Metriplectic 4-bracket dynamics: the natural way to build in thermodynamic consistency

Philip J. Morrison

Department of Physics
Institute for Fusion Studies, and ODEN Institute
The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/

Euleria Webinar
October 13, 2023

Geometry of metriplectic 4-brackets: with Michael Updike

→ Theory of thermodynamically consistent theories!
Theories & Models \rightarrow Dynamics

Goal:
Predict the future or explain the past \Rightarrow

$$\dot{z} = V(z), \quad z \in \mathcal{Z}, \text{ Phase Space}$$

A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V?

- **Fundamental** parent theory (microscopic, N interacting gravitating or charged particles, BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, rigorous asymptotics \rightarrow **Reduced Computable Model** V.

- **Phenomena** based modeling using known properties, constraints, etc. used to intuit \rightarrow **Reduced Computable Model** V. \leftrightarrow structure can be useful.
Types of Vector Fields, \(V(z) \) (cont)

Only (?) Natural Split:

\[
V(z) = V_H + V_D
\]

- **Hamiltonian** vector fields, \(V_H \): conservative, properties, etc.
- **Dissipative** vector fields, \(V_D \): not conservative of something, relaxation/asymptotic stability, etc.

General Hamiltonian Form:

\[
\text{finite dim} \rightarrow V_H = J \frac{\partial H}{\partial z} \quad \text{or} \quad V_H = J \frac{\delta H}{\delta \psi} \quad \leftarrow \infty \text{ dim}
\]

where \(J(z) \) is Poisson tensor/operator and \(H \) is the Hamiltonian. Basic product decomposition.

General Dissipation:

\[
V_D = \ldots \rightarrow V_D = G \frac{\partial F}{\partial z}
\]

Codifying Dissipation – Some History

Is there a framework for dissipation akin to the Hamiltonian formulation for nondissipative systems?

Rayleigh (1873): \[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_\nu} \right) - \left(\frac{\partial L}{\partial q_\nu} \right) + \left(\frac{\partial F}{\partial \dot{q}_\nu} \right) = 0 \]
Linear dissipation e.g. of sound waves. *Theory of Sound.*

Cahn-Hilliard (1958): \[\frac{\partial n}{\partial t} = \nabla^2 \frac{\delta F}{\delta n} = \nabla^2 \left(n^3 - n - \nabla^2 n \right) \]
Phase separation, nonlinear diffusive dissipation, binary fluid ..

Other Gradient Flows: \[\frac{\partial \psi}{\partial t} = G \frac{\delta F}{\delta \psi} \]
Otto, Ricci Flows, Poincarè conjecture on \(S^3 \), Perelman (2002) ...
Metriplectic Dynamics
(Metric ∪ Symplectic Flows)

- Formalism for natural split of vector fields

- Enforces thermodynamic consistency: $\dot{H} = 0$ the 1st Law and $\dot{S} \geq 0$ the 2nd Law.

- Other invariants? E.g., collision operators preserve, mass, momentum, There exists some theory for building in, but won’t discuss today.

- Encompassing 4-bracket theory: “curvature” as dissipation

Ideas of Casimirs are candidates for entropy, multibracket, curvature, etc. in pjm (1984). Metriplectic in pjm (1986).
Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: \((q, p)\)

Hamiltonian function: \(H(q, p)\) \(\leftrightarrow\) the energy

Equations of Motion:

\[
\dot{p}_\alpha = -\frac{\partial H}{\partial q^\alpha}, \quad \dot{q}^\alpha = \frac{\partial H}{\partial p_i}, \quad \alpha = 1, 2, \ldots N
\]

Phase Space Coordinate Rewrite: \(z = (q, p), \quad i, j = 1, 2, \ldots 2N\)

\[
\dot{z}^i = J^i_{cj} \frac{\partial H}{\partial z^j} = \{z^i, H\}_c, \quad (J^i_{cj}) = \begin{pmatrix}
0_N & I_N \\
-I_N & 0_N
\end{pmatrix},
\]

\(J_c := \text{Poisson tensor, Hamiltonian bi-vector, cosymplectic form}\)
Noncanonical Hamiltonian Structure

Sophus Lie (1890) \rightarrow PJM (1980) \rightarrow Poisson Manifolds etc.

