
Copyright

by

George Isaac Hagstrom

2011



The Dissertation Committee for George Isaac Hagstrom
certifies that this is the approved version of the following dissertation:

Infinite-Dimensional Hamiltonian Systems with

Continuous Spectra: Perturbation Theory, Normal

Forms, and Landau Damping

Committee:

Philip J. Morrison, Supervisor

Rafael de la Llave

Irene M. Gamba

Richard D. Hazeltine

Wendell Horton



Infinite-Dimensional Hamiltonian Systems with

Continuous Spectra: Perturbation Theory, Normal

Forms, and Landau Damping

by

George Isaac Hagstrom, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011



Acknowledgments

I would like to thank all of my science and mathematics teachers, from

my parents to my thesis advisor.

iv



Infinite-Dimensional Hamiltonian Systems with

Continuous Spectra: Perturbation Theory, Normal

Forms, and Landau Damping

Publication No.

George Isaac Hagstrom, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Philip J. Morrison

Various properties of linear infinite-dimensional Hamiltonian systems

are studied. The structural stability of the Vlasov-Poisson equation linearized

around a homogeneous stable equilibrium f0 is investigated in a Banach space

setting. It is found that when perturbations of f ′0(v) are allowed to live in the

space W 1,1(R), every equilibrium is structurally unstable. When perturbations

are restricted to area preserving rearrangements of f0, structural stability ex-

ists if and only if there is negative signature in the continuous spectrum. This

analogizes Krein’s theorem for linear finite-dimensional Hamiltonian systems.

The techniques used to prove this theorem are applied to other aspects of the

linearized Vlasov-Poisson equation, in particular the energy of discrete modes

which are embedded within the continuous spectrum.
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In the second part, an integral transformation that exactly diagonalizes

the Caldeira-Leggett model is presented. The resulting form of the Hamilto-

nian, derived using canonical transformations, is shown to be identical to that

of the linearized Vlasov-Poisson equation. The damping mechanism in the

Caldeira-Leggett model is identified with the Landau damping of a plasma.

The correspondence between the two systems suggests the presence of an

echo effect in the Caldeira-Leggett model. Generalizations of the Caldeira-

Leggett model with negative energy are studied and interpreted in the context

of Krein’s theorem.
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Chapter 1

Introduction

Hamiltonian mechanics is a basis of modern physics. The Hamilto-

nian formulation can be used to describe both finite and infinite degree-of-

freedom systems from classical physics. The purpose of this thesis is to describe

new properties of Hamiltonian systems in the infinite-dimensional case. It is

written in two sections, both of which describe results about linear infinite-

dimensional Hamiltonian systems. It begins with an introduction that re-

views those theorems from Hamiltonian systems theory that are essential for

the results that follow in the main chapters. This includes theory of finite-

dimensional symplectic vector spaces and a description of the formalism used

to describe infinite-dimensional Hamiltonian systems.

The second chapter examines the stability of the spectrum of linear

Hamiltonian time evolution operators under small perturbations. Much space

will be devoted to introducing the literature on this subject, which was started

by the classification of normal forms of linear finite-dimensional Hamiltonian

systems by Weierstrass [1] and later Williamson [2], proceeding to the proof

of the Krein-Moser theorem [3, 4] and attempts at its extension to infinite-

dimensional systems [5]. This will be followed by new results proved by Morri-
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son and me on the Vlasov-Poisson equation [6], which is noncanonical. There

will be an extensive discussion of the implications of this type of work within

both mathematics and physics, as well as a description of directions for future

research.

The third chapter is about the diagonalization of linear infinite-dimensional

Hamiltonian systems, a topic which is related in spirit to that of the second

chapter. The primary result can be viewed as a continuation of work by Mor-

rison, beginning with the derivation of an integral transformation from the

Vlasov-Poisson equation to action-angle variables [7, 8]. We will present a

similar integral transformation for the Caldeira-Leggett model [9], which is

a model describing dissipation in quantum mechanics [10]. The novelty of

this transformation will be that it implies an equivalence between the Vlasov-

Poisson equation and the Caldeira-Leggett model. Plasma phenomenon pre-

dicted by the Vlasov equation will have analogs in the Caldeira-Leggett model

and vice versa, which is particularly tantalizing if it could lead to new obser-

vations. This possibility will be explored for the particular case of the plasma

echo [11]. The physics of dissipative systems will be discussed in a Hamiltonian

context and some interesting results on heat bath models will be presented.

1.1 Notation conventions

Elements of phase space, whether finite or infinite dimensional, will be

denoted with lowercase Latin letters a,b,c,. . . , matrices and operators will be

denoted by uppercase Latin letters A,B,C,. . . , constants will be Greek letters
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α,β,γ, etc. Integers may also be denoted by Latin letters, especially in indices.

The real and complex numbers will be denoted by R and C. Phase space will

be represented by calligraphic symbols like A,B,C,. . . , the inner product on

these spaces will be 〈·, ·〉, and general sesquilinear forms will be denoted by

(·, ·) or ω(·, ·), where the initial letter is allowed to vary. The canonical Poisson

bracket on R2n will be [·, ·] and a general Poisson bracket will be {·, ·}. For

operators and matrices M∗ is the adjoint of M , and when it makes sense M t

will be the transpose of M .

1.2 Hamiltonian systems

All of the systems studied in this paper are linear, so the treatment here

will be restricted to the Euclidean and Banach space cases rather than general

Poisson manifolds. In this section we will outline the finite-dimensional theory

and give references to more detailed treatments. We will present the most

important results for understanding the development in the rest of thesis, along

with some discussion of their meaning. We will also give a detailed introduction

to infinite-dimensional Hamiltonian systems complete with remarks on the

mathematical rigor which can be attached to the formalism.

1.2.1 Finite-dimensional Hamiltonian systems

This introduction will be brief and serves to remind the reader of the

most relevant concepts to the rest of thesis. For a detailed introduction to

linear symplectic geometry (and indeed also all of symplectic geometry), the
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book by McDuff and Salamon [12] is quite strong. An introduction to clas-

sical mechanics from the point of view of Hamiltonian systems with a large

number of examples is the book by Arnold [13]. The review article by Mor-

rison [14] contains a very detailed introduction to noncanonical Hamiltonian

systems (among other things). The setting for finite-dimensional Hamiltonian

systems considered here will be vector spaces with Poisson structures. The

simplest example of such a space, and the general phase space for a canonical

Hamiltonian theorem is a symplectic vector space.

Definition A symplectic vector space is a pairing (V, ω), where V is a real

vector space and ω(·, ·) is an anti-symmetric, non-degenerate bilinear form

referred to as the symplectic structure.

If V is finite-dimensional the dimension of V must be an even number

2n, and V can be generically taken to be R2n. In this section the phase space

M will be a symplectic vector space. Let the standard inner product on M

be given by 〈·, ·〉. Then the symplectic form ω can be written in terms of a

linear operator J as ω(·, ·) = 〈J ·, ·〉. The matrix J is anti-symmetric and non-

singular. An important example of such a matrix is the canonical symplectic

matrix:

J0 =

(
0 I
−I 0

)
. (1.1)

Given a functionalH on M, it is possible to define a Hamiltonian system

where the energy corresponds to H.
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Definition Let M be a symplectic vector space with symplectic operator J

and z ∈M a point in this phase space. Then for each C2 functional H on M,

the equations

dz

dt
= −J∇H(z).

define a Hamiltonian system on M. The continuity requirement on H ensures

that J∇H is Lipschitz, and that solutions to the ordinary differential equations

exist.

Symplectic vector spaces always have a basis in which J = J0.

Let (R2n, J) be a symplectic vector space. There exists a vector space

isomorphism K such that J0 = KtJK.

This isomorphism can be applied to Hamilton’s equations, and the

resulting system of equations is Hamilton’s equations with a modified Hamil-

tonian and the canonical symplectic form. In the rest of this section it is

assumed that J = J0. If the point z is written as a pair (q, p) with q, p ∈ Rn

then Hamilton’s equations take the familiar form:

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

.

Transformations that leave the symplectic form invariant are known as

canonical transformations, and make it possible to simplify the equations of

motion without ruining their Hamiltonian form.
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Definition Consider the symplectic operator J on R2n. A linear map K satis-

fying KTJK = J is called a symplectomorphism or canonical transformation.

One of the most important properties of canonical transformations are

that they are always volume preserving maps, that is DetK = 1.

Symplectic manifolds and symplectic vector spaces are special cases of

Poisson manifolds. Consider a finite dimensional vector space.

Definition A Poisson structure or Poisson bracket is a map {, } from C∞(Rk)×

C∞(Rk) → C∞(Rk) with a number of properties: bilinearity, antisymmetry,

the Jacobi identity, which is

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0. (1.2)

and the Leibniz property:

{fg, h} = f{g, h}+ g{f, h}. (1.3)

To each symplectic operator J there corresponds a Poisson bracket

defined by:

{f, g}J =
∂f

∂zi
J ij

∂g

∂zj
. (1.4)

When J = J0 the Poisson bracket is written [·, ·] and is of the form:

[f, g] =
∑
k

∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk
.
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Hamilton’s equations can be rewritten in terms of the Poisson bracket:

dzj
dt

= [zj, H].

When the Poisson bracket of the system is not the canonical Poisson

bracket the equations of motion can still be written in this form. The Poisson

bracket is also a convenient tool to describe the time evolution of functions of

the dynamical variables, i.e. observables. If F (z) is an observable then dF (z)
dt

=

[F,H]. The Poisson bracket is necessary for the definition of noncanonical

Hamiltonian systems, which we will describe later in this introduction.

