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Thermodynamic Consistency – Examples

Navier-Stokes (inconsistent):

∂tv = −v · ∇v −
1

ρ0
∇p+ ν∇2v , ∇ · v = 0 ⇒ p[v]

H =
∫
Ω
ρ0 |v|2/2 and Ḣ ≤ 0 , ∄ any thermodynamics!

Navier-Stokes-Fourier (NSF) (consistent) (Eckart 1940):

∂tv = −v · ∇v −
1

ρ
∇p+

1

ρ
∇ · T

∂tρ = −∇ · (ρv)

∂ts = −v · ∇s−
1

ρT
∇ · q +

1

ρT
T : ∇v heat flux & viscous heating

H =
∫
Ω
ρ |v|2/2+ ρu(ρ, s) , Ḣ = 0 and S =

∫
Ω
ρs → Ṡ ≥ 0



Thermodynamic Consistency and the UTA

The dynamical realization of the first and second laws of thermodynamics: energy con-

servation and entropy production,

Ḣ = 0 and Ṡ ≥ 0

Recall, thermodynamics has no real dynamics – only vague statements like adiabatic com-

pression or or isothermal expansion, etc.

Here we present Unified Thermodynamic Algorithm (UTA) for construction. Important

by-product re ‘Force-Flux’ relations of nonequilibrium thermodynamics:

Jα = LαβXβ → Jα = −Lαβ∇(δH/δξβ)

‘Forces’: X ∼ ∇T,∇p,∇v etc., UTA removes ambiguous selection. Lαβ phenomenological

coefficients, ξβ dynamical variables.



What is Dissipation?

• Not all conservative systems are Hamiltonian

• Not all Hamiltonian systems are conservative

• Not all reversible systems are Hamiltonian

• All finite dynamical systems (autonomous ODEs) are reversible

• Some infinite systems (PDEs) are reversible and some irreversible

• Not all Hamiltonian systems have time reversal symmetry

• Not all systems with time reversal symmetry are Hamiltonian

• ∃ systems with time reversible symmetry and global asymptotic stability

Dissipation:

Systems with an increasing entropy and global asymptotic stability have dissipation.

Such systems have a ‘vector field’ that naturally splits in Hamiltonian and dissipative

parts. Hamiltonian is an unambiguous way to define nondissipative. The Metriplectic 4-

bracket is an unambiguous way to define dissipative. Together they provide thermodynamic

consistency.



Metriplectic Dynamics
(Metric ∪ Symplectic Flows)

Dynamical System:

Ȯ = {O,H}+ (O,H;S,H) ← Poisson + 4− bracket

• O any observable (functional of dynamical variables)

• Can be finite or infinite. We will not distinguish much.



Hamiltonian Review

Poisson Bracket: {f, g}



Noncanonical Poisson Brackets – Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)
st C∞(Z) with { , } is a Lie algebra realization, i.e., is

• bilinear,
• antisymmetric,
• Jacobi, and
• Leibniz, i.e., acts as a derivation ⇒ vector field.

Geometrically C∞(Z) ≡ Λ0(Z) and d exterior derivative.

{f, g} = ⟨df, Jdg⟩ = J(df,dg) .

J the Poisson tensor/operator. Flows are integral curves of noncanonical Hamiltonian
vector fields, JdH, i.e.,

żi = J ij(z)
∂H(z)

∂zj
, Z ′s coordinate patch z = (z1, . . . , zN)

Because of degeneracy, ∃ functions C st {f, C} = 0 for all f ∈ C∞(Z). Casimir invariants
(Lie’s distinguished functions! They can be entropies.).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Metriplectic 4-Bracket: (f, k; g, n)



Why a 4-Bracket?

• Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

• There remains two slots for bilinear bracket: one for observable one for generator (F?)
s.t. Ḣ = 0 and Ṡ ≥ 0.

• Provides natural reductions to other bilinear & binary brackets.

• The three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.



The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

( · , · ; · , · ): Λ0(Z)× Λ0(Z)× Λ0(Z)× Λ0(Z)→ Λ0(Z)

For functions f, k, g, n ∈ Λ0(Z)

(f, k; g, n) := R(df,dk,dg,dn) ,

In a coordinate patch the metriplectic 4-bracket has the form:

(f, k; g, n) = Rijkl(z)
∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
. ← quadravector?

• A blend of my previous early ideas: Two important functions H and S, symmetries,

curvature idea, multilinear brackets.

• Metriplectic manifolds have both Poisson tensor, J ij, and compatible quadravector Rijkl,

where S (Casimir) and H come from Hamiltonian part.



