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Memories

Yoichiro Nambu a friend to University of Texas at Austin Physics Department.

Visits to Austin:

• 1970. An international Symposium: The Past Decade in Particle Theory

• 1991. Workshop in Honor of E.C.G. Sudarshan’s Contributions to Theoretical Physics

• 2006. Sudarshan’s 75th Birthday Celebration



1970 Workshop Press Release
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RELEASE ON RECEIPT 

. AUSTIN, Texas ( Spl. )--An international symposium,· TlThe Past Decade 

in Partic.le Theory, n will be held at The University of Texas at Austin 

'l'uesday through Friday ( April 14-17). 

Dr. Harry Ransom, Chancellor of the UT System, will open the meeting 

at 8:45 a.m. Tuesday in the Texas Union Auditorium. 

Sponsored by the UT Phys:i.cs Department's Center for Particle Theory, 

the meeting is expected to attract more than 100 internationally known 

sci8ntists, including several Nobel laureates. 

The idea behind the symposium is to have scholars of particle theory 

discuss their contributions to the field in the past decade, as well as to 

speculate on what may be learned in the next 10 years. Each talk will be 

followed by a discussion of the topic. 

While the average man on the street can lay claim to some knowledge 

of nuclear physics because of th~ atomic age he lives in, few people 

outside of physics are knowledgeable about particle theory. 

Particle physics is the study of the smallest particles of matter 

known. Those sub-nuclear particles are responsible for holding the atoms' 

nuclei together. Today's studies are considered to be on the frontiers of 

science. 

The UT symposium is patterned after the famous Solvay Conferences 

·which began in Brussels, Belgium, in the early part of this century •. That 

series of conferences, now discontinued, was devoted to discussions of the 

foundations of physics. The symposium planners hope to recreate the spir!t 

of the Solvay Conferences. , ____ ' 



1970 Workshop Press Release (cont)

2--UT--Particle Theory Symposium 

Chairman for the first day's session will be Dr. Walter Thirring, 

head of the theoretical division' .of the Eunopean CERN particle physics 

laboratory in Geneva. 

Concluding the Tuesday session will be a presentation by· 

Dr. Paul Dirac, a Nobel laureate. Dr. Dirac held the Lucasian Chair of 

Mathematics at Cambridge University from 1930 to 1969. That was the same 

position once held by Sir Isaac Newton. 

Dr. Yuval Ne'eman and Dr. George Sudarshan, co-chairmen of the UT 

Austin Center for Particle Theory, will both give talks at the symposium. 

The Particle Theory Center, founded only 18 months ago at UT Austin, 

has already achieved a national reputation for its work. 

"The Center has become one of the most active areas in research in 

particle physics in the United States," says Dr. Yoichiro Nambu of the 

University of Chicago, one of the Tuesday speakers. TTit is known both 

nationally and internationally through the importance of the work of 

Drs. Ne'eman and Sudarshan, as well as the recent contributions of its other 

members to almost every important aspect of particle physics," he adds. 

"The form of the conference and the range of the topics to be 

covered have generated great interest among physicists in various parts of 

this country as well as abroad," says Dr. R. E. Marshak, a session 

chairman and president-designate of the City College of New York. ".As a 

result, many people who have made important contributions to the subject 

of particle physics have arranged to attend the meeting." 

Among the scientists attending the symposium are four men who have 

won Nobel Prizes •. They are Drs. Richard Feynman, Eugene Wigner, 

Robert Hofstadter and Dirac. 
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SY~METRY BREAKDOWN AND SMALL MASS BOSONS*

Yoichiro Nanbu

THE ENRICO FERMI INSTITUfE AND DEPARTMENT OF PHYSICS
THE lNlVERSITY OF CHICJI.GO

lobstract: In a talk presented at the symposium liThe Past

Decade In Particle Theory", Prof. Y. Nambu reviews the

meaning and mechanism for spontaneous breakdown of a sy~
metry. After reviewing the history of the Goldstone boson,

he describes the relationship of the Coldstone theories to

PCAC, Current Algebra, and soft pion limits. These prd::>lems

are unified in the approach of utilizing the non-linear
relizations of the symmetries. A discussion of Prof. Nambu's
talk follows this paper.