1.2.2 Solving linear Hamiltonian ODEs

This section is a review of basic methods in linear constant coefficient

ODEs, written from the point of view of Hamiltonian systems. The goal of

this section is to review the types of behavior that can occur in these systems

and to set the stage for the development and study of the infinite-dimensional

theory.

Canonical Hamiltonian equations are linear when the Hamiltonian func-

tion H(z) is quadratic in the components of z. This means that H(z) =

H(z, z), where H(·, ·) is a symmetric, bilinear form generated by H. There

will exists a symmetric matrix H such that H(z) = 〈Hz, z〉. Assuming that

the symplectic form is canonical, Hamilton’s equations are:

dz

dt
= −J0Hz.
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This is a first order constant coefficient linear ODE, and it can be

solved by computing the matrix exponential of −tJ0H. The resulting time

evolution depends on the modes of −J0H and their multiplicity. −J0H can be

reduced into a finite number of Jordan blocks, each of which has a well-defined

exponentiation. The most important factor in the time evolution of Hamilton’s

equations is the spectrum of the time evolution matrix −J0H. The spectrum

is symmetric with respect to complex conjugation and multiplication by −1.

Theorem 1.2.1. Let H be a symmetric matrix. and let λ be in the spectrum

of −J0H. Then −λ,λ̄, and −λ̄ are also in the spectrum. Generically the

spectrum comes in quartets when it is neither purely imaginary or purely real,

and real or imaginary members come in pairs.

The matrix −J0H can be simplified by similarity transformations to

the direct product of Jordan blocks. The k× k Jordan block corresponding to

the eigenvalue λ is:

(−J0H)λ,k =


λ 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 1
0 . . . . . . 0 λ

 .

The matrix exponential of t times that matrix yields behavior of the
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form eλt and secular growth.

et(−J0H)λ,k = etλ


1 t t2/2 . . . tk−1/(k − 1)!

0
. . . . . . . . . tk−2/(k − 2)!

...
. . . . . . . . . tk−j/(k − j)!

...
. . . . . . 1 t

0 . . . . . . 0 1

 .

It is possible to use canonical transformations to simplify the Hamilto-

nian of a linear Hamiltonian system. Solutions are stable when the spectrum

is pure imaginary and there are no non-trivial Jordan blocks. In this case

the Hamiltonian can be diagonalized by canonical transformations, and the

Hamiltonian functional is a quadratic form that can be written (after splitting

z into (q, p) as:

H(q, p) =
∑
k

σk
ωk
2

(q2
k + p2

k).

Here σk = ±1 is the signature of the pair of modes with frequency

±ωk. There are analogous normal forms that are derived from the form of the

Jordan blocks. A complete description of how to reduce a symplectic matrix

with canonical transformations appears in Williamson [2], and an appendix of

Arnold’s book [13] contains a concise list of all the possible normal forms. For

these systems the stability theory is easy to understand. If all the eigenvalues

are imaginary and non-degenerate, then solutions are stable. If there are

degeneracies, then there may be secular growth. If there are any eigenvalues

with a non-zero real part, there is exponential growth of solutions.
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1.2.3 Noncanonical Hamiltonian systems

Systems written in terms of a canonical Poisson bracket or symplectic

form are referred to as canonical systems. The Poisson bracket of a canonical

Hamiltonian system is non-degenerate, but this condition is not required for

Hamilton’s equations to be well-defined. Relaxing this condition and consider-

ing degenerate Poisson brackets leads to noncanonical Hamiltonian mechanics.

Consider such a system, defined with a degenerate Poisson bracket:

dz

dt
= {z,H}.

Let the functions Cj satisfy {Cj, ·} = 0. These phase space functions

are then constants of motion for any Hamiltonian, as {Cj, H} = 0 for all H.

The most common name for them in the literature is Casimir invariants, and

they exist due to the structure of phase space rather than the symmetries of

the Hamiltonian.

Consider a finite-dimensional Poisson bracket that can be written in

the following form:

{A,B} =
∂A

∂zi
J ij

∂B

∂zj
. (1.5)

Here J is an anti-symmetric operator that may depend on z and that

is degenerate. Then the Lie-Darboux theorem [15] states that there is a local
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diffeomorphism around each point z under which J realizes the following form:

J =

 0 I 0
−I 0 0
0 0 0

 . (1.6)

The operator J locally becomes the canonical symplectic operator plus

the zero matrix. The phase space is described by canonical coordinates, which

are not in the kernel of J , and Casimir invariants, which are. The gradients

of the Casimir invariants are a basis for the kernel of J .

This establishes the relationship between noncanonical and canonical

systems. The phase space of noncanonical systems is composed of the level

sets all of the Casimir invariants, which are referred to as symplectic leaves.

The dynamics are restricted to take place within a single symplectic leaf, on

which the equations of motion are the canonical Hamilton’s equations.

This leads to a pleasing geometric picture that is made rigorous by

theorems about the local structure of Poisson manifolds. Through each point

of a Poisson manifold (or in our case a vector space with a Poisson structure),

passes one symplectic leaf. Each symplectic leaf has a symplectic form that

originates from the Poisson bracket, and therefore each symplectic leaf is a

symplectic manifold. This was established by Lie for the case where the rank

of the symplectic leaves are constant throughout the Poisson manifold, and

by Kirillov, Kostant, and Souriau for the case where the rank of symplectic

leaves are not constant throughout the Poisson manifold [16]. The evolution

of a noncanonical Hamiltonian system is just like that of a canonical when the

dynamics are considered only within a single symplectic leaf. The intimate
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connection between the geometry of the symplectic leaves and the perturba-

tion theory of the spectra of linear Hamiltonian systems is one of the most

important themes in this thesis, and we investigate it thoroughly in chapter 2.

1.3 Infinite-dimensional Hamiltonian systems

The systems of interest in this thesis are all infinite-dimensional. Infinite-

dimensional Hamiltonian systems have a formalism that is very similar to that

of the finite-dimensional theory. The main difference between the two theo-

ries is that the infinite-dimensional formalism is not automatically rigorous.

There are also a number of important phenomenon that occur in the infinite-

dimensional case without analogue in finite-dimensional systems. In the linear

theory these are associated with the existence of the continuous spectrum.

Infinite-dimensional systems are field theories, and their dynamical

variables are functions. The phase space for such systems are Banach spaces

or Hilbert spaces. Hamilton’s equations are derived using functional differen-

tiation, and the equations of motion are partial differential equations. The

obstruction to constructing a general theory of infinite-dimensional Hamilto-

nian systems, even in the linear case, is due to the lack of a general existence

theory for partial differential equations. Without such existence results it is

impossible to be certain whether or not Hamilton’s equations are closed on a

given phase space or whether the brackets and Hamiltonian functionals remain

defined for all time.

This section will mirror the previous section and introduce the formal-

12



ism for infinite-dimensional Hamiltonian systems, both canonical and non-

canonical. Lie-Poisson systems, which are extremely important both in appli-

cations and in this thesis, will be discussed as well.

Like the finite-dimensional case, there will be two equivalent ways of

defining an infinite-dimensional Hamiltonian system, using a symplectic oper-

ator and using a Poisson bracket. These structures require functional deriva-

tives for their proper definition. In the canonical case, phase space is typically

defined as the product M = B×B. The Hamiltonian is some functional from

M to the real numbers, and we require that its derivative may be computed

formally.

Represent a point in the phase space as two functions (q, p). Then

Hamilton’s equations are:

∂q

∂t
=
δH

δp
(1.7)

∂p

∂t
= −δH

δq
. (1.8)

These equations can also be written in terms of the canonical symplectic

operator, which is a map on M defined by 1.1. Then, letting u = (q, p),

Hamilton’s equations can be written ∂u
∂t

= −J0∇H.

Likewise, in analogy with the finite-dimensional theory, Hamilton’s

equations can also be written using a Poisson bracket, which is a bilinear

map on functionals. The canonical Poisson bracket is defined by:

13



{A,B}c =
δA

δq

δB

δp
− δA

δp

δB

δq
, (1.9)

and Hamilton’s equations are ∂u
∂t

= {u,H}. The formalism that comes from

these definitions is used to derive partial differential equations, whose proper-

ties can be studied rigorously by mathematicians.

Canonical Hamiltonian systems lead to linear equations when the Hamil-

tonian is a quadratic form in the dynamical variables. When phase space is a

Hilbert space, it is possible to use representation theorems to write the Hamil-

tonian using a self-adjoint operator and the inner product. This representation

is always possible for a bounded, symmetric sesquilinear form, and is also pos-

sible in some unbounded cases, such as when the sesquilinear form is sectorial.

This subject is discussed extensively in Kato’s book on the perturbation theory

of linear operators [17].

Because of this we will only consider canonical Hamiltonian systems in

which the Hamiltonian functional can be written as a self-adjoint operator on

a phase space which is assumed to be a Hilbert space.

Definition Let H be a (potentially unbounded) self-adjoint operator on M =

B × B. These operators define a Hamiltonian system on the phase space

M = B×B with Hamilton’s equations defined by ∂u
∂t

= −J0Hu.

This will be the starting point for the investigation of canonical sys-

tems. Many properties of finite-dimensional systems generalize directly, per-

14



haps most importantly the symmetry of the spectrum, which still occurs in

quartets or doublets.

1.3.1 Noncanonical systems and Lie-Poisson form

Noncanonical formulations of Hamiltonian mechanics are extremely im-

portant for describing classical field theories. Eulerian descriptions of continu-

ous media are generically derivable from noncanonical Hamiltonian structures.

