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Overview:

e Metriplectic 4-bracket theory of thermodynamically consistent theories.

e UTA, an algorithm for constructing such theories.

e Use UTA to construct consistent Navier-Stokes-Fourier (a pedagogical example).
e Mention numerical implementation for Navier-Stokes-Fourier
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Confession

e Similar to talk in June, 2024 at NMPP, Garching

e Similar to talk in July, 2024 Stellarator Theory, Greifswald

e [ his talk has lots of equations!



What’'s New Since Previous Talks?

e Direct procedure for constructing the metriplectic 4-bracket. Completion of the UTA.

Flux — Affinity Relation: J& = Lo‘ﬁXﬁ — JY¥=_[0B V(dH/(SgB)

e First numerical implementation via 4-bracket discretization for 1-D Navier-Stokes-Fourier.
Finite element projection of PDE to thermodynamically consistent finite-dimensional 4-bracket,
i.e. ODEs. For example, for the density p(x,t)

N
pp(z,t) = > pi(t)pi(z) —  pi(t) ={piH} + (pi, H; S, H) ...
i=1

Results use Firedrake library, implicit midpoint, Irksome module ...



What is structure? Why care?

Old Structure:

B-lines as area preserving (symplectic) maps (1952), adiabatic invariants (1960s), breaking of
invariant tori (1970s), Lie transforms (1975) noncanonical guiding center (1980), noncanonical
MHD and Vlasov (1980), noncanonical drift and gyrokinetics (1985) ...

New Structure:

FEEC, cohomology and homology, Poisson integrators, the metriplectic 4-bracket, ...

Yesterday’s exotic structure is today’s commmon place!




T hermodynamic Consistency — Examples

Navier-Stokes (inconsistent):

1 1
ov=—-—v-Vv——-Vp+ -V -T <+ 7T viscous stress tensor ~ Vv

p p
Orp = =V - (pv)

— 2 '
H= [ ploP/2+pu(p) and H# 0

Navier-Stokes Fourier (consistent) (Eckart 1940):
1 1
ov =—v-Vv——-Vp+-V.T
p p

Op = =V - (pv)

1 1
os = —v-Vs——V.-q+ —T7 : Vv heat flux & viscous heating
pT pT

H=/9p|v|2/2—|—pu(p,s), H=0 and Sz/st — S>0







All Dynamical Models Have Vector Fields, V(z)

Natural Split:
V(z)=Vyg+Vp

e Hamiltonian vector fields, Vy: conservative, properties, etc.

e Dissipative vector fields, Vp: something not conserved, relaxation/asymptotic stability, etc.

General Hamiltonian Form:

OH 0H
finite dim - Vg=J—={2H} or Vg =J — oo dim
0z I

where J(z) is Poisson tensor/operator, {f,g} Poisson bracket, and H is the Hamiltonian.

General Dissipation:

VD =7.. — VD = Ga—s
0z

Build in thermodynamic consistency: 1st law Hamiltonian H = 0 and 2nd law entropy S > O.



Building Theories - Traditional Physics Approach

Identify configuration space:
e Coordinates q € Q.

e Identify kinetic and potential energies, T and V.
e Construct Lagrangian:

L=T-V.

e Obtain Lagrange’'s equations of motion:

8£_d8£_0
dq dt 8

For both finite systems and field theories consider symmetries, etc.



Unified Thermodynamic Algorithm - 4 Steps

1. Identify dynamical variables defined on Q c R3: e.g. for FNS

v = (v,p,s) or § = (m = pv,p,0 = ps)

2. Propose energy and entropy functionals, H[W] and S[W]; for FNS

HZ/Qg|V|2—I—pu(p,s) and Sz/QpSZ/Qa

3. Find Poisson bracket {F,G} for which entropy S is a Casimir invariant, {F,S} =0V F

4. Construct metriplectic 4-bracket (F, K; G, N) via Kulkarni-Nomizu product by a new method
that separates local thermodynamics from phenomenological quantities, giving the EoMs
as Poisson bracket 4+ 4-bracket:

Result automatically Thermodynamically consistent!