1. Introduction
The past decade has been a decade of symmetries. To

be more exact, I should sayan era of broken symmetries:
the discovery and establishment of symmetry patterns in
elementary particle phenomena which are recognized right
from the beginning only as approximately valid. As was
once remarked by Salam, 1 one first tries hard to es t.ab lish
a symmetry, but the next moment he is figuring out hew to
break it. This is an entirely human attitude. The com-
plexities of high energy phenomena convince everybody that

*This work supported in part by the U, S. Atomic Energy Commission.



1991 Workshop



1991 Workshop (cont)

PhysicsLettersAl58(1991)453—457 PHYSICS LETTERS A
North-Holland

Quantummechanicsasa generalizationof Nambudynamics
to the Weyl—Wigner formalism

Iwo Bialynicki-Birula
Institutefor TheoreticalPhysics,PolishAcademyofSciences,LotnikOw32/46, 02-668Warsaw,Poland

and

P.J.Morrison
DepartmentofPhysicsandInstitusefor FusionStudies,UniversityofTexasat Austin,Austin, TX 78712,USA

Received28 June1991;acceptedfor publication29July 1991
Communicatedby J.P.Vigier

It is shownthatNambudynamicscanbegeneralizedto anynumberof dimensionsby replacingthe0(3) algebra,a prominent
featureof Nambu’sformulation,by anarbitraryLie algebra.For theinfinite dimensionalalgebraofrotationsin phasespaceone
obtainsquantummechanicsin theWeyl—Wigner representationfrom thegeneralizedNambudynamics.Also, this formulation
canbecastinto acanonicalHamiltonianformby anaturalchoiceofcanonicallyconjugatevariables.

1. Introduction new variables.With this parametrization,the non-
canonicalbracketsare transformedinto ordinary

The purposeof this Letteris to providea unified Poisson brackets.Thus, a phase-spacevariational
basisfor variousnoncanonicalPoissonbracketsin- principle canbe constructed.
troducedin the past [1—8]andto give a new and
importantexampleof sucha bracket.This unifica-
tion is obtainedby extendingthe conceptof the tri-
ple bracket introducedby Nambu [9] in his gen- 2. Lie algebraicbasisfor Nambudynamics
eralized version of Hamiltonian dynamics. Our
extensionof the Nambudynamicsinvolvesthe re- - . .

- . Webeginby considennga semi-simpleLie algebra
placementof the Lie algebraofthe rotationgroupin . kwith structureconstantsc andmetnctensorg, (see,
threedimensions,that featuresprominentlyin the

for example,ref. [10]),
onginal formulation, by an arbitrary Lie algebra.
Whenthis algebrais chosento be the (infinite di- g~=—c~,c1k, (1)
mensional)Lie algebraassociatedwith the Weyl—
Wigner representation,we obtain the phase-space that is usedto raiseand lower indices.We havein-
formulationof quantummechanics.The noncanon- troducedthe minussignhereto makeg

0 positivefor
icalbracketfor theWignerfunctionthatresultsfrom the rotation group.
this formulationreducesin the classicallimit to the With Lie algebraswe canassociatedynamicalsys-
well-known bracket for the classical distribution temswhosestatesaredescribedby theelementswL,

function. of the Lie algebra.The w’ areto beviewedasphase-
Ourextensionof Nambudynamicsleadsto a nat- spacecoordinatesof the systemandL, are the al-

ural parametrizationof the original noncanonical gebragenerators.A naturalLie bracketcanbecon-
variablesin termsof canonicallyconjugatepairsof structedfrom the structureconstantsasfollows:

0375-9601/91/$0150 © 1991 ElsevierSciencePublishersB.V. All rights reserved. 453
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Iwo Bialynicki-Birula E. C. G. Sudarshan Yoichiro Nambu



Overview

I. Noncanonical Hamiltonian Dynamics

II. Lie-Algebra generalization of Nambu Dynamics

III. Generalized Nambu Brackets & Weyl-Wigner Quantum Mechanics

IV. Incompressible Fluid: Lagrange’s volume preserving diffeomorphisms, geodesics, and

Dirac brackets



I. Noncanonical Hamiltonian Dynamics



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM (1980)....