The most famous and important examples of these theories, the incompress-

ible Euler equation of hydrodynamics, ideal magneto-hydrodynamics [18], the

Vlasov equation with various types of interactions [19, 20], and the BBGKY

hierarchy [21] are all of this type, see the review article [14] for a more extensive

introduction to these systems and a list of references. In fact, Eulerian theo-

ries like the ones referenced above often have an additional property, having a

Poisson bracket in Lie-Poisson form. Systems of this special type are closely

related to Lie algebras, and in the special case where the structure constants

are antisymmetric they also have an analog of the Liouville theorem, which is

generally not apparent in noncanonical systems.

A general noncanonical infinite-dimensional Hamiltonian system is de-

fined analogously to the finite-dimensional case: a noncanonical degenerate

Poisson bracket is introduced.

Definition Suppose that M is a Banach space, Let {, } be a bi-linear, anti-

symmetric map from pairs of functionals on M to functionals on M, that also

satisfies the Jacobi identity. Then {, } is called a Poisson bracket.

15



Given a Hamiltonian functional H, Hamilton’s equations are ∂f
∂t

(x) =

{f(x), H}, just as in the previous sections. As before Casimir invariants satisfy

{C,H} = 0., independent of the Hamiltonian. They frequently have natural

physical interpretations in terms of the dynamical variables of the problem of

interest. The existence of Casimir invariants is the factor that distinguishes

noncanonical systems from canonical ones within the terminology of this paper.

Often systems with non-degenerate, but also noncanonical symplectic forms

are called noncanonical systems. All of these cases can of course be converted

into the canonical case using a suitable transformation.

In the finite-dimensional case, this was made rigorous using the Lie-

Darboux theorem. In the infinite-dimensional case the geometry of the sym-

plectic leaves is much more complicated. The rank of the symplectic operator

can change drastically near each point. Despite this, in cases of interest, it is

often possible to transform the Poisson bracket to a form completely analogous

to that of the finite-dimensional case. The ability to do this for certain linear

systems, most importantly the linearized Vlasov-Poisson equation, is a critical

aspect of the research within this thesis.

It was mentioned earlier that many Eulerian descriptions of continuous

media could be described as noncanonical Hamiltonian systems using Lie-

Poisson brackets. Suppose that the Poisson bracket can be written using a

degenerate operator J :

{A,B}[u] =

〈
dA

dui
, J ij

dB

duj

〉
. (1.10)
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This bracket is said to be a Lie-Poisson bracket if the operator J ij =

cijk u
k, and the constants c are the structure constants of a Lie algebra, satisfying

cijk = −cjik and cijmc
mk
l + cjkm c

mi
l + ckimc

mj
l = 0. In the infinite dimensional case,

the analog is {A,B}[u] = 〈 δA
δui
, J ij δB

δuj
〉, where J ij = Cij

k u
k, were the Cij

k are

the structure operators of an infinite-dimensional Lie algebra [14].

One of the reasons that Hamiltonian systems of this form appear com-

monly in Eulerian descriptions of continuous media is due to the fact that stan-

dard Hamiltonian reductions result in Hamiltonian systems with Lie-Poisson

brackets [14]. Eulerian theories, such as the Euler equation and the MHD

equations, can be naturally derived by reducing the corresponding Lagrangian

theories. This guarantees that these theories will have Lie-Poisson brackets.
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Chapter 2

Structural Stability of Infinite-Dimensional

Hamiltonian Systems

2.1 Introduction

The perturbation of point spectra for classical vibration and quantum

mechanical problems has a long history [22, 23]. The more difficult problem of

assessing the structural stability of the continuous spectrum in e.g. scattering

problems has also been widely investigated [24, 17]. Because general linear

Hamiltonian systems are not governed by Hermitian or symmetric operators,

the spectrum need not be stable and a transition to instability is possible.

For finite degree-of-freedom Hamiltonian systems, the situation is described

by Krein’s theorem [3, 25, 4], which states that a necessary condition for a

bifurcation to instability under perturbation is to have a collision between

eigenvalues of opposite signature. The purpose of the present chapter is to

investigate Krein-like phenomena in Hamiltonian systems with a continuous

spectrum. Of interest are systems that describe continuous media which are

Hamiltonian in terms of noncanonical Poisson brackets (see e.g. [14, 26]).

Our study differs from that of [5], which considered canonical Hamil-

tonian systems with continuous spectra in a Hilbert space where the time
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evolution operator is self-adjoint. The effects of relatively compact pertur-

bations on such a system were studied and it was proved that the existence

of a negative energy mode in the continuous spectrum caused the system to

be structurally unstable. It was also proved that such systems are otherwise

structurally stable. Also, our study differs from analyses of fluid theories con-

cerning point spectra [27, 28] and point and continuous spectra [29], the latter

using hyperfunction theory.

A representative example of the kind of Hamiltonian system of inter-

est is the Vlasov-Poisson equation [19], which when linearized about stable

homogeneous equilibrium gives rise to a linear Hamiltonian system with pure

continuous spectra that can be brought into action-angle form [7, 30, 31, 8]. A

definition of signature was given in these works for the continuous spectrum.

In the present chapter we concentrate on the Vlasov-Poisson equation, but the

same structure is possessed by Euler’s equation for the two-dimensional fluid,

where signature for shear flow continuous spectra was defined [32, 33] and,

indeed, a large class of systems [34]. Thus, modulo technicalities, the behavior

treated here is expected to cover a large class of systems.

In Sec. 2.4 we review on a formal level the noncanonical Hamiltonian

structure for a class of systems that includes the Vlasov-Poisson equation as

a special case. Linearization about equilibria is described, the concept of dy-

namical accessibility, and the linear Hamiltonian operator T , the main subject

of the remainder of the chapter, are defined. In Sec. 2.2 we prove Krein’s theo-

rem in the time independent finite-dimensional case, and also discuss how the
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picture changes in the noncanonical case. Then in Sec. 2.3 we discuss the liter-

ature pertaining to the structural stability of infinite-dimensional Hamiltonian

systems, to set the stage for the rest of the chapter. In the remainder of the

chapter we sketch proofs, in varying levels of detail, pertaining to properties

of this linear operator for various equilibria. In Sec. 2.5 we describe spectral

stability in general terms and analyze the spectrum of T for the Vlasov case.

The existence of a continuous component to the spectrum is demonstrated

and Penrose plots are used to describe the point component. In Sec. 2.6 we

describe structural stability and, in particular, consider the structural sta-

bility of T under perturbation of the equilibrium state. We show that any

equilibrium is unstable under perturbation of an arbitrarily small function in

W 1,1. In Sec. 2.7 we introduce the Krein-Moser theorem and restrict to dy-

namically accessible perturbations. We prove that equilibria without signature

changes are structurally stable and those with changes are structurally unsta-

ble. In Sec. 2.8 we define critical states of the linearized Vlasov equation that

are structurally unstable under perturbations that are further restricted. We

prove that a mode with the opposite signature of the continuum is structurally

unstable and that the opposite combination cannot exist unless the system is

already unstable. Finally, in Sec. 2.9, we conclude.
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2.2 Finite-dimensional perturbation theory: The Krein-
Moser theorem

For linear finite-dimensional Hamiltonian systems, Hamilton’s equa-

tions are a set of first order linear ODEs. If the Hamiltonian is time-independent

and the Jordan forms of the time evolution operator is trivial, then the be-

havior of solutions is characterized by the eigenfrequencies. If all of the eigen-

frequencies are on the real axis and non-degenerate, then the system will be

stable. If there are degenerate eigenvalues the system will be stable as long

as the time evolution operator does not have any nontrivial Jordan blocks,

but there will be secular growth if it does. Any complex eigenfrequencies will

lead to instability. The Hamiltonian of a linear finite-dimensional Hamiltonian

system is a quadratic form in the canonical variables. If we consider pertur-

bations of the coefficients of the quadratic form it is trivial to define a notion

of small perturbations, as the resulting perturbation of the Hamiltonian will

be a bounded operator. Krein [3] and Moser [4] independently proved a the-

orem characterizing the structural stability of these systems in terms of the

Krein signature, a quantity that amounts to the sign of the energy evaluated

on the eigenvector of a mode [35, 36, 37, 38]. It is of historical interest to

note that the fact that bifurcations to instability occur through collisions of

modes of opposite sign was observed by Sturrock [35, 36] in the plasma physics

literature.

Theorem 2.2.1. (Krein-Moser) Let H be a symmetric matrix that defines a

stable linear finite-dimensional Hamiltonian system. Then H is structurally
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stable if all the eigenfrequencies are non-degenerate. If there are any degenera-

cies, H is structurally stable if the associated eigenmodes have energy of the

same sign. Otherwise H is structurally unstable.

This Krein-Moser theorem gives a clear picture of the behavior of these

systems under small perturbations. The eigenfrequencies move around, but

remain confined to the real line unless there is a collision between a positive

energy and negative energy mode, in which case they may leave the axis.

This theorem was first proved by Krein in the early 1950s and later

rediscovered by Moser in the late 1950s. They proved theorem under the as-

sumption that the Hamiltonian was a periodic function of time, which is an

extension of the result presented here. Proving theorem in the time indepen-

dent case requires the following corollary of a theorem of Williamson:

Theorem 2.2.2. Suppose J0H has only purely imaginary eigenvalues, and

that it has no non-trivial Jordan blocks. Then there exists a canonical trans-

formation K such that KtHK is diagonal. In its diagonal form, write the

basis for phase space as (q1, ..., qn, p1, ...pn). Then the quadratic form 〈Hu, u〉

can be written as a sum of terms of the form ±ωi(p2
i + q2

i ).

This will be the starting point for the proof of the Krein-Moser theorem

in the time-independent case.