Noncanonical Coordinates:

$$\dot{z}^i = \{z^i, H\} = J^{ij}(z) \frac{\partial H}{\partial z^j}$$

Noncanonical Poisson Bracket:

$$\{f, g\} = \frac{\partial f}{\partial z^i} J^{ij}(z) \frac{\partial g}{\partial z^j}$$

Poisson Bracket Properties:

antisymmetry $\rightarrow \quad \{f, g\} = -\{g, f\}$

Jacobi identity $\rightarrow \quad \{f, \{g, h\}\} + \{b, \{h, f\}\} + \{h, \{f, g\}\} = 0$

Leibniz $\rightarrow \quad \{fh, g\} = f\{h, g\} + \{h, g\}f$

G. Darboux: $\det J \neq 0 \iff J \rightarrow J_c$ Canonical Coordinates

Sophus Lie: $\det J = 0 \iff$ Canonical Coordinates plus Casimirs (Lie’s distinguished functions!)
Poisson Brackets – Flows on Poisson Manifolds

Definition. A Poisson manifold \mathcal{Z} has bracket

$$\{ , \} : C^\infty(\mathcal{Z}) \times C^\infty(\mathcal{Z}) \to C^\infty(\mathcal{Z})$$

st $C^\infty(\mathcal{Z})$ with $\{ , \}$ is a Lie algebra realization, i.e., is

• bilinear,
• antisymmetric,
• Jacobi, and
• Leibniz, i.e., acts as a derivation \Rightarrow vector field.

Geometrically $C^\infty(\mathcal{Z}) \equiv \Lambda^0(\mathcal{Z})$ and d exterior derivative.

$$\{f,g\} = J(df \wedge dg) = \langle df, Jdg \rangle = J(df, dg).$$

J the Poisson tensor/operator. Flows are integral curves of non-canonical Hamiltonian vector fields, JdH, i.e.,

$$\dot{z}^i = J_{ij}(z) \frac{\partial H(z)}{\partial z^j}, \quad \mathcal{Z}'s\ coordinate\ patch\ z = (z^1, \ldots, z^N)$$

Because of degeneracy, \exists functions C st $\{f, C\} = 0$ for all $f \in C^\infty(\mathcal{Z})$. Casimir invariants (Lie’s distinguished functions!).
Poisson Manifold (phase space) \mathcal{Z} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$\{f, C\} = 0 \quad \forall \ f : \mathcal{Z} \to \mathbb{R}$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:
Metrplectic 4-Bracket: \((f, k; g, n)\)
Why a 4-Bracket?

• Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

• There remains two slots for bilinear bracket: one for observable one for generator (\mathcal{F}?) s.t. $\dot{H} = 0$ and $\dot{S} \geq 0$.

• Provides natural reductions to other bilinear & binary brackets.

• The three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.
The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

\[(\cdot, \cdot; \cdot, \cdot): \Lambda^0(\mathcal{Z}) \times \Lambda^0(\mathcal{Z}) \times \Lambda^0(\mathcal{Z}) \times \Lambda^0(\mathcal{Z}) \to \Lambda^0(\mathcal{Z})\]

For functions \(f, k, g, n \in \Lambda^0(\mathcal{Z})\)

\[(f, k; g, n) := R(df, dk, dg, dn),\]

In a coordinate patch the metriplectic 4-bracket has the form:

\[(f, k; g, n) = R^{ijkl}(z) \frac{\partial f}{\partial z^i} \frac{\partial k}{\partial z^j} \frac{\partial g}{\partial z^k} \frac{\partial n}{\partial z^l}.\] ← quadravector?

- A blend of my previous ideas: Two important functions \(H\) and \(S\), symmetries, curvature idea, multilinear brackets.

