H,5) =0
Degeneracy such that (H,f) =0V f &€ C®(M).

2nd Law: entropy production

S=1{S, F}+(S,F)=(5,8) >0

Lyapunov relaxation to the equilbrium state: éF = O.



Metriplectic Dynamics

Equations of motion:

z={z, F}+ (= F)={z,H} + (2, 5)

Using degeneracies:

{S,9} =0 and (H,g)=0 Vg

First and Second Laws:

@zo and ﬁzo
dt dt

Seeks equilibria = extermination of Free Energy FF = H + S:

OFF =0



Example:

Euler’s equations

@y = ‘*’2‘*’3(12 - 13)’
w, = ‘*’3‘*’1(13 - Il)’ (27)
Wy = ‘*’1‘*’2(11 - 12)-

Here we have done some scaling, but the dynami-
cal variables v, i =1,2,3, are related to the three
principal axis components of the angular velocity,
while the constants I,,i=1,2,3, are related to the
three principal moments of inertia.

This system conserves the following expressions
for rotational kinetic energy and squared magni-
tude of the angular momentum:

H=%(11w%+12w§+13w§), (28a)

I? =02+ w3 + 3. (28b)
The quantity H can be used to cast egs. (27) into
Hamiltonian form in terms of a noncanonical
Poisson Bracket [4] that involves the three dynami-
cal variables, «,. The matrix (J) introduced in
section 3 has a null eigenvector that is given by
dl*/w,; ie. [? is a Casimir. The noncanonical
Poisson bracket is

[f.g]= i, j,k=1,2,3, (29)

J
aw Cisijk ag

where ¢, is the Levi-Civita symbol. Evidently
eqs. (27) are equivalent to

o =[w;, H], i=1,2,3, (30)

Metriplectic Rigid Body

projection matrix; i.e.

2 91| o1
dw, Bw, dw,

For now we take A to be constant, but it could

depend upon «. Explicitly the (g*) is given by
Bol+ 20l - LLww,

+ 13200%

—hLww,

(87} =A| ~hhew, [ — L L e

—LLww, -Lhwe, Fo}+ G}

(32)
We are now in a position to display a class of
metriplectic flows for the rigid body; i.e.
;= {w;, F}=[uw, F]+(w, F)
dH as

=JVz—+glis—, i=
Jw w; 8wj

1,2,3, (33)

where F= H — S, H is given by eq. (28a) and S is
an arbitrary function of /2 For the case i =1 we
have

&1 = ww;y(I, — ;) +2A87(1?) w,
X[12(12‘11)‘*’%‘*'13(13_Il)wg]- (34)

The other two equations are obtained upon cyclic
permutation of the indices. By design this system
conserves energy but produces the generalized en-
tropy S(/?) if A >0, which could be chosen to
correspond to angular momentum.

It is well known that equilibria of Euler’s equa-
tions composed of pure rotation about either of



Generator H + S:
1
H = E(Ilw%—i—lgcu%—l—lg,w%) , C = I%w%—l—]%w%—l—]%w%, S =5(C)

Wy

Fig. 1. Depiction of the metriplectic phase space for the relax-
ing free rigid body. Symplectic leaves are concentric spheres
while constant energy surfaces are ellipsoids. |



Metriplectic Motor

Servomotors at axles of Cardan suspension, H = 0 = no energy
used to align angular momentum. Application? Use a very small
amount of electronic energy to redirect energy from axle to axle.



Usual Reduction

Rigid Body has canonical 6D phase space T*G where configuration
space G is SO(3). Coordinates can be, e.g., the Euler angles x
and conjugate momenta py.

Standard Reduction: T*G/G = g*

Momentum map: (x,py) — L = ({1w1, Iows, I3w3z)
Bracket closure: {La, Lg} = €qg,Ln

Hamiltonian closure: H(x,py) = H(L)

Dynamics via Euler's Equations: L = {L, A}



What is Mertriplectic Reduction?

As rigid body is relaxing to rotation about a single axis, the coordi-

nates (x,py) are changing until x has the simple time dependence
of rotation.

What are the possible dynamics in the inverse image of the mo-
mentum map, that reduce to the metriplectic dynamics?

Metriplectic momentum map takes

x={xH}+ 7 and px ={px.H} + 7

into the reduced metriplectic dynamics.

What is the unreduced relaxation? Limit cycle? Other?



Recall rigid body formulas:

s—1.L with > = dia(Iq, I, I3)

w =

w = A(X) - Px or  w=D(x) X
and

COSx3 Sinxisinysz O .
D(x) =| —sinys sinyjcosyxs O |, A(X):Z_l.(p—1>

O COS X1 1

Example of Unreduced Dynamics:
X p— D_l . A . pX,

: T T
- _ AV
Px Py Ox Px
+5'A° L. I_-ZQ-.A-pX.
S’ measures relaxation time scale, ' a matrix related to the axis
of rotation. Note, dissipation is in the momentum equation where

it usually is.



Conclusion

Metriplectic reduction takes special dissipation in a canonical Hamil-
tonian system into metriplectic dissipation.

Recall question:
What is the unreduced relaxation? Limit cycle? Other?

Answer:
Not a limit cycle, but an attracting cylinder S xR of periodic
orbits.

M. Materassi and pjm, Cybernetics and Physics 7, 78—86 (2018).

Extensions: Navier-Stokes for entropy producing fluid, where La-
grange to Euler map is usual reduction; various Kinetic theories.
Anything with a momentum map!