Proof. Consider the n degree of freedom linear Hamiltonian system defined

by du
dt

= −J0Hu. Assume that the solutions are stable. This means that
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Positive Energy Mode

Negative Energy Mode

Eigenmode frequencies for a Hamiltonian system

Perturbations leave non-degenerate frequencies real

Colliding modes may become unstable if they have
opposite Krein signature

Figure 2.1: Krein Bifurcations
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all of the characteristic frequencies are real (or that all the eigenvalues are

purely imaginary), and that J0H has no non-trivial Jordan blocks. Using

Williamson’s theorem there exists a canonical transformation which converts

the system to one of the form duc
dt

= −J0Hcuc, where Hc has been diagonalized

in terms of the frequencies ωi.

Suppose that H is definite on the eigenspace defined by each eigenvalue.

Then for each ε > 0, there is a δ > 0 such that whenever H1 is a symmetric

matrix satisfying ‖H1 − H‖ < δ, there is a one to one map (labeling each

multiple eigenvalue a number of times equal to its multiplicity) between eigen-

values of J0H1 and J0H such that each eigenvalue of J0H is within a distance

ε from the eigenvalue of J0H1 to which it corresponds, and the inequality

‖Pωj − Pωj ,1‖ < ε holds. Here Pωj is the projection operator onto the space

spanned by the eigenvectors corresponding to the eigenvalue iω and Pωj ,1 is

the projection onto the eigenspace corresponding to the eigenvalues of J0H1

that correspond to the iωj of J0H (examine the first chapter of Kato [17] for

theorems on finite-dimensional linear perturbation theory upon which this is

based).

Using these inequalities:

|
〈
H1Pωj ,1u, Pωj ,1u

〉
| ≤ (ωj−2ωjε−ωjε2−δ−2δε−δε2)

〈
Pωj ,1u, Pωj ,1u

〉
. (2.1)

For small enough δ and ε, the right side is positive definite for every ωj.

In this case, H1 is sign definite on each of the eigenspaces of J0H1. Therefore

each eigenvector of J0H1 has a nonzero energy, which implies stability because
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exponentially unstable or secularly growing modes must have 0 Hamiltonian to

maintain conservation of the Hamiltonian. Therefore the system is structurally

stable in this case.

Suppose that for some iωj there is one Jordan block with a positive

normal form and one with a negative normal form. Labeling this eigenspace

with (q1, q2, p1, p2), the Hamiltonian can be written H = ω
2
(q2

1 + p2
1 − q2

2 − p2
2).

Perturb the Hamiltonian by the coupling q1 to q2, H1 = H + δq1q2. For all

positive values of δ the resulting system has a quartet of unstable eigenmodes.

Therefore the system is structurally unstable. �

This theorem is the rigorous statement of the general instability criteria

described at the beginning of this section. This also illustrates the point

that the existence of negative energy modes is essential for a Hamiltonian

system to be structurally unstable. The Krein bifurcation into instability

which is alluded to within this section and within theorem is readily observed

in numerous physical examples.

In practical physical situations, the existence of negative energy modes

introduces complications and potential instabilities that must be taken into

consideration. Dissipation induced instability may occur when a system with

negative energy modes is modified to include friction. If the friction strictly re-

moves energy from the system, then it may be possible for it to remove energy

from the negative energy mode, thereby increasing its amplitude and driving

the system into instability. Indeed one of the earliest satellites, Explorer 1,
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failed catastrophically due to the dissipation induced instability. Explorer 1

was designed to maintain its orientation through spin stabilization. The con-

figuration of Explorer 1 could be described using rigid body equations which

predicted the existence of a pair of negative energy modes. Dissipation of

energy through the vibrations of the antenna caused this mode to become

unstable, which forced the satellite to tumble and lose its ability to communi-

cate with Earth [39]. A similar mechanism has been proposed to explain the

tumbling of comets and asteroids. Energy dissipation can occur in asteroids

through inelastic dissipation driven by strains within the asteroids. This drives

the growth of negative energy modes, and results in asteroids and comets that

tend to spin about their axis of maximal inertia [39].

The purpose of this chapter is to study generalizations of the Krein-

Moser theorem to infinite-dimensions. The most important case given here is

the study of the Vlasov-Poisson equation, which is a noncanonical Hamiltonian

system. To motivate the study of that system and to make clear the princi-

ples necessary to study noncanonical systems, we briefly discuss the finite-

dimensional noncanonical case here.

2.2.1 Structural stability in the finite-dimensional noncanonical case

Considering the direct analog of the canonical theory leads one to con-

sider a perturbation problem of the exact same form as in the canonical case,
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with the exception that J0 is replaced with a degenerate a version of the form:

J =

 0 I 0
−I 0 0
0 0 0

 . (2.2)

This case is identical to that of the canonical case because the system

neatly splits into a piece that evolves on a symplectic leaf and a piece that

spans the nullspace of J . Therefore, as long as the energy of eigenvalues is

calculated using the normal form of the Hamiltonian on the symplectic leaf,

the Krein-Moser theorem will remain intact.

Difficulty may arise when perturbations are viewed in a more general

way. Consider a nonlinear Hamiltonian system. Many linear systems are

derived by linearizing around equilibria of some original nonlinear system. This

leads to the expansion of both the Hamiltonian functional and the Poisson

bracket in a neighborhood of the equilibrium of choice. It is a physically

important problem to study how the linear stability of these equilibria change

under small changes to the Hamiltonian, perhaps by moving to neighboring

equilibria, or by modifying the Hamiltonian of the original non-linear system

so that its equilibria change slightly.

In these cases, both the Hamiltonian and the Poisson bracket of the

resulting linear theory are perturbed. By simply allowing such perturbations

within the previous formalism, by making it possible to change both J and H,

it is possible to induce violations of Krein’s theorem by changing the rank of

J . The value of the Hamiltonian on the Casimir invariants does not effect the

stability, but when the rank is increased suddenly it becomes relevant.
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Rank changes do not need to be artificially introduced to witness this

type of behavior, as many noncanonical Hamiltonian systems have points

within their phase space where the rank of J changes. Equilibria located

at these points can lead to rank changing perturbations of the linear theory.

The picture can be clarified by introducing the concept of dynamically

accessible perturbations. In the infinite-dimensional case the rank of the sym-

plectic leaf of a point in phase space may vary tremendously from point to

point.

2.3 Other studies of the structural stability of infinite-
dimensional Hamiltonian systems

There have been a number of previous [5] and contemporaneous [29]

works studying the structural stability of infinite-dimensional Hamiltonian

systems. The infinite-dimensional theory becomes different from the finite-

dimensional theory when the spectrum of the infinite-dimensional time evolu-

tion operator becomes continuous.

The oldest such result is contained in a paper written by Grillakis

[5]. This paper considered canonical Hamiltonian systems, and was motivated

by the study of the non-linear Schrodinger equation and the Klein-Gordon

equation. Grillakis formulated his Hamiltonian system to be in a phase space

that could be decomposed into the Cartesian product of two Hilbert spaces.

The Hamiltonian operator would be written as a matrix of operators on the
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phase space, in the form:

H =

(
A 0
0 B

)
. (2.3)

Each point in phase space is written u = (q, p) and Hamilton’s equations

are ∂u
∂t

= J0Hu, as before. This leads to the eigenvalue problem:

λq = Ap

λp = −Bq.

Under the assumptions that p ∈ X = {kerA ∪ kerB}⊥, R = A|X and

S = B−1|X , this eigenvalue problem can be reduced to:

(R− zS)p = 0. (2.4)

Grillakis takes this as his starting point, assuming that R and S are

self-adjoint operators with empty kernels. He considers the case where there is

a continuous spectrum, which has positive signature, and a discrete eigenvalue

embedded within the continuum. He studies perturbations of the Hamiltonian

by relatively compact perturbations of R and S. He is able to show that if

R(δ) = R + δW and S(δ) = (S−1 + δV )−1, and that the discrete eigenvalue

is of positive energy, that there is some δ for which (R(δ1), S(δ1)) is spectrally

stable for δ1 < δ. Similarly, if the eigenvalue has negative energy, there exist

W and V that make (R(δ), S(δ)) unstable for all values of δ.

The work of Grillakis also led to criteria for determining the number

of negative eigenvalues of the systems that he considered. There has been a
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large amount of work in this direction since then, with the goal of finding the

number and location of negative eigenvalues of linear wave equations arising

from Hamiltonian systems [40, 41].

Hirota has studied bifurcations into instability in ideal MHD [29]. This

is much closer to the work presented here, as MHD is a noncanonical Hamil-

tonian system with a Lie-Poisson bracket. Hirota has carried out a research

program that mirrors the work of Morrison on Vlasov theory [8], with the

first step being the derivation of an integral transformation that converts the

linearized equations of MHD in a neighborhood of an equilibrium into action

angle variables. This enabled him to attach a signature to the continuous

spectrum, paving the way for studies of the structural stability in terms of

signature.

Hirota used this signature to interpret hydrodynamic instabilities in

terms of interactions between positive and negative energy modes and the

continuous spectrum, in the linearization around a parallel shear flow.

While Grillakis achieved general results for canonical systems, he only

considered the case where the continuous spectrum interacts with the dis-

crete spectrum, and the case of continuous spectra interacting with each other

remains an interesting problem. In the noncanonical case of the linearized

Vlasov-Poisson equation, which is presented here (and in the paper [6], this is

the cause of structural instability.
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2.4 Noncanonical Hamiltonian form of the Vlasov-Poisson
Equation

In this section we will introduce the Vlasov-Poisson equation and its

Hamiltonian formulation. The Vlasov-Poisson equation has a single dependent

variable f(x, v, t), such that for each time t, f : D → R, where the particle

phase space D is some two-dimensional domain with coordinates (x, v). The

variable f is a phase space density. The dynamics are Hamiltonian in with a

noncanonical Poisson bracket of the form

{F,G} =

∫
D

dxdv f

[
δF

δf
,
δG

δf

]
, . (2.5)

where [f, g] := fxgv − fvgx is the usual Poisson bracket, where the subscripts

denote partial differentiation.