Success of UTA

So far the method corrects or extends every case considered!
e Cahn-Hilliard-Navier-Stokes: agrees with Anderson et al.; corrects Guo and Lin

e Brenner-Navier-Stokes: UTA produces Brenner and Ottinger as special cases. Corrects their
statements that their results are most general.

e Collisions on noncanonical phase space: Generalization of Landau for drift kinetic, ...



Hamiltonian Review

Poisson Bracket: {f,g}



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (g,p)
Hamiltonian function: H(q,p) + the energy

Equations of Motion:

oH
0q®’

_on
8]704,

Do = g a=12...N

Phase Space Coordinate Rewrite: 2= (q,p), 1,57=1,2,...2N

r .. OH ) 0 T
T 711 — 7 — N N
< _JC aZ] {ZaH}Ca Je <_IN ON) )

Je := Poisson tensor, Hamiltonian bi-vector, cosymplectic form




Noncanonical Hamiltonian Structure

Sophus Lie (1890) — PJM (1980) — Poisson Manifolds etc.

Noncanonical Coordinates:

OH
¢ = {2% H} = J®(2)=—, a,b=1,72...M
Ozb
Noncanonical Poisson Bracket:
of
{f9}=-27"C )8 = J(2) #E e

Poisson Bracket Properties:

antisymmetry  —  {f,g9} = —{g, [}
Jacobi identity — {f,{g,h}} +{g,{h, f}} +{h, {f,9}} =0
Leibniz — {fh,9} = f{h,g} + {h,g}f

Jean Gaston Darboux: detJ 0 — J — J. Canonical Coordinates

Sophus Lie: detJ = 0 == Canonical Coordinates plus Casimirs (Lie's distinguished functions!)




Poisson Brackets — Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket
{,}:C®(Z)xC®(Z) > C(2)

st C*°(Z) with {, } is a Lie algebra realization, i.e., is

e Dbilinear,

e antisymmetric,

([

o

Jacobi, and
LLeibniz, i.e., acts as a derivation = vector field.

Geometrically C®(2) = AP(2) and d exterior derivative.

{f,g} = {df,Jdg) = J(df,dg) .
J the Poisson tensor/operator. Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH, i.e.,
OH(z)
0zb
Because of degeneracy, 3 functions C st {f,C} = 0 for all f € C°°(Z). Casimir invariants.

20 = JU(2) Z's coordinate patch z = (21, ..., 2M)



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J = Casimirs:

{(f,C}=0 Vf:Z->R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C = COns‘L'




3. Ideal Fluid Poisson Bracket Dynamics

Hamiltonian:

p|v|? ou >0u
= B Y
o 5 + pu (p, $) P=r5,

M-G Poisson Bracket:

Q
+ o [Fm - -VGs — Gm - VFy].
Equations of Motion:

Ov={v,H} = —v-Vo—-Vp/p, Gp={pH} =-V-(pv), 0o ={0,H} ==V (0v).

Casimir:

S=/ :/ |
st o°

Note: Fy = 6F/dm, etc., functional derivatives.



Metriplectic 4-Bracket: (f,k;g,n)

Metriplectic Dynamics:

¢§={¢ HY+ (¢, H;S, H)



Why a 4-Bracket?

e Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

e T here remains two slots for bilinear bracket: one for observable one for generator, F = H-TS,
s.t. H=0 and S > 0. Various generators have been tried.

e Provides natural reductions to other bilinear & binary brackets. T his theory includes all others,
e.g. metriplectic 2-bracket of 1984: (F,G)y = (F, H; G, H). Before a guess, now an algorithm!

e [ he three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.




The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):
(-5, ) A2 x A2(2) x AO(2) x AP(2) = AP (2)
For functions f,k,g,n € A9(2)
(f,k;g,n) := R(df,dk,dg,dn),

In a coordinate patch the metriplectic 4-bracket has the form:

of 0k Og On
020920 92¢0z4°

(f,k; g,n) = R™(2) + quadravector?

e A blend of my previous ideas: Two important functions H and S, symmetries, curvature idea,
multilinear brackets.

e Manifolds with both Poisson tensor, J“b, and compatible quadravector Rade, where S and H
come from Hamiltonian part.