Noncanonical Coordinates:

ẇi = J ij
∂H

∂wj
= {wj, H} , {A,B} =

∂A

∂wi
J ij(w)

∂B

∂wj

Poisson Bracket Properties:

antisymmetry −→ {A,B} = −{B,A} ,

Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Matter models in Eulerian variables: J ij = c
ij
k w

k ← Lie− Poisson Brackets



Flow on Poisson Manifold

Definition. A Poisson manifold Z is differentiable manifold with bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

i) bilinear,

ii) antisymmetric,

iii) Jacobi, and

iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, JdH.

Because of degeneracy, ∃ functions C st {A,C} = 0 for all A ∈ C∞(Z). Called Casimir

invariants (Lie’s distinguished functions!).



Poisson Manifold Z Cartoon

Degeneracy in J ⇒ Casimirs:

{A,C} = 0 ∀ A : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Lie Poisson Flows

g Lie algebra; basis {E1, E2, . . . , En}; structure constants ckij, i.e., [Ei, Ej] = ckijEk;

Dual g∗; dual basis {E1
∗ , E

2
∗ , . . . , E

n
∗ };

〈
Ei∗, Ej

〉
= δij ; standard pairing 〈 · , · 〉 : g∗ × g→ R.

Smooth A : g∗ → R has derivative DA(µ) ∈ g at µ ∈ g∗ for any δµ ∈ g∗,

〈δµ,DA(µ)〉 =
d

ds
A(µ+ sδµ)

∣∣∣∣
s=0

⇒ DA(µ) =
∂A

∂µi
(µ)Ei.

Lie-Poisson bracket on g∗, for all A,B : g∗ → R,

{A,B}LP := 〈µ, [DA,DB]〉 = µkc
k
ij
∂A

∂µi

∂B

∂µj
.

Dynamics with Hamiltonian H : g∗ → R

µ̇i = {µi, H}LP = µkc
k
ij
∂H

∂µj
⇔ µ̇ = −ad∗DH µ

WLOG duality up (w) ↔ (µ) down, Hamiltonian bivector (Poisson tensor): J ij = c
ij
k w

k.



II. Lie-Algebra generalization of Nambu Dynamics



Lie algebraic generalization of Nambu dynamics

g semisimple ⇒ Cartan-Killing metric:

gij = −ckil c
l
jk ,

where metric is used to raise and lower indices.

Recall LP bracket:

{A,B}LP = wk c
ij
k

∂A

∂wi
∂B

∂wj

Fully antisymmetric structure constants

cijk = gim gjn ckmn.

Triple bracket:

[A,B,C] = cijk
∂A

∂wi
∂B

∂wj
∂C

∂wk
.



Generalization of Nambu dynamics (cont)

Quadratic Casimir:

S =
1

2
gijw

iwj {S,A}LP = 0 , i.e. ∀ A

Main Theorem:

[A,B, S] = {A,B}LP
Noncanonical Hamiltonian Dynamics:

dF

dt
= [F,H, S] .

Nambu’s example had g = so(3), i.e., cijk = εijk

[A,B,C] = ∇A · (∇B ×∇C)

Nambu chose S to be the rotational kinetic energy and H to be the Casimir, the square of
the total angular momentum. Naturally S ↔ H.



Lie algebraic generalization of Nambu dynamics (cont)2

g ¬ semisimple? Still have quantity (flip indices up-down)

gij = −ckil c
l
jk ,

but now degenerate!

Still have fully antisymmetric structure constants:

cijk = gim c
m
jk .

Degenerate triple bracket:

[A,B,C]∗ = cijk
∂A

∂µi

∂B

∂µj

∂C

∂µk
.

Lie-Poisson Bracket?

{A,B}∗ = [A,B, S]∗ where if S = Σmnµmµn/2 , {A,B}∗ = (gim c
m
j` Σ`k)µk

∂A

∂µi

∂B

∂µj
.

Any S is conserved, but condition on Σ for Jacobi! Inverse difficulty for field theories.



III. Generalized Nambu Brackets

&

Weyl-Wigner Quantum Mechanics



Triple bracket formulation of quantum mechanics

Lie Algebra Basis Operators:

Ê(r′,p′) =
∫
dΓ ei(r

′·p−p′·r)/~ ei(r·p̂−p·̂r)/~ , where dΓ := dnr dnp/(2π~)n .

Here ˆ indicates operator and {Ê(r,p)} is basis spanning all QM operators

Wigner function is projection of density operator ρ̂ onto basis

W (r,p) = Tr{ρ̂ Ê(r,p)}, ρ̂ =
∫
dΓ W (r,p)Ê(r,p) .