- Manifolds with both Poisson tensor, \(J^{ij}\), and compatible quadravector \(R^{ijkl}\), where \(S\) and \(H\) come from Hamiltonian part.
Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g.,

\[(f + h, k; g, n) = (f, k; g, n) + (h, k; g, n)\]

(ii) algebraic identities/symmetries

\[(f, k; g, n) = -(k, f; g, n)\]
\[(f, k; g, n) = -(f, k; n, g)\]
\[(f, k; g, n) = (g, n; f, k)\]
\[(f, k; g, n) + (f, g; n, k) + (f, n; k, g) = 0 \quad \leftarrow \text{not needed}\]

(iii) derivation in all arguments, e.g.,

\[(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h\]

which is manifest when written in coordinates. Here, as usual, \(fh\) denotes pointwise multiplication. Symmetries of algebraic curvature without cyclic identity. Often see \(R^{lijk}_{ijk}\) or \(R_{lijk}\) but not \(R^{lijk}_{ijk}\)!

Minimal Metriplectic.
Early Binary 2-Brackets and Dissipation

Ingredients:
Binary Brackets (Poisson and Dissipative) + Generators

\[\dot{z} = \{z, H\} + ((z, F)) \]

If \(((\cdot, \cdot))\) Leibniz & bilinear

\[\dot{z}^i = J^{ij} \frac{\partial H}{\partial z^j} + G^{ij} \frac{\partial F}{\partial z^j} \]

where

\[(((,))): C^\infty(\mathcal{Z}) \times C^\infty(\mathcal{Z}) \rightarrow C^\infty(\mathcal{Z}) \]

What is \(F\) and what are the algebraic properties of \(((,))\)?
Metriplectic 2-Bracket
(pjm 1984,1984,1986)

- \((f,g)\) symmetric, bilinear, appropriately degenerate

- **Casimirs** of noncanonical PB \(\{ , \} \) are ‘candidate’ entropies.
 Election of particular \(S \in \{\text{Casimirs}\} \Rightarrow \) thermodynamic equilibrium (relaxed) state.

- **Generator**: \(\mathcal{F} = H + S \) ← “Free Energy”

- **1st Law**: identify energy with Hamiltonian, \(H\), then
 \[
 \dot{H} = \{H, \mathcal{F}\} + (H, \mathcal{F}) = 0 + (H, H) + (H, S) = 0
 \]
 Foliate \(Z\) by level sets of \(H\), with \((H,f) = 0 \forall f \in C^\infty(Z)\).

- **2nd Law**: entropy production
 \[
 \dot{S} = \{S, \mathcal{F}\} + (S, \mathcal{F}) = (S, S) \geq 0
 \]
Lyapunov relaxation to the equilibrium state. **Dynamics solves the equilibrium variational principle**: \(\delta \mathcal{F} = \delta(H + S) = 0\).
Metriplectic 4-Bracket Reduction to 2-Bracket

Symmetric 2-bracket:

\[(f, g)_H = (f, H; g, H) = (g, f)_H\]

Dissipative dynamics:

\[\dot{z} = (z, S)_H = (z, H; S, H)\]

Energy conservation:

\[(g, H)_H = (H, g)_H = 0 \quad \forall g.\]

Entropy dynamics:

\[\dot{S} = (S, S)_H = (S, H; S, H) \geq 0\]

Metriplectic 4-brackets → metriplectic 2-brackets of 1984, 1986!
Metríplectico 4-Bracket: Encompassing Definition of Dissipation

- Lots of geometry on Poisson manifolds with metric or connection. Emerges naturally.

- If Riemannian, entropy production rate is positive contravariant sectional curvature. For $\sigma, \eta \in \Lambda^1(\mathcal{Z})$, entropy production by

 $$\dot{S} = K(\sigma, \eta) := (S, H; S, H),$$

 where the second equality follows if $\sigma = dS$ and $\eta = dH$.
Binary Brackets for Dissipation circa 1980

- Antisymmetric Bracket (possibly degenerate) (Kaufman and pjm 1982)
- Metriplectic Dynamics (pjm 1984, 1984, 1986, ... Kaufman 1984 had no degeneracy)
- GENERIC (Grmela 1984, with Oettinger 1997, ...) Binary but **not** Symmetric and **not** Bilinear ⇔ Metriplectic Dynamics!
- Double Brackets (Vallis, Carnevale, Young, Shepherd; Brock-ett, Bloch ... 1989)
4-Bracket Reduction to K-M Brackets
(Kaufman and Morrison 1982)

K-M done for plasma quasilinear theory.