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.qg,

(f +h kig,n) = (f,kig,n) + (h,k;g,n)

(ii) algebraic identities/symmetries

(fakrgan) — _(kafvgan)
(f7krg7n) — _(fakvnag)
(f,kig,n) = (g,n; [ k)

(iii) derivation in all arguments, e.g.,

(fh ki g,n) = f(h,kig,n) + (f, k; g,n)h

which is manifest when written in coordinates. Here, as usual, fh denotes pointwise multipli-
cation. Symmetries of algebraic curvature without cyclic identity. Often see Rlz.jk or Ry but

not R!%kI Minimal Metriplectic.



EXxistence — General Constructions

e For any Riemannian manifold 3 metriplectic 4-bracket. This means there is a wide class of
them, but the bracket tensor does not need to come from Riemann tensor only needs to satisfy
the bracket properties.

e Methods of construction? Two important ones: Kulkarni-Nomizu and Lie algebra based.
Goal is to develop intuition like building Lagrangians. Now a procedure.



Construction via Kulkarni-Nomizu Product

Given o and u, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact) df, dk
and dg,dn, the K-N product is

o ®u(df,dk,dg,dn) = o(df,dg)pu(dk,dn)
— o(df,dn) u(dk,dg)
+ w(df,dg)o(dk,dn)
— p(df,dn)o(dk,dg) .
Metriplectic 4-bracket:
(f, ki g,n) = o @® u(df,dk,dg,dn) .
In coordinates:

Rkl — ik il _ il ik 4 ikl il gk



4. K-N Metriplectic 4-Brackets for FNS

Possible Fluxes:

S
|
|
5

LPPVH, + LP™:V Hpm + LP°V Hy,]
L°PVH,+ L™V Hpy, + LV Hy]

N
[
|

3

Desired Fluxes:

J,=0, Jn=-A:Vv, Jsz—%-VT

Nonzero L2B:
mezizﬁ and LO—O':R/CF:E7
Hy T H, T2

Note: In L9 = E;/TQ, one T from systematic theory T := H,, while one from phenomenological
law: Fourier's heat flux law, g =k VT/T.



4. K-N Metriplectic 4-Brackets for FNS (cont)

M(dF, dG) —_ FO'GO',
S(dF,dG) = VFm : = : VGm + VFy - % VG

K-N Form:

N>

K
.VV-I—VT-E-VTZO

N >

Entropy Production:
Sz(S,H;S,H)=/QZ(dH,dH):/Vv:

4-bracket:
[ [KoV Fm — FoVEm] /A [NoVGm — GoV N

(F,K:G,N) = /Q?
n %[KGVFU — FoVKq| - - [NoVGo — GoVN|



Equations of Motion

Navier-Stokes-Fourier:

Op={p,H} + (p,H;S,H) = —v-Vp—pV v
1 _
ov={v,H}+ (v,H;S,H) = —v-Vvo—Vp/p+ -V -(AN:VvV)
P

opco ={o,H}+ (0,H;SSH) = —v-Vo—0oV - Vv
R 1 _ 1 =
—I—V-(?'VT)—I—EVT-H,-VT—I—fVV./\.VV.

Tensors:

2
Nijkl =1 (5z'l5jk T 0519k — §5ij5kl> + 00 and  Kij = Ky,



Conclusions

e Reviewed Unified Thermodynamic Algorithm (UTA).

e Produced a general thermodynamically consistent FNS system.

S=(S,H;S,H) = K(S,H) <+ sectional curvature

e Easy to project onto finite element basis and obtain thermodynamically consistent semi-
discrete (ODE) form. Didn't discuss.

Future Work?

e Apply algorithm to some plasma problem? Pellet injection, multi collisional species, comet
tails, dusty plasmas, etc.?