Wigner functions are coordinates of Lie algebra spanned {Ê(r,p)}.

For pure state:

W (r,p) = Tr{|Ψ〉〈Ψ|Ê(r,p)} = 〈Ψ|Ê(r,p)|Ψ〉 =
∫
dns e−is·p/~ψ(r + s/2)ψ∗(r− s/2),

Wigner’s original formula.



Triple bracket formulation of quantum mechanics (cont)

Commutator Lie Algebra:

(i~)−1[Ê(z1), Ê(z2)] =
∫
dΓ3C(z1, z2, z3)Ê(z3) , where z := (r,p)

Lie algebra realization on phase-space functions:

[A,B]M(z) =
∫
dΓ1dΓ2C(z, z1, z2)A(z1)B(z2).

M is for Moyal

[A,B]M(r,p) =
2

~
A(r,p) sin

~
2

(
←−
∂ r ·
−→
∂ p −

←−
∂ p ·

−→
∂ r)B(r,p),

Lie-Poisson-Moyal:

{A,B}LPM =
∫
dΓ1 dΓ2 dΓ3W (z1)C(z1, z2, z3)

δA
δW (z2)

δB
δW (z3)

=
∫
dΓW

[
δA
δW

,
δB
δW

]
M



Triple bracket formulation of quantum mechanics (cont)2

Hamiltonian:

H[W ] =
∫
dΓW (r,p)H(r,p) , where H(r,p) =

|p|2

2m
+ V (r).

Casimir:

S =
1

2

∫
dΓW2(z) , where {A,S}LPM = 0 ∀A

Triple Bracket:

[A,B, C] =
∫
dΓ1 dΓ2 dΓ3C(z1, z2, z3)

δA
δW (z1)

δB
δW (z2)

δC
δW (z3)

,

where A,B, and C arbitrary functionals of W .

Dynamics:

dF
dt

= [F ,H,S] ⇒
∂W

∂t
= [W,H,S] = {W,H}LPM = − [W,H]M .



Triple bracket formulation of quantum mechanics (cont)3

Classical limit, ~→ 0:

• Moyal bracket, [ · , · ]M → canonical Poisson bracket, [ · , · ]c

• Lie-Poisson-Moyal bracket, {W,H}LPM → LP bracket for Vlasov eq., {W,H}LP
PJM (1980)

• Triple Bracket, [A,B, C] → [A,B, C]c =
∫
dΓ

δA
δW (z1)

[
δB

δW (z2)
,

δC
δW (z3)

]
c

[A,B, C] is a one parameter family (deformation) that includes [A,B, C]c above

Appearance in J. Meiss and PJM (1984).



Class of QM Mean Field Theories Like Vlasov

Simply insert the new Hamiltonian:

H[W ] =
∫
dΓW (r,p)H1(r,p) +

∫
dΓ
∫
dΓ′W (r,p)W (r′,p′)H2(r,p; r′,p′)

where e.g.

H1(r,p) =
|p|2

2m
+ V (r)

and H2(r,p; r′,p′) is an interaction kernel, e.g., ⇒ Poisson’s equation if Wigner-Poisson.



IV. Incompressible Fluid:

Lagrange’s volume preserving diffeomorphisms,

geodesics, & and Dirac brackets



Brief Summary

• Lagrange (1788):

– Lagrangian description of the ideal fluid: q(a, t) diffeomorphism? a = q0 7→ q ∀t

– Lagrangian (Hamilton’s action principle): ρ0|q̇|2/2 KE density of free particle

– Lagrange multiplier for incompressibility constraint: J = det(∂q/∂a) = 1 holonomic

• First year physics course: free particle with holonomic constraints → geodesic flow

– Arnold: geodesic flow on the group of volume preserving diffeomorphisms. Curvature

for 2D Euler on domain T2.



Brief Summary 2

Three dichotomies:

• Lagrangian vs. Eulerian descriptions of the ideal fluid

• Lagrange Multiplier vs. Dirac constraint theory

• Lagrangian vs. Hamiltonian descriptions

Results:

• Explicit expressions for the dynamics in terms of constraints and original variables.

• Lagrangian and Eulerian conservation laws are not identical, various methods compared

• Christoffel symbol & Riemann curvature in terms of original Euclidean coordinates
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