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Three Pillars of kinematic Transport
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3) The Transporter Often fluid vet
.
field in din 2on3

phase space dynamics
,
Vlasov

vector field on M

in coords

vi. ( z) or Vilz,t) i = 1,2, i - n → i = 1,2 , -
<

-

,
Mtl

dzi
It

= Vicz) ⇒ z±=¢z° ⇐ zi = EYE ,t )
t

0

Flow 4- • d-+ = Id ⇒ 10-+001+29=19+-4--2
Integral curves 1- parameter

Abelian group ⇒ transport w/ow/ V tangent
mixingt



some vector fields :

2D incompressible Euler V=(0¥ , -0¥)
NC Hamiltonian vector field
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kinematic Transport is Lie Dragging !

Arena any manifold , M

Cargo any tensor field , T

Transporter any vector field
,
✓

0¥ + £uT= 0 Basic Equation
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Why Lie Dragging ?
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E✗amp Kinematic Dynamo
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Example3- Liouville's Equation on 6m dim phase space
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Self - Consistent Transport - Hamiltonian Mean Field Theories
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Why lie dragging ?

Assures important physical quantity
conserved along integral curves .

⇒

Kinematic Transport Meets Dynamical Systems Theory
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Dynamical Systems Theory - Phase Space Structures

A Periodic Orbits

stable l elliptic )
,
unstable ( hyperbolic)

* Quasi e periodic orbits

e-9 . attracting 11-2

* Invariant sets

Barriers to transport ; exact or sticky regions
Cantor sets - strange attractors

* Regions of chaos
,
ergodic ity , invariant measures



Tools - Fast Indicators

Lyapunov Exponent : calculation technique Benett.in etat . 1980

experimental technique Wolf et al . 1985

FTLE Froeschle et al . 1997

FTLE as indicator of transport Haller 2000→

others ( celestial mech . ) : Lekien et al
.

2007

Small alignment index CSALI ) skokos etat 2007

General alignment index CGALI)
mean exp . growth of nearby orbits IMEGNO ) Cino#a 2000

Frequency Methods : Laskar et al . 1992

Finite Trine Rotation Number : Szczech et al . 2013 ; Sander et al .

FTRN
"
dual

" to FTLE - integrability vs . chaos
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Fig. 1. (Color online.) (a) Time-4T Lyapunov exponent and (b) time-4T rotation number for the double gyre system, with period T = 10, amplitude A = 0.1 and forcing
strength ε = 0.25. (c) and (d) depict the Lagrangian coherent structures corresponding to ridges of (a) and (b), respectively.

tan θA(x) = xA − x
y A − y

, (10)

tan θB(x) = xB − x
yB − y

, (11)

for the time-4T stroboscopic map of this nonintegrable system.
This defines the projection Π . Similarly, we use the same cor-
responding time-4T to compute the Lyapunov exponent, which
requires computing five nearby orbits, necessary to evaluate spa-
tial derivatives, instead of only one orbit for the FTRN. For this
reason, computation of FTRNs is faster than FTLEs.

The results of the FTLEs and the FTRNs for the double gyre sys-
tem are depicted in Figs. 1(a) and (b), respectively, where blue
(red) depict low (high) values of the corresponding quantity. To
obtain Fig. 1(b) we add the FTRN calculated with respect to points
A and B . The ridges of both, i.e. the crests of higher values are
shown in Figs. 1(c) and (d) for FTLE and FTRN, respectively. The
pictures are indeed very similar, notwithstanding the wide differ-
ence in the CPU-time necessary to produce them, mainly due to
the derivatives computed for the FTLE. Moreover, Figs. 1(c) and (d)
reveal the existence of LCS for the nonintegrable system. For small
values of y, the LCS approach the oscillating vertical line H that
separates the gyres. In fact, despite the absence of well-defined
stable and unstable manifolds of equilibria for time-periodic flows,
the ridges displayed by Fig. 1 are quasi-invariant: if a passive scalar
(tracer) were put on such ridges, it would be advected by flow and
remain in the vicinity of the ridge for a long time (on the order of
the experiment duration). In other words, even though the ridge
no longer separates the gyres for an arbitrarily long time (there
may be a small transverse flux), trajectories starting on the left-
hand side (right-hand side) chiefly remain in the left-hand side
(right-hand side). In practical terms, however, this suffices to char-
acterize an effective transport barrier.