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.g,

(f + h, k; g, n) = (f, k; g, n) + (h, k; g, n)

(ii) algebraic identities/symmetries

(f, k; g, n) = −(k, f ; g, n)
(f, k; g, n) = −(f, k;n, g)
(f, k; g, n) = (g, n; f, k)

(iii) derivation in all arguments, e.g.,

(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h

which is manifest when written in coordinates. Here, as usual, fh denotes pointwise

multiplication. Symmetries of algebraic curvature without cyclic identity. Often see Rl
ijk

or Rlijk but not Rlijk! Minimal Metriplectic.



Properties – Existence – General Construction Methods

• Thermodynamic Consistency:

Ḣ = {H,H}+ (H,H;S,H) = 0 and Ṡ = (S,H;S,H) ≥ 0

• For any Riemannian manifold ∃ metriplectic 4-bracket. This means there is a wide class

of them, but the bracket tensor does not need to come from Riemann tensor only needs

to satisfy the bracket properties.

• If Riemannian, entropy production rate is positive contravariant sectional curvature. For

σ, η ∈ Λ1(Z), entropy production by

Ṡ = K(σ, η) := (S,H;S,H) ,

where the second equality follows if σ = dS and η = dH.

• Methods of construction? We describe two: Kulkarni-Nomizu and Lie algebra based.

Goal is to develop intuition like building Lagrangians. K(σ, η) ≥ 0 automatic for K-N!



Construction via Kulkarni-Nomizu Product

Given σ and µ, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact)

df,dk and dg,dn, the K-N product is

σ⃝∧ µ (df,dk,dg,dn) = σ(df,dg)µ(dk,dn)

− σ(df,dn)µ(dk,dg)

+ µ(df,dg)σ(dk,dn)

− µ(df,dn)σ(dk,dg) .

Metriplectic 4-bracket:

(f, k; g, n) = σ⃝∧ µ(df,dk,dg,dn) .

In coordinates:

Rijkl = σikµjl − σilµjk + µikσjl − µilσjk .

Infinite dimensions: µ→M , σ → Σ.



Lie Algebras and Lie-Poisson Brackets

Lie Algebras: Denoted g, is a vector space (over R,C, for us R) with binary, bilinear product

[·, ·] : g× g → g. In basis {ei}, [ei, ej] = c k
ij ek. Structure constants c k

ij . For example so(3),

which has A× (B ×C) +B × (C ×A) +C × (A×B) ≡ 0.

Lie-Poisson Brackets: special noncanonical Poisson brackets associated with any Lie alge-

bra, g.

Natural phase space g∗. For f, g ∈ C∞(g∗) and z ∈ g∗.

Lie-Poisson bracket has the form

{f, g} = ⟨z, [∇f,∇g]⟩

=
∂f

∂zi
c
ij
k zk

∂g

∂zj
, i, j, k = 1,2, . . . ,dim g

Pairing < , >: g∗ × g→ R, zi coordinates for g∗, and c
ij
k structure constants of g. Note

J ij = c
ij
k zk .



Lie Algebra Based Metriplectic 4-Brackets

• For structure constants ckls:

(f, k; g, n) = cijrc
kl
s g

rs ∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
.

Lacks cyclic symmetry, but ∃ procedure to remove torsion (Bianchi identity) for any sym-

metric ‘metric’ grs. Dynamics does not see torsion, but manifold does.

• For grsCK = crlk c
sk
l the Cartan-Killing metric, torsion vanishes automatically. Completely

determined by Lie algebra.

• Covariant connection ∇ : X × X → X. A contravariant connection D : Λ1(Z) × Λ1(Z) →
Λ1(Z) satisfying Koszul identities, but Leibniz becomes Dα(fγ) = fDαγ + J(α)[f ]γ where

J(α)[f ] = αiJ
ij∂f/∂zj is a 0-form that replaces the term X(f) (Fernandes, 2000). Here

α, β, γ ∈ Λ1(Z), f ∈ Λ0(Z). Add a metric, build 4-bracket like curvature from connection.



Unified Thermodynamic Algorithm (UTA)

UTA is an algorithm for constructing metriplectic systems! Applied to many systems. So

far UTA either reproduces, corrects, or extends for every case considered!

• Cahn-Hilliard-Navier-Stokes: agrees with Anderson et al.; corrects Guo and Lin

• Brenner-Navier-Stokes: UTA produces Brenner’s equations, plus corrects statements,

e.g., that the results are most general.

• Generalization of Brenner-Navier-Stokes: UTA produces equations of Reddy et al.

(2019). All are generalizations of Navier-Stokes-Fourier with modified dissipation.

• Collisions on noncanonical phase space: Generalization of Landau for drift kinetic, ...