For the Vlasov-Poisson equation we assume D = X ×R, where X ⊂ R

or X = S, the circle, the distinction will not be important. The Hamiltonian

is given by

H[f ] =
1

2

∫
X

dx

∫
R
dv v2f +

1

2

∫
X

dx |φx|2 , . (2.6)

where φ is a shorthand for the functional dependence on f obtained through

solution of Poisson’s equation, φxx = 1 −
∫
Rfdv, for a positive charge species

with a neutralizing background. Using δH/δf = E = v2/2 + φ, we obtain

ft = {f,H} = −[f,E] = −vfx + φxfv , . (2.7)

where, as usual, the plasma frequency and Debye length have been used to

non-dimensionalize all variables.
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This Hamiltonian form for the Vlasov-Poisson equation was first pub-

lished in [19]. For a discussion of a general class of systems with this Hamilto-

nian form, to which the ideas of the present analysis can be applied, see [34].

In a sequence of papers [42, 7, 31, 43, 8, 44] various ramifications of the Hamil-

tonian form have been explored – notably, canonization and diagonalization

of the linear dynamics to which we now turn.

Because of the noncanonical form, linearization requires expansion of

the Poisson bracket as well as the Hamiltonian. Equilibria, f0, are obtained

by extremization of a free energy functional, F = H + C, as was first done

for Vlasov-like equilibria in [45]. Writing f = f0 + f1 and expanding gives the

Hamiltonian form for the linear dynamics

f1t = {f1, HL}L. (2.8)

where the linear Hamiltonian, HL = 1
2

∫
D
dxdv f1O f1, is the second variation of

F , a quadratic from in f1 defined by the symmetric operator O, and {F,G}L =∫
D
dxdv f0[F1, G1] with F1 := δF/δf1. Thus the linear dynamics is governed

by the time evolution operator T · := −{ · , HL}L = [f0,O · ].

Linearizing the Vlasov-Poisson equation about an homogeneous equi-

librium, f0(v), gives rise to the system,

f1t = −vf1x + φ1xf
′
0 (2.9)

φ1xx = −
∫
R
dv f1 , (2.10)

for the unknown f1(x, v, t). Here f ′0 := df0/dv. This is an infinite-dimensional
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linear Hamiltonian system generated by the Hamiltonian functional:

HL[f1] = −1

2

∫
X

dx

∫
R
dv

v

f ′0
|f1|2 +

1

2

∫
X

dx |φ1x|2 .. (2.11)

We concentrate on systems where x is an ignorable coordinate, and

either Fourier expand or transform. For Vlasov-Poisson this gives the system

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: −Tkfk , . (2.12)

where fk(v, t) is the Fourier dual to f1(x, v, t). Perturbation of the spectrum of

the operator defined by Eq. (2.12) is the primary subject of this chapter. The

operator Tk is a Hamiltonian operator generated by the Hamiltonian functional

HL[fk, f−k] =
1

2

∑
k

(
−
∫
R
dv

v

f ′0
|fk|2 + |φk|2

)
, . (2.13)

with the Poisson bracket

{F,G}L =
∞∑
k=1

ik

∫
R
dv f ′0

(
δF

δfk

δG

δf−k
− δF

δf−k

δG

δfk

)
.. (2.14)

Observe from (2.14) that k ∈ N and thus fk and f−k are independent variables

that are almost canonically conjugate. Thus the complete system is

fkt = −Tkfk and f−kt = −T−kf−k , . (2.15)

from which we conclude the spectrum is Hamiltonian.

Lemma 2.4.1. If λ is an eigenvalue of the Vlasov equation linearized about

the equilibrium f ′0(v), then so are −λ and λ (complex conjugate). Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω, for purely

real and imaginary cases, respectively, or quartets, λ = ±γ ± iω, for complex

eigenvalues.
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Proof. That−λ is an eigenvalue follows immediately from the symmetry T−k =

−Tk, and that λ is an eigenvalue follows from Tkfk = −(Tkfk). �

In [7, 31, 8, 44] it was shown how to scale fk and f−k to make them

canonically conjugate variables. In order to do this requires the following

definition of dynamical accessibility, a terminology introduced in [46, 47].

Definition A particle phase space function k is dynamically accessible from

a particle phase space function h, if k is an area-preserving rearrangement

of h; i.e., in coordinates k(x, v) = h(X(x, v), V (x, v)), where [X, V ] = 1. A

perturbation δh is linearly dynamically accessible from h if δh = [G, h], whereG

is the infinitesimal generator of the canonical transformation (x, v)↔ (X, V ).

Dynamically accessible perturbations come about by perturbing the

particle orbits under the action of some Hamiltonian. Since electrostatic

charged particle dynamics is Hamiltonian, one can make the case that these are

the only perturbations allowable within the confines of Vlasov-Poisson theory.

Given an equilibrium state f0, linear dynamically accessible perturba-

tions away from this equilibrium state satisfy δf0 = [G, f0] = Gxf
′
0. Therefore

assuming the initial condition for the linear dynamics is linearly dynamically

accessible, we can define

qk(v, t) = fk and pk(v, t) = −if−k/(kf ′0). (2.16)

without worrying about a singularity at the zeros of f ′0 and k = 0. With the
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definitions of (2.16), the Poisson bracket of (2.14) achieves canonical from

{F,G}L =
∞∑
k=1

∫
R
dv

(
δF

δqk

δG

δpk
− δF

δpk

δG

δqk

)
.. (2.17)

The full system has the new Hamiltonian H̄ = H + UP in a frame

moving with speed U , where P =
∫
D
dxdv vf . Linearizing in this frame yields

the linear Hamiltonian H̄L = HL + PL, from which we identify the linear

momentum

PL[fk, f−k] =
1

2

∞∑
k=1

∫
R
dv

k

f ′0
|fk|2 , . (2.18)

which must be conserved by the linear dynamics. It is easy to show directly

that this is the case.

Lemma 2.4.2. The momentum PL defined by (2.18) is a constant of motion,

i.e., {PL, HL} = 0.

Proof. This follows immediately from (2.15):
∫
Rdv (fkT−k + f−kTk) = 0. �

Observe, that like the Hamiltonian, HL, the momentum PL is conserved

for each k, which in all respects appears only as a parameter in our system.

Assuming the system size to be L yields k = 2πn/L with n ∈ N, and, thus, this

parameter can be taken to be in R+/{0}. Alternatively, we could suppose X =

R, Fourier transform, and split the Fourier integral to obtain an expression

similar to (2.14) with the sum replaced by an integral over positive values of k.

For the present analysis we will not be concerned with issues of convergence for

reconstructing the spatial variation of f1(x, v, t), but only consider k ∈ R+/{0}
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to be a parameter in our operator. We will see in Sec. 2.5 that the operator

Tk possesses a continuous component to its spectrum. But, we emphasize

that this continuous spectrum of interest arises from the multiplicative nature

of the velocity operator, i.e. the term vfk of Tk, not from having an infinite

spatial domain, as is the case for free particle or scattering states in quantum

mechanics. In the remainder of the chapter, f will refer to either f1 or fk,

which will be clear from context, and the dependence on k will be suppressed,

e.g. in Tk, unless k dependence is being specifically addressed.

2.5 Spectral stability

Now we consider properties of the evolution operator T defined by

(2.12). We define spectral stability in general terms, record some properties

of T , and describe the tools necessary to characterize the spectrum of T .

We suppose fk varies as exp(−iωt), where ω is the frequency and iω is the

eigenvalue. For convenience we also use u := ω/k, where recall k ∈ R+. The

system is spectrally stable if the spectrum of T is less than or equal to zero

or the frequency is always in the closed lower half plane. Since the system is

Hamiltonian, the question of stability reduces to deciding if the spectrum is

confined to the imaginary axis.

Definition The linearized dynamics of a Hamiltonian system around some

equilibrium solution, with the phase space of solutions in some Banach space

B, is spectrally stable if the spectrum σ(T ) of the time evolution operator T is

purely imaginary.
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Spectral stability does not guarantee that the system is stable, or that

the equilibrium f0 is linearly stable. (See e.g. [14] for general discussion). The

solutions of a spectrally stable system are guaranteed to grow at most sub-

exponentially and one can construct a spectrally stable system with polynomial

temporal growth for certain initial conditions. (See e.g. [48] for analysis of the

Vlasov system.)

Spectral stability relies on functional analysis for its definition, since the

spectrum of the operator T may depend on the choice of function space B. The

time evolution operators arising from the types of noncanonical Hamiltonian

systems that are of interest here generally contain a continuous spectrum [34]

and the effects of perturbations that we study can be categorized by properties

of the continuous spectrum of these operators. In general for the operators of

[34], the operator T is the sum of a multiplication operator and an integral

operator. In the Vlasov case, the multiplicative operator is iv· and the inte-

gral operator is f ′0
∫
dv ·. As we will see, the multiplication operator causes

the continuous spectrum to be composed of the entire imaginary axis except

possibly for some discrete points.