Example 2 (Advection of a passive scalar). In Example 1, investigation
of LCS in a time-T -periodic flow required the numerical evaluation
of the time-T stroboscopic map M . Sometimes when researchers
consider advection of a passive scalar by two-dimensional flows,
M is given by replacing the mixing action of a flow by an explicit
area-preserving map. An example [26] of this is

xn+1 = xn + a sin(2π yn) (mod 1), (12)

yn+1 = yn + a sin(2πxn+1) (mod 1). (13)

This map is also known in the literature as the Harper map [27].
The map (13) corresponds to a velocity field that is the super-

position of two sinusoidal shear flows in the x and y directions.
In this case, the flow shear reverses sign along some shearless
curve, as is the case for zonal flows of geophysical, atmospheric,
and plasma physical interest [10,19]. The map (13) is symplectic
and represents a Hamiltonian system for any value of a. The fixed
points in the torus D = [0,1) × [0,1) are the centers P : (0,1/2),
Q : (1/2,0) and the saddles R: (0,0) and S: (1/2,1/2).

Since the system is nonintegrable for a #= 0, the stable and
unstable manifolds stemming from the saddle points R and S in-
tersect in a heteroclinic tangle and there are chaotic orbits that
do not lie on continuous invariant circles. This structure is respon-
sible for the mixing effect of the chaotic advection. Nevertheless,
this chaotic layer acts as an effective transport barrier separating
the two gyres with invariant tori encircling P and Q .

This is clearly seen after computing the time-100T rotation
number for M (with Π projecting onto the x-axis) and then ex-
tracting the corresponding ridges with high values of ω100. These
ridges trace out quasi-invariant sets that shadow the heteroclinic
connections, especially in the vicinity of the saddle points R and S ,
reinforcing their interpretation as LCS. For both maps and flows
one has to decide which projection is relevant to compute FTRN.
Generally for maps like Eqs. (12)–(13) one is interested in trans-
port in the momentum (y) direction, and the angle (x) is the
natural variable. The computation of FTRNs is particularly fast for
maps, so calculation of ω100 is not difficult, but the results are es-
sentially identical for ω10.

In Figs. 2(a) and (b) we depict the FTLE and FTRN, respec-
tively, for orbits of the advection map (13) for a = 0.25, whose
ridges (points with largest relative values) are shown in Figs. 2(c)
and (d), respectively. Both diagnostics indicate that the LCS are
quasi-invariant sets about a chaotic separatrix layer. This layer acts
as a transport barrier that separates quasiperiodic curves encircling
the centers P and Q ; the layer being a ridge implies these are LCS
of this system.

"Duality
"
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Modelling w/ Symplectic Maps

Example : standard map - generic near elliptic periodic orbit

charged ptle . in E- field mii-eecx.tl

E = E ,
eik ' ✗ -iwit ihzx-iwz.ltEz e t • . .

E. = Ez = . . . scaling ⇒ lt-P-ztcsin9-ISH.mn)
nap

standard Map :

9-n+ , = 9-
n
+ Pm+1 ; Pm + i

= Pn -2¥ sin (211-9)

Invariant circles are exact barriers to transport
KAM limit

,
Poincare-Birkhoff Thm

,
Island overlap

,
Greene 's Method

,

Renormalization & scaling .



1991

del - Castillo - Negrete et al . 1992 Nontwist

pumped rotating annulus on B-plane



Zonal Flow ⇒ Nontwist⇐ F shearless Torus

del - Castillo - Negrete { PJM 1992
,
1993

Moser twist condition - further up ⇒ further over

p
Behavior not captured by the

standard Map !
→

Standard Nontwist Map

9- 9-
n+ ,

= 9-
n

+ all - Pin) ; Pn+,= Pm- bsinqn

Precursors : Large literature
generic behavior of shear less Tori

J. Howard Apte
,
worm

,
Fuchss

* nonstandard bifurcations
• < . Viana 2021

J
.

Weiss
Javier Baron-Vera A nonstandard renormalization

today ! A Broken shearless Tori are sticky !



Realistic Particle Transport and mixing

2- = ¢+0 §=É Broken ! How ?

It 7 stretching & contracting directions ⇒

t Generation of

map
→✓ fine scales

←

E- + v. 0s =Nis
9

someone's#

☒ Gets activated ⇒ mixing
on fine scales

F measures of mixing J - L Thiffeault



other possibilities

* collisional kinetic theories
q¥ + { ¥g

,

fj = 0¥)
.

Boltzmann

Landau
:

* Damping { Driving
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×
,
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Intentional vs .
"

Natural
"

Natural : mid latitude ozone → ozone hole
, impurities in tokamak,

a • 0

Intentional : diagnostic dye , Barium , neutrally buoyant pts (PIV )

be a a



Particle Entrainment weeks 1997
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,
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m dip = Gita pv (Uf - Op) Stokes drag Simha etat . 2018
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a
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That's All Folks !
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