4 Steps of the UTA

1. Identify dynamical variables defined on Ω ⊂ R3; e.g. for NSF

ξ = (m = ρv, ρ, σ = ρs)

2. Propose energy and entropy functionals, H[ξ] and S[ξ]; for NSF

H =
∫
Ω

|m|2

2ρ
+ ρu(ρ, σ/ρ) and S =

∫
Ω
σ

3. Find Poisson bracket {F,G} for which entropy S is a Casimir invariant, {F, S} = 0 ∀F

4. Construct metriplectic 4-bracket (F,K;G,N) via Kulkarni-Nomizu product by a new

method that separates local thermodynamics from phenomenological quantities,

giving the EoMs as Poisson bracket + 4-bracket:

∂tξ = {ξ, H}+ (ξ, H;S,H)

Result automatically Thermodynamically consistent!



3. For NSF Ideal Fluid Poisson Bracket Dynamics (pjm-Greene (1980)

Hamiltonian:

H =
∫
Ω

ρ|v|2

2
+ ρu (ρ, s) , T =

∂u

∂s
, p = ρ2

∂u

∂ρ
.

M-G Poisson Bracket:

{F,G} = −
∫
Ω
m · [Fm · ∇Gm −Gm · ∇Fm] + ρ [Fm · ∇Gρ −Gm · ∇Fρ]

+ σ [Fm · ∇Gσ −Gm · ∇Fσ] .

Equations of Motion:

∂tv = {v, H} = −v · ∇v −∇p/ρ , ∂tρ = {ρ,H} = −∇ · (ρv) , ∂tσ = {σ,H} = −∇ · (σ v) .

Casimir:

S =
∫
Ω
ρs =

∫
Ω
σ .

Note: Fm = δF/δm, etc., functional derivatives.



4. Metriplectic 4-Bracket

Old method: guess M and Σ.



New Method

Theorem: Order dynamical variables st

∂tξ
α = {ξα, H}+∇ ·Jα , α = 1, . . . , N − 1 ,

∂tξ
N = {ξN , H}+∇ ·JN +Zα · L̃αβ ·Zβ .

where ξN = σ, the entropy density. Above splits Hamiltonian and conservative.

Then

Ṡ =
∫
Ω
Zα · L̃αβ ·Zβ =:

∫
Ω
ṡprod ≥ 0 .

and Ḣ ⇒

Zα = ∇Hξα , Jα = −HξN L̃
αβ∇Hξβ = −Lαβ∇Hξβ .

which leads naturally to

M(dF, dG) = FξN GξN , Σ(dF, dG) = ∇(Fξα)
Lαβ

HξN
∇(Gξβ) .



4. Metriplectic 4-Bracket General and NSF

General flux expressions:

Jρ = −Lρρ· ∇Hρ − Lρm :∇Hm − Lρσ · ∇Hσ ,

J̄m = −Lmρ ⊗∇Hρ − Lmm :∇Hm − Lmσ ⊗∇Hσ ,

Jσ = −Lσρ· ∇Hρ − Lσm :∇Hm − Lσσ · ∇Hσ ,

where Jρ is mass flux, J̄m is momentum flux 2-tensor, and Jσ is entropy flux.

For NSF all zero except:

Lmm = ¯̄Λ and Lσσ =
κ̄

T
.

¯̄Λ isotropic 4-tensor, κ̄ conduction 2-tensor

Ṡ = (S,H;S,H) =
∫
Ω
Σ(dH, dH) =

∫
Ω
∇v :

¯̄Λ

T
: ∇v+∇T ·

κ̄

T2
· ∇T ≥ 0 .

Note in κ̄/T2 one T from H one from Lαβ. Σ sectional curvature density?



4. Metriplectic 4-Bracket for NSF Generalizations

For BNSF all zero except:

Lmρ = D̃ρm , Lmσ = D̃σ̂m , Lmm = ¯̄Λ+ D̃m⊗ Ī ⊗m .

Lσρ = D̃ρσ̂ Ī , Lσσ =
κ̄

T
+ D̃σ̂2 Ī Lσm = D̃σ̂ Ī ⊗m

Ṡ =
∫
Ω

1

T

[
D̃

κ2Tρ
2
|∇ρ|2 +∇T ·

κ̄

T
· ∇T +∇v : ¯̄Λ : ∇v

]
≥ 0 .

Similarly, the generalization of Reddy et al. (2019) falls out. It can be further generalized.



Final Comments

• UTA based on the metriplectic 4-bracke, a proven framework, provides a direct method

for constructing thermodynamically consistent systems.

• Metriplectic 4-brackets are easy to discretize while maintaining symmetries. First nu-

merical implementation via 4-bracket discretization (Barham et al. 2024) for 1-D Navier-

Stokes-Fourier. Finite element projection of PDE to thermodynamically consistent finite-

dimensional 4-bracket, i.e., ODEs. For example, for the density ρ(x, t)

ρh(x, t) =
N∑

i=1

ρi(t)ϕi(x) → ρ̇i(t) = {ρi, H}+ (ρi, H;S,H) ...

Results use Firedrake library, implicit midpoint, Irksome module ...