Instability comes from the point spectrum. In particular, the linearized

Vlasov Poisson equation is not spectrally stable when the time evolution op-

erator has a spectrum that includes a point away from the imaginary axis,

with the necessary counterparts implied by Lemma 2.4.2.4. For the operator

T this will always be a discrete mode; i.e. an eigenmode associated with an

eigenvalue in the point spectrum.
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Theorem 2.5.1. The one-dimensional linearized Vlasov-Poisson system with

homogeneous equilibrium f0 is spectrally unstable if for some k ∈ R+ and u in

the upper half plane, the plasma dispersion relation

ε(k, u) := 1− k−2

∫
R
dv

f ′0
v − u = 0 .

Otherwise it is spectrally stable.

Proof. The details of this proof are given in plasma textbooks. It follows

directly from (2.9) and (2.10), and the assumption f1 ∼ exp(ikx− iωt). �

Using the Nyquist method that relies on the argument principle of

complex analysis, Penrose [49] was able to relate the vanishing of ε(k, u) to

the winding number of the closed curve determined by the real and imaginary

parts of ε as u runs along the real axis. Such closed curves are called Penrose

plots. The crucial quantity is the integral part of ε as u approaches the real

axis from above:

lim
u→0+

1

π

∫
R
dv

f ′0
v − u = H[f ′0](u)− if ′0(u) ,

where H[f ′0] denotes the Hilbert transform, H[f ′0] = 1
π
−
∫
dv f ′0/(v − u), where

−
∫

:= PV
∫
R indicates the Cauchy principle value. (See [50] for an in depth

treatment of Hilbert transforms.) The graph of the real line under this map-

ping is the essence of the Penrose plot, and so we will refer to these closed

curves as Penrose plots as well. When necessary to avoid ambiguity we will

refer to the former as ε-plots.
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For example, Fig. 2.2 shows the derivative of the distribution function,

f ′0, for the case of a Maxwellian distribution and Fig. 2.3 shows the contour

H[f ′0]− if ′0(u) that emerges from the origin in the complex plane at u = −∞,

descends, and then wraps around to return to the origin at u =∞. From this

figure it is evident that the winding number of the ε(k, u)-plot is zero for any

fixed k ∈ R, and as a result there are no unstable modes.

Making use of the argument principle as described above, Penrose ob-

tained the following criterion:

Theorem 2.5.2. The linearized Vlasov-Poisson system with homogeneous

equilibrium f0 is spectrally unstable if there exists a point u such that

f ′0(u) = 0 and −
∫
dv

f ′0(v)

v − u > 0 ,

with f ′0 traversing zero at u. Otherwise it is spectrally stable.
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Figure 2.2: f ′0 for a Maxwellian distribution.
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Figure 2.3: Stable Penrose plot for a Maxwellian distribution.

Penrose plots can be used to visually determine spectral stability. As

described above, the Maxwellian distribution f0 = e−v
2

is stable, as the re-

sulting ε-plot does not encircle the origin. However, it is not difficult to con-

struct unstable distribution functions. The superposition of two displaced

Maxwellian distributions, f0 = e−(v+c)2 + e−(v−c)2 , is such a case. As c in-

creases the distribution goes from stable to unstable. Figures 2.4 and 2.5

demonstrate how the transition from stability to instability is manifested in

a Penrose plot. The two examples are c = 3/4 and c = 1. (Note, the nor-

malization of f0 only affects the overall scale of the Penrose plots and so is

ignored for convenience.) It is evident from Fig. 2.5 that for some k ∈ R the

ε-plot (which is a displacement of the curve shown by multiplying by −k−2

and adding unity) will encircle the origin, and thus will be unstable for such

k-values.
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We now are positioned to completely determine the spectrum. For

convenience we set k = 1 when it does not affect the essence of our arguments,

and consider the operator T : f 7→ ivf − if ′0
∫
f in the space W 1,1(R), but

we also discuss the space L1(R). The space W 1,1(R) is the Sobolev space

containing the closure of functions under the norm ‖f‖1,1 = ‖f‖1 + ‖f ′‖1.

Thus it contains all functions that are in L1(R) whose weak derivatives are

also in L1(R). First we establish the expected facts that T is densely defined

and closed.

In W 1,1 the operator T is the sum of the multiplication operator and a

bounded operator – that it is densely defined and closed follows from the fact

that the multiplication operator is densely defined and closed in these spaces,

where

D1(T ) := {f |vf ∈ W 1,1(R)}.

Theorem 2.5.3. The operator T : W 1,1(R)→ W 1,1(R) with domain D1(T ) is

both (i) densely defined and (ii) closable.

Proof. (i) The set of all smooth functions with compact support, C∞c (R) is a

subset of D1. This set is dense in W 1,1(R) so D1 is dense and T is densely

defined. (ii) The operator T is closable if the operator v is closable because T

and v differ by a bounded operator. The multiplication operator v is closed if

for each sequence fn ⊂ W 1,1(R) that converges to 0 either vfn converges to 0

or vfn does not converge. Suppose vfn converges. At each point fn converges
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to 0. Therefore vfn converges to 0 at each point, so vfn converges to 0 if it

converges. �

Therefore there exists some domain D such that the graph (D,TD) is

closed.

In determining the spectrum of the operator T , denoted (T ), we split

the spectrum into point, residual, and continuous components as follows:

Definition For λ ∈ σ(T ) the resolvent of T is R(T, λ) = (T − λI)−1, where I

is the identity operator. We say λ is (i) in the point spectrum, σp(T ), if T −λI

fails to be injective, (ii) in the residual spectrum, σr(T ), if R(T, λ) exists but

is not densely defined, and (iii) in the continuous spectrum, σc(T ), if R(T, λ)

exists and is densely defined but unbounded.

Using this definition we characterize the spectrum of the operator T .

Theorem 2.5.4. The component σp(T ) consists of all points λ = iu ∈ C

where 1 − k−2
∫
Rdv f

′
0/(v − u) = 0, σc(T ) consists of all λ = iu with u ∈

R \ (−iσp(T )∩R), and σr(T ) contains all points λ = iu in the complement of

σp(T ) ∪ σc(T ) that satisfy f ′0(u) = 0.

Proof. By the Penrose criterion we can identify all the points in the point

spectrum. If 1 − k−2
∫
R dvf

′
0/(v − u) = 0 then iu = λ ∈ σp(T ). Because the

system is Hamiltonian these modes will occur for the linearized Vlasov-Poisson

system in quartets (two for Tk and two for T−k), as follows from Lemma 2.4.2.4.
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It is possible for there to be discrete modes with real frequencies and these

will occur in pairs. If for real u the map u 7→ ε passes through the origin then

there will be such an embedded mode.

For convenience we drop the wavenumber subscript k on fk and add

the subscript n to identify fn as an element of a sequence of functions that

converges to zero with, for each n, support contained in an interval of length

2ε(n) surrounding the point u and zero average value. Let u ∈ R and choose

the sequence {fn} so that ε(n)→ 0. Then for each n

‖R(T, iu)‖ ≥ ‖fn‖1,1

‖(v − u)fn‖1,1

≥ ‖fn‖1,1

‖v − u‖W 1,1(u−ε,u+ε)‖fn‖1,1

=
1

‖v − u‖W 1,1(u−ε,u+ε)

.

In the above expression, W 1,1(u−ε, u+ε) refers to the integral of |f |+ |f ′| over

the interval (u − ε, u + ε). Therefore the resolvent is an unbounded operator

and iu = λ is in the spectrum. If the frequency u has an imaginary component

iγ then ‖R(T, iu)‖ < 1/γ so unless iu = λ is part of the point spectrum it is

part of the resolvent set.

The residual spectrum of T is contained in the point spectrum of T ∗.

The dual of W 1,1 is the space W−1,1 defined by pairs (g, h) ∈ W−1,1 with

‖(g, h)‖−1,1 < ∞ (cf. [51]). The operator T ∗(g, h) = i(vg − h +
∫

(gf ′0 −

hf ′′0 )dv,−vh) is the adjoint of T . If we search for a member iu = λ of the

point spectrum we get two equations, one of which is (v − u)h = 0. This
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forces h = 0 because h cannot be a δ-function in W−1,1. The other equation

is then (v − u)g +
∫
gf ′0dv = 0 which can only be true if the integral is zero

or if (v − u)g is a constant. For this g = 1
v−u and the resulting equation for u

is the same equation as that for the frequency of the point modes of T . If the

integral is zero then g = δ(v − u) is a solution when f ′0(u) = 0. Therefore the

residual spectrum contains the points λ = iu satisfying f ′0(u) = 0. �

This characterization of the spectrum fails in Banach spaces with less

regularity than W−1,1, such as Lp spaces, because the Dirac δ is not con-

tained in the dual space. In this case the residual spectrum vanishes because

σp(T
∗) = σp(T ). This calculation is nearly identical to that of Degond [48],

who characterizes the residual spectrum slightly differently than we do. In

any event, the result is that the Penrose criterion determines whether T is

spectrally stable or not. If the winding number of the ε-plot is positive, then

there is spectral instability and if it is zero there is spectral stability.

2.6 Structural stability

Spectral stability characterizes the linear dynamics of a nonlinear Hamil-

tonian system in a neighborhood of an equilibrium. The main question now is

to determine when a spectrally stable system can be made spectrally unstable

with a small perturbation. When this is impossible for our choice of allowed

perturbations, we say the equilibrium is structurally stable, and when there

is an infinitesimal perturbation that makes the system spectrally unstable we
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say that the equilibrium is spectrally unstable. We can make this more precise

by stating it in terms of operators on a Banach space.

Definition Consider an equilibrium solution of a Hamiltonian system and

the corresponding time evolution operator T for the linearized dynamics, with

a phase space some Banach space B. Suppose that T is spectrally stable.