Dynamics:

\[\dot{z} = [z, H]_S = (z, H; S, H) \]

Bracket Properties:

\[[f, g]_S = (f, g; S, H) \]

- bilinear
- antisymmetric, possibly degenerate
- energy conservation and entropy production

\[\dot{H} = [H, H]_S = 0 \quad \text{and} \quad \dot{S} = [S, H]_S \geq 0 \quad \Rightarrow \quad z \mapsto z_{eq} \]
4-Bracket Reduction to Double Brackets
(Vallis, Carnevale; Brockett, Bloch ... 1989)

Interchanging the role of H with a Casimir S:

$$(f, g)_S = (f, S; g, S)$$

Can show with assumptions (Koszul construction)

$$(C, g)_S = (C, S; g, S) = 0$$

for any Casimir C. Therefore $\dot{C} = 0$.

Practical tool for equilibria computation → Beautiful geometry with Fernandes-Koszul connection!
4-Bracket Reduction to 2-Brackets \equiv GENERIC
(Grmela 1984, with Öttinger 1997)

- Grmela 1984 bracket for Boltzmann not bilinear and not symmetric, unlike metriplectic 2-bracket.

GENERIC Vector Field in terms of dissipation function $\Xi(z, z^*)$:

$$\dot{z}^i = Y_S^i = \frac{\partial \Xi(z, z^*)}{\partial z^*_i} \bigg|_{z^*_i = \partial S/\partial z}.$$

Special Case:

$$\Xi(z, z^*) = \frac{1}{2} \frac{\partial S}{\partial z^i} G^{ij}(z) \frac{\partial S}{\partial z^j} \implies Y_S^i = G^{ij}(z) \frac{\partial S}{\partial z^j},$$

- General Case: there exists a bracket and procedure (pjm & Updike) for linearizing and symmetrizing \Rightarrow

Existence – General Constructions

- For any Riemannian manifold \(\exists \) metriplectic 4-bracket. This means there is a wide class of them, but the bracket tensor does not need to come from Riemann tensor only needs to satisfy the bracket properties.

- Methods of construction? We describe two, Kulkarni-Nomizu and Lie algebra based. Goal is to develop intuition like building Lagrangians.
Construction via Kulkarni-Nomizu Product

Given σ and μ, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact) df, dk and dg, dn, the K-N product is

$$\sigma \bigodot \mu (df, dk, dg, dn) = \sigma (df, dg) \mu (dk, dn)$$

$$- \sigma (df, dn) \mu (dk, dg)$$

$$+ \mu (df, dg) \sigma (dk, dn)$$

$$- \mu (df, dn) \sigma (dk, dg).$$

Metriplectic 4-bracket:

$$(f, k; g, n) = \sigma \bigodot \mu (df, dk, dg, dn).$$

In coordinates:

$$R^{ijkl} = \sigma^{ik} \mu^{jl} - \sigma^{il} \mu^{jk} + \mu^{ik} \sigma^{jl} - \mu^{il} \sigma^{jk}.$$
Lie Algebras and Lie-Poisson Brackets

Lie Algebras: Denoted \mathfrak{g}, is a vector space (over \mathbb{R}, \mathbb{C}, for us \mathbb{R}) with binary, bilinear product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$. In basis $\{e_i\}$, $[e_i, e_j] = c^k_{ij} e_k$. Structure constants c^k_{ij}. For example $\mathfrak{so}(3)$, which has $A \times (B \times C) + B \times (C \times A) + C \times (A \times B) \equiv 0$.

Lie-Poisson Brackets: special noncanonical Poisson brackets associated with any Lie algebra, \mathfrak{g}.

Natural phase space \mathfrak{g}^*. For $f, g \in C^\infty(\mathfrak{g}^*)$ and $z \in \mathfrak{g}^*$.

Lie-Poisson bracket has the form

$$\{f, g\} = \langle z, [\nabla f, \nabla g] \rangle = \frac{\partial f}{\partial z^i} c^j_k \frac{\partial g}{\partial z^j} z_k, \quad i, j, k = 1, 2, \ldots, \dim \mathfrak{g}$$

Pairing $\langle , \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$, z^i coordinates for \mathfrak{g}^*, and c^i_j structure constants of \mathfrak{g}. Note

$$J^{ij} = c^i_j z_k.$$
Lie Algebra Based Metriplectic 4-Brackets

- For structure constants c_{kl}^s:

$$ (f, k; g, n) = c_{ij}^r c_{kl}^s g^{rs} \frac{\partial f}{\partial z^i} \frac{\partial k}{\partial z^j} \frac{\partial g}{\partial z^k} \frac{\partial n}{\partial z^l}. $$

Lacks cyclic symmetry, but \exists procedure to remove torsion (Bianchi identity) for any symmetric ‘metric’ g^{rs}. Dynamics does not see torsion, but manifold does.

- For $g_{CK}^{rs} = c_{rl}^k c_{sk}^l$ the Cartan-Killing metric, torsion vanishes automatically. Completely determined by Lie algebra.
Examples

- finite-dimensional
- $1+1$ fluid theory
- $3+1$ fluid theory
- kinetic theory
Free Rigid Body

Angular momenta \((L^1, L^2, L^3)\), Lie-Poisson bracket with Lie algebra \(\mathfrak{so}(3)\),
\[c^{ij}{}_{k} = -\epsilon_{ijk}. \]

Hamiltonian:
\[H = \frac{(L^1)^2}{2I_1} + \frac{(L^2)^2}{2I_2} + \frac{(L^3)^2}{2I_3} \]

principal moments of inertia, \(I_i\) Casimir
\[C = ||L||^2 = (L^1)^2 + (L^3)^2 + (L^3)^2 = S, \]

Euler’s equations:
\[\dot{L}^i = \{L^i, H\} \]

“Thermodynamics” \to design a system s.t. \(\dot{H} = 0\) and \(\dot{S} \leq 0\).
“Thermodynamical” Free Rigid Body

Use K-N product. Choose $\sigma^{ij} = \mu^{ij} = g^{ij} \Rightarrow$

$$R^{ijkl} = K \left(g^{ik} g^{jl} - g^{il} g^{jk} \right),$$

Riemannian *Space form* with constant sectional curvature K.

Assume Euclidean gives metriplectic 4-bracket:

$$(f, k; g, n) = K \left(\delta^{ik} \delta^{jl} - \delta^{il} \delta^{jk} \right) \frac{\partial f}{\partial z^i} \frac{\partial k}{\partial z^j} \frac{\partial g}{\partial z^k} \frac{\partial n}{\partial z^l},$$

Metriplectic 2-bracket:

$$(f, g)_{H} = (f, H; g, H)$$

Precisely bracket and dynamics of pjm 1986!

$$\dot{L}^i = \{L^i, H\} + (L^i, S)_H = \{L^i, H\} + (L^i, H; S, H)$$
1D fluid \(u(x,t) \)

Again use K-N product with operators \(\Sigma \) and \(M \)

\[
(F, K; G, N) = \int dx \ W\left(\Sigma(F_u, G_u)M(K_u, N_u) \right.
\]

\[
\quad -\Sigma(F_u, N_u)M(K_u, G_u) + M(F_u, G_u)\Sigma(K_u, N_u)
\]

\[
\left. -M(F_u, N_u)\Sigma(K_u, G_u) \right),
\]

\(W \) a constant and \(F_u = \delta F/\delta u \), etc.