Consider perturbations δT of T and define a norm on the space of such per-

turbations. Then we say that the equilibrium is structurally stable under this

norm if there is some δ > 0 such that for every ‖δT‖ < δ the operator T + δT

is spectrally stable. Otherwise the system is structurally unstable.

Because we are dealing with physical systems it makes sense to have

physical motivation for the choice of norm on the space of perturbations. In

this chapter we are interested in perturbations of the Vlasov equation through

changes in the equilibrium. This choice is motivated by the Hamiltonian struc-

ture of the equations and Krein’s theorem for finite-dimensional systems. In

general the space of possible perturbations is quite large, but perturbations

of equilibria give rise to operators in certain Banach spaces and motivate the

definition of norm. Even in the case of unbounded perturbations there may

exist such a norm (see Kato [17], for instance).

Consider a stable equilibrium function f0. We will consider perturba-

tions of the equilibrium function and the resulting perturbation of the time

evolution operator. Suppose that the time evolution operator of the perturbed
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system is T + δT . In the function space that we will consider these pertur-

bations are bounded operators and their size can be measured by the norm

‖δT‖. This norm will be proportional to the norm of ‖δf ′0‖, where δf0 is the

perturbation of the equilibrium.

Definition Consider the formulation of the linearized Vlasov-Poisson equa-

tion in the Banach space W 1,1(R) with a spectrally stable homogeneous equi-

librium function f0. Let Tf0+δf0 be the time evolution operator corresponding

to the linearized dynamics around the distribution function f0 + δf0. If there

exists some δ depending only on f0 such that Tf0+δf0 is spectrally stable when-

ever ‖δTδf0‖ = ‖Tf0 − Tf0+δf0‖ < δ, then the equilibrium f0 is structurally

stable under perturbations of f0.

The aim of this work is to characterize the structural stability of the

linearized Vlasov-Poisson equation. We will prove that if the perturbation

function is some homogeneous δf0 and the norm is W 1,1 (and L1 as a con-

sequence) every equilibrium distribution function is structurally unstable to

an infinitesimal perturbation in this space. This fact will force us to consider

more restricted sets of perturbations.

2.6.1 Winding number

We need to compute the winding number of Penrose plots and the

change in winding number under a perturbation, both in this section and the

rest of the chapter. We use the fact that one way to compute the winding
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number is to draw a ray from the origin to infinity and to count the number

of intersections with the contour accounting for orientation.

Lemma 2.6.1. Consider an equilibrium distribution function f ′0. The winding

number of the Penrose ε-plot around the origin is equal to
∑

u sgn(f ′′0 (u)) for

all u ∈ R−, satisfying f ′0(u) = 0.

To calculate the winding number of the Penrose ε-plot using this lemma

one counts the number of zeros of f ′0 on the negative real line and adds them

with a positive sign if f ′′0 is positive, a Penrose crossing from the upper half

plane to the lower half plane, a negative sign if f ′′0 is negative, a crossing from

the lower half plane to the upper half plane, and zero if u is not a crossing

of the x-axis, a tangency. This lemma comes from the following equivalent

characterization of the winding number from differential topology [52].

Definition If X is a compact, oriented, l-dimensional manifold and f : X →

Rl+1 is a smooth map, the winding number of f around any point z ∈ Rl+1 −

f(X) is the degree of the direction map u : X → Sl given by u(x) = f(x)−z
|f(x)−z| .

In our case the compact manifold is the real line plus the point at ∞

and l = 1. The degree of u is the intersection number of u with any point

on the circle taken with a plus sign if the differential preserves orientation

and a minus sign if it reverses it. The lemma is just a specialization of this

definition to the negative x-direction on the circle. If more than one derivative

of f0 vanishes at a zero of f ′0 there is a standard procedure for calculating the

winding number by determining if there is a sign change in f ′0 at the zero.
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2.6.2 Structural instability of general f0

In a large class of function spaces it is possible to create infinitesimal

perturbations that make any equilibrium distribution function unstable. This

can happen in any space where the Hilbert transform is an unbounded opera-

tor. In these spaces there will be an infinitesimal δf0 such that H[δf ′0] is order

one at a zero of f ′0. Such a perturbation can turn any point where f ′0 = 0 into

a point where H[f ′0 + δf ′0] > 0 as well. Because δf ′0 is small and the region

where H[δf ′0] is not small is also small, the only effect on the Penrose plot will

be to move the location of the zero. Thus, such a perturbation will increase

the winding number and cause instability.

We will explicitly demonstrate this for the Banach space W 1,1(R) and,

by extension, the Banach space L1 ∩C0. This will imply that any distribution

function is infinitesimally close to instability when the problem is set in one of

these spaces, implying the structural instability of every distribution function.

Suppose we perturb f0 by a function δf0. The resulting perturbation to

the operator T is the operator mapping f to δf ′0
∫
dvf . In the space W 1,1 this

is a bounded operator and thus we take the norm of the perturbing operator

to be ‖δf ′0‖1,1. Now we introduce a class of perturbations that can be made

infinitesimal, but have Hilbert transform of order unity.
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Consider the function χ(v, h, d, ε) defined by

χ =


hv/ε |v| < ε
h sgn(v) ε < |v| < d+ ε
h+ d/2 + ε/2− v/2 2h+ d+ ε > v > d+ ε
−h− d/2− ε/2− v/2 2h+ d+ ε > −v > d+ ε
0 |v| > 2h+ d+ ε

.

Figures 2.6 and 2.7 show the graph of χ and its Hilbert transform, H[χ],

respectively.
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Figure 2.6: The perturbation χ for ε = e−10, h = d = .1.

Figure 2.7: The Hilbert transform of χ.

Lemma 2.6.2. If we choose d = h and ε = e−(1/h), then for any δ, γ >

0 we can choose an h such that ‖χ‖1,1 < δ and −
∫
dv χ/v > 1 − O(h), and

|−
∫
dv χ/(u− v)| < |γ/u| for |u| > |2h+ d+ ε|.
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Proof. In the space W 1,1 the function χ has norm 2h2 + 2hd+ hε+ 4h, which

is less than any δ for small enough h. We can compute the value of the Hilbert

transform of this function at a given point u by calculating the principal values:

−
∫
dv

χ

v − u =
hu

ε
log

( |u− ε|
|u+ ε|

)
+ h log

( |d+ ε− u||u+ d+ ε|
|ε+ u||ε− u|

)
+

1

2
(d+ ε+ 2h− u) log

( |d+ ε+ 2h− u|
|d+ ε− u|

)
+

1

2
(d+ ε+ 2h+ u) log

( |d+ ε+ 2h+ u|
|d+ ε+ u|

)
. (2.19)

We analyze the asymptotics of this function as h, d, and ε go to zero, with the

desiderata that i) the norm of χ goes to zero, ii) the maximum of the Hilbert

transform of χ is O(1), and iii) there is a band of vanishing width around the

origin outside of which the Hilbert transform can be made arbitrarily close to

zero.

Note that (2.19) can be written as a linear combination of translates of

the function x log x:

−
∫
dv

χ

v − u =
h

ε
((u− ε) log(|u− ε|)− (u+ ε) log(|u+ ε|))

− 1

2
(d+ u+ ε) log(|d+ u+ ε|)− 1

2
(d− u+ ε) log(|d− u+ ε|)

+
1

2
(d+ u+ ε+ 2h) log(|d+ u+ ε+ 2h|)

+
1

2
(d− u+ ε+ 2h) log(|d− u+ ε+ 2h|) . (2.20)

The function x log x has a local minimum for positive x at x = 1/e. This is the

point at which the function is most negative. It has zeros at x = 0 and x = 1.

For values of u, d, ε, h close to zero all of the arguments of the log functions
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are less than 1/e. Therefore, for |u| < d + ε + 2h the x log x terms are all

monotonically decreasing functions of the argument x. Of the terms of (2.20),

h
ε
((u− ε) log(|u− ε|)− (u+ ε) log(|u+ ε|)) has by far the largest coefficient as

long as ε is much smaller than h. We choose h = d and ε = 0(e−1/h). Then

the terms that do not involve ε are all smaller than (6h+ ε) log(6h+ ε). With

these choices χ satisfies

χ(0) = 2− (h+ e−1/h) log(|h+ e−1/h|) + (3h+ e−1/h) log(|3h+ e−1/h|)

= 2 +O(h log h) .

Consider the pair of functions −(u+ c) log(|u+ c|) + (u− c) log(|u− c|). The

derivative with respect to u is − log(|u + c|) + log(|u − c|). This is zero for

u = 0 and for u > 0 it is always negative and the pair is always decreasing,

and for small values of h the pair is guaranteed to be positive. Suppose that

u > ε. Then we can bound the term with the h/ε coefficient:

h

ε
|(u− ε) log(|u− ε|)− (u+ ε) log(|u+ ε|)|

=

∣∣∣∣hε (u− ε) log
|u− ε|
|u+ ε| − 2ε log(|u+ ε|)

∣∣∣∣
=
h

ε

∣∣∣∣(u− ε) log
1− ε

u

1 + ε
u

− 2ε log(|u+ ε|)
∣∣∣∣

<
h

ε

∣∣(u− ε) log(e−ε/u)
∣∣+ 2 |h log(|u+ ε|)|

=
h(u− ε)

u
+ 2 |h log(|u+ ε|)| .

For u >> ε, for example if u = O(h2), this term is O(h log h). Therefore, for

|u| > h2 we have χ = O(h log h) which can be made arbitrarily small. When
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|u| > 3h + ε the function χ decreases at least as fast as O(1/u). With these

choices of h, d, and ε, the norm of χ is O(h), which proves the Lemma. �

Now we state theorem that any equilibrium is structurally unstable in

both the spaces W 1,1 and L1∩C0. In order to prove this theorem we will make

use of a result from Morse theory [53]. A Morse function is a function that

has no degenerate critical points.

Lemma 2.6.3. Let M be a smooth manifold. The set of Morse functions is

open and dense in the space Cr(M,R).

Therefore if f0 is C2 there is an infinitesimal perturbation f1 such that

f0 + f1 is a Morse function. Because the winding number is stable under

homotopy there is an f1 such that all the zeros of f0 + f1 are non-degenerate

and the winding number of the Penrose plot is the same as that of f0. Therefore

we will assume that f0 is a Morse function. A consequence of this assumption

is that all of the zeros of f ′0 are isolated.

Theorem 2.6.4. A stable equilibrium distribution f0 ∈ C2 is structurally

unstable under perturbations of the equilibrium in the Banach spaces W 1,1 and

L1 ∩ C0.

Proof. If f0 is stable then the Penrose ε-plot of f ′0 has a winding number of

zero. Because the point at ∞ corresponds to a crossing where f ′0 goes from

negative to positive there exists a point u0 with f ′0(u0) = 0 that is an isolated

zero, H[f ′0](u0) < 0, and f ′′0 (u0) < 0. Let F = sup |f ′′0 |. Choose h to always be
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smaller than the distance from u0 to the nearest 0 of f ′0. Then if ε = O(e−1/h)

and d = h the support of χ(u − u0) will contain only one zero of f ′0. For h

small enough the slope of χ at u0 will be greater than F so that the function

f ′0 + χ will be positive for u in the set (u0, u
+) for some u+ in the support of

χ. Similarly f ′0 +χ will be negative for u in the set (u−, u0) for some u− in the

support of χ. Because χ has compact support the function f ′0 + χ is positive

in a neighborhood outside of the support of χ so that the intermediate value

theorem guarantees one additional zero of the function f ′0 + χ for u > u0 and

also for u < u0. Choose χ so that this Hilbert transform of f ′0 + χ is positive

at the point u0 and h small enough that it is negative before the next zero of

f ′0 + χ on either side of u0. Then the winding number of f ′0 + χ is positive

because an additional positive crossing has been added on the negative real

line.

Because the norm of χ is O(h) in both W 1,1 and L1 the distribution f0

is unstable to an arbitrarily small perturbation and is therefore structurally

unstable. �

Thus we emphasize that we can always construct a perturbation that

makes our linearized Vlasov-Poisson system unstable. For the special case of

the Maxwellian distribution, Fig. 2.8 shows the perturbed derivative of the

distribution function and Fig. 2.9 shows the Penrose plot of the unstable per-

turbed system. Observe the two crossings created by the perturbation on the

positive axis as well as the negative crossing arising from the unboundedness

of the perturbation.
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In some sense Theorem 2.6.4 represents a failure of our class of pertur-

bations to produce any interesting structure for the Vlasov equation. Indeed

signature appears to play no role in delineating bifurcation to instability. In

order to derive a nontrivial result we develop a new theory analogous to the

finite-dimensional Hamiltonian perturbation theory developed by Krein and

Moser. This new theory involves a restriction to dynamically accessible per-

turbations of the equilibrium state. This is natural since the noncanonical

Hamiltonian structure can be viewed as the union of canonical Hamiltonian

motions (on symplectic leaves) labeled by the equilibrium state – to com-

pare with traditional finite-dimensional theory requires restriction to the given

canonical Hamiltonian motion under consideration.
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Figure 2.8: f ′0 + χ for a Maxwellian distribution.
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Figure 2.9: Penrose plot for perturbed Maxwellian.

2.7 The Krein-Moser theorem for Vlasov-Poisson

Our goal is to place the perturbation theory of infinite-dimensional

Hamiltonian systems in the language of the finite-dimensional theory.

The appropriate definition of signature for the continuous spectrum of

the Vlasov-Poisson equation was introduced in [7, 8] (see also [44]), where

an integral transform was also introduced for constructing a canonical trans-

formation to action-angle variables for the infinite-dimensional system. The

transformation is a generalization of the Hilbert transform and it can be used

to show that the linearized Vlasov-Poisson equation is equivalent to the system

with the following Hamiltonian functional:

HL =
∞∑
k=1

∫
R
du σk(u)ωk(u)Jk(u, t) , . (2.21)

where ωk(u) = |ku| and σk(u) = −sgn(kuf ′0(u)) is the analog of the Krein

signature corresponding to the mode labeled by u ∈ R. (Note, the transfor-
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mation can always be carried out in a frame where f ′0(0) = 0. Because the

Hamiltonian does not transform as a scalar for frame shifts, which are time

dependent transformations, signature is frame dependent. The Hamiltonian

in a shifted frame is obtained by adding a constant times the momentum PL

of (2.18) to HL. Later we will see that Hamiltonians that can be made sign

definite is some frame are structurally stable in a sense to be defined.)

Definition 1. Suppose f ′0(0) = 0. Then the signature of the point u ∈ R is

−sgn(uf ′0(u)).

Below is a graph that illustrates the signature for a bi-Maxwellian dis-

tribution function.
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Figure 2.10: Signature for a bi-Maxwellian distribution function.
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2.7.1 Dynamical accessibility and structural stability

Now we discuss the effect of restricting to dynamically accessible per-

turbations on the structural stability of f0. In this work we only study per-

turbations of f0 that preserve homogeneity. Because dynamically accessible

perturbations are area preserving rearrangements of f0, it is impossible to con-

struct a dynamically accessible perturbation for the Vlasov equation in a finite

spatial domain that preserves homogeneity.

To see this we write a rearrangement as (x, v)↔ (X, V ), where V is a

function of v alone. Because [X, V ] = 1 and V (v) is not a function of x, we

have V ′∂X/∂x = 1, or X = x/V ′. If the spatial domain is finite, this map

is not an diffeomorphism unless V ′ = 1. In the infinite spatial domain case,

this is not a problem and these rearrangements exist. First we note that a

rearrangement cannot change the critical points of f0.

Lemma 2.7.1. Let (X, V ) be an area preserving diffeomorphism, and let V be

homogeneous. Then the critical points of f0(V ) are the points V −1(vc), where

vc is a critical point of f0(v).

Proof. By the chain rule df0(V (v))/dv = V (v)′f ′0(V (v)). The function V ′ 6= 0

because (X, V ) must be a diffeomorphism. Therefore the critical points occur

when f ′0(V ) = 0 or at points v = V −1(vc). �

Consider the perturbation χ that was constructed earlier. If vc is a non-

degenerate critical point of f0 such that f ′′0 (vc) < 0, then we want to prove
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that there is a rearrangement V such that f0(V ) = f0(v)+
∫ v
−∞ χ(v′−vc)dv′ or

that df0(V )/dv = f ′0(v) +χ(v− vc). Such a rearrangement can be constructed

as long as the parameters defining χ, the numbers h, d, ε, are chosen such that

f ′0(v) + χ(v − vc) has the same critical points as f ′0(v). Using Morse theory it

is possible to construct a V so that f0(V ) = f0(v) +
∫
χ+O((v− vc)3), where

O((v−vc)3) has compact support and is smaller than f0(v)−f ′′0 (vc)(v−vc)2/2.

Theorem 2.7.2. Let vc be a non-degenerate critical point of f0 with f ′0(vc) < 0.

Then there exists a rearrangement V such that f0(V ) = f0(v) +
∫
χ+O((v −

vc)
3, where O is defined as above.

We omit the proof but it is a simple application of the Morse lemma.

In order to apply the Morse lemma f0 must be C2. This is not restrictive for

practical applications where typically f0 is smooth. The rearrangement of f0

can also be made to be smooth if desired.

Using this result we prove a Krein-like theorem for dynamically acces-

sible perturbations in the W 1,1 norm.

Theorem 2.7.3. Let f0 be a stable equilibrium distribution function for the

Vlasov equation on an infinite spatial domain. Then f0 is structurally stable

under dynamically accessible perturbations in W 1,1, if there is only one solution

of f ′0(v) = 0. If there are multiple solutions, f0 is structurally unstable and the

unstable modes come from the zeros of f ′0 that satisfy f ′′0 (v) < 0.
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Proof. Suppose that f ′0 has only one zero on the real line. Because f0 is an

equilibrium this zero will have f ′′0 > 0. Because a dynamically accessible

perturbation can never increase the number of critical points, it will be impos-

sible to change the winding number of the Penrose plot to a positive number.

Therefore f0 is structurally stable.

Suppose that f ′0 = 0 has more than one solution on the real axis. Using

the previous theorem perturb f ′0 by χ(v − vc) in a neighborhood of a critical

point vc with f ′′0 (vc) < 0. This will increase the winding number to 1 since it

will add a positively oriented crossing on the negative real axis for the correct

choices of h, d, and ε in the definition of χ. The norm of χ can be made as

small as necessary and therefore f0 is structurally unstable. Since no other

critical points with f ′′0 < 0 can be created the only critical points that lead to

instabilities are the ones that already exist having f ′′0 < 0. �

The implication of this result is that in a Banach space where the

Hilbert transform is an unbounded operator the dynamical accessibility con-

dition makes it so that a change in the Krein signature of the continuous

spectrum is a necessary and sufficient condition for structural instability. The

bifurcations do not occur at all points where the signature changes, however.

Only those that represent valleys of the distribution can give birth to unstable

modes.
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2.8 Krein bifurcations in the Vlasov equation

We identify two critical states for the Penrose plots that correspond to

the transition to instability. In these states the system may be structurally

unstable under infinitesimal perturbations of f ′0 in the Cn norm for all n. The

first critical state