Choose

\[
M(F_u, G_u) = F_uG_u
\]

\[
\Sigma(F_u, G_u)(x) = \partial F_u(x)\mathcal{H}[G_u](x) + \partial G_u(x)\mathcal{H}[F_u](x) ,
\]

\(\partial = \partial/\partial x \) and \(\mathcal{H} \) the Hilbert transform \(\Rightarrow \)

\[
(F, G)_H = (F, H; G, H) = \int dx \ W\left(\partial F_u \mathcal{H}[G_u] + \partial G_u \mathcal{H}[F_u] \right).
\]

\[
u_t = ... (u, S)_H = -2W \mathcal{H}[\partial u] .
\]

Ott & Sudan 1969 fluid model of electron Landau damping (Hammett-Perkins 1990). \(\mathcal{H} \to \partial \Rightarrow \text{viscous dissipation} \)
Thermodynamic Navier-Stokes:
\[\chi = \{\rho, \sigma = \rho s, M = \rho v\} \]

K-N again:
\[M(F_\chi, G_\chi) = F_\sigma G_\sigma \]
\[\Sigma(F_\chi, G_\chi) = \tilde{\Lambda}_{ijkl} \partial_j F_{M_i} \partial_k G_{M_l} + a \nabla F_\sigma \cdot \nabla G_\sigma \]
\[\partial_i := \partial/\partial x^i \] with general isotropic Cartesian tensor of order 4
\[\tilde{\Lambda}_{ikst} = \alpha \delta_{ik} \delta_{st} + \beta (\delta_{is} \delta_{kt} + \delta_{it} \delta_{ks}) + \gamma (\delta_{is} \delta_{kt} - \delta_{it} \delta_{ks}) \]

Construct
\[(F,G)_H = (F,H;G,H) \rightarrow \chi_t = \{\chi, H\} + (\chi, S)_H \Rightarrow \]
using \(S = \int d^3 x \rho s \) and \(H = \int d^3 x \left(\rho |v|^2/2 + \rho U(\rho, s) \right) \)
\[\partial_t v = -v \cdot \nabla v - \frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot T \]
\[\partial_t \rho = -\nabla \cdot (\rho v) \]
\[\partial_t s = -v \cdot \nabla s - \frac{1}{\rho T} \nabla \cdot q + \frac{1}{\rho T} T : \nabla v, \quad q = -\kappa \nabla T \]

Reproduces pjm 1984!
Collision Operator

Phase space $z = (x, v)$, density $f(z, t)$

Define operator on $w: \mathbb{R}^6 \to \mathbb{R}$ (at fixed time)

$$P[w]_i = \frac{\partial w(z)}{\partial v_i} - \frac{\partial w(z')}{\partial v'_i}$$

$$(F, K; G, N) = \int d^6 z \int d^6 z' G(z, z') \times (\delta \otimes \delta)_{ijkl} P[F_f]_i P[K_f]_j P[G_f]_k P[N_f]_l ,$$

where simplest K-N

$$(\delta \otimes \delta)_{ijkl} = 2(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) .$$

with $S = -\int d^6 z f \ln f$

$$(f, H; SH) = ??$$

Landau-Lenard-Balescu collision operator!

Metriplectic 2-bracket $(f, g)_H$ in pjm 1984 again!
Theory Final Comments

• Useful for thermodynamically consistent model building, e.g., multiphase flow (Navier-Stokes-Cahn-Hilliard) with many constitutive relation effects (with A. Zaidni) and inhomogeneous collision operator (with N. Sato).

• Given that double brackets and metriplectic brackets have been used for computation of equilibria, metriplectic 4-bracket can be a new tool for equilibria.

• New kind of structure to preserve: Symplectic, Poisson, FEEC, metriplectic 2-bracket, metriplectic 4-bracket?
Existing Computational Uses

Dynamical extremization with constraints:

• Simulated Annealing: Double brackets for equilibria

• Metriplectic relaxation
Double Bracket for Vortex States 1989

Good Idea: Vallis, Carnevale, and Young, Shepherd (1989,1990)

\[
\frac{d\mathcal{F}}{dt} = \{\mathcal{F}, H\} + ((\mathcal{F}, H)) = ((\mathcal{F}, \mathcal{F})) \geq 0
\]

where

\[
((F, G)) = \int d^3 x \frac{\delta F}{\delta \chi} J^2 \frac{\delta G}{\delta \chi}
\]

Lyapunov function, \(\mathcal{F} \), yields asymptotic stability to rearranged equilibrium.

- **Maximizing** energy at fixed Casimir: Except only works sometimes, e.g., limited to circular vortex states
Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a variational principle with constraints for equilibria states.

Coordinates:

\[\dot{z}^i = ((z^i, H)) = J^{ik} g_{kl} J^{jl} \frac{\partial H}{\partial z^j} \]

symmetric, definite, and kernel of \(J \).

\[\dot{C} = 0 \quad \text{with} \quad \dot{H} \leq 0 \]
Simulated Annealing with Generalized (Noncanonical) Dirac Brackets

Dirac Bracket:

\[
\{F, G\}_D = \{F, G\} + \frac{\{F, C_1\}\{C_2, G\}}{\{C_1, C_2\}} - \frac{\{F, C_2\}\{C_1, G\}}{\{C_1, C_2\}}
\]

Preserves any two incipient constraints \(C_1\) and \(C_2\).

Our New Idea:

Do simulated Annealing with Generalized Dirac Bracket

\[
((F, G'))_D = \int dx dx' \{F, \zeta(x)\}_D \mathcal{G}(x, x') \{\zeta(x'), G\}_D
\]

Preserves any Casimirs of \(\{F, G\}\) and Dirac constraints \(C_{1,2}\)

For implementation with contour dynamics see PJM (with Flierl)
Vorticity contours. The three-fold symmetric initial condition finds tri-polar state using Dirac bracket Simulated Annealing.
Double Bracket SA for Reduced MHD

High-beta reduced MHD (Strauss, 1977) given by

\[
\frac{\partial U}{\partial t} = [U, \varphi] + [\psi, J] - \epsilon \frac{\partial J}{\partial \zeta} + [P, h]
\]

\[
\frac{\partial \psi}{\partial t} = [\psi, \varphi] - \epsilon \frac{\partial \varphi}{\partial \zeta}
\]

\[
\frac{\partial P}{\partial t} = [P, \varphi]
\]

Extremization

\[
\mathcal{F} = H + \sum_{i} C_i + \lambda^i P_i, \rightarrow \text{equilibria, maybe with flow}
\]

\(Cs\) Casimirs and \(Ps\) dynamical invariants.
Nested Tori are level sets of ψ; q gives pitch of helical B-lines.
Double Bracket SA for Stability

Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. Three steps:

1) choose **any** equilibrium of unknown stability

2) perturb the equilibrium with dynamically accessible (leaf) perturbation

3) perform double bracket SA

If it finds the equilibrium, then is is an energy extremum and must be stable
Sample Double Bracket SA unstable equilibria

FIG. 11: Radial profiles of the \((m, n) = (2, 1)\) components are plotted at several times during the SA evolution. The perturbation amplitudes decreased in time.

FIG. 12: Poloidal rotation velocity \(v_\theta\) profile.
FIG. 16: Radial profiles of the \((m, n) = (2, 1)\) components are plotted at several times during the SA evolution. The perturbation amplitudes grew in time.
Metriplectic Simulated Annealing.

Camilla Bressen Ph.D.
TUM & Max Planck, Garching, Germany

Vortex states and MHD equilibria
Figure 6.29: Relaxed state for the *gs-imgc* test case. The same as in Figure 6.23, but for the collision-like operator and the case of the Czarny domain discussed in Section A.4.2. With respect to Figure 6.27(b) for the diffusion-like operator, we see from (b) that the agreement between the relaxed state and the prediction of the variational principle is better.
Computation Summary

- Poisson Integrators

- Dirac Double Bracket Simulated Annealing for Equilibria and Stability

- Metricplectic Simulated Annealing for Equilibria
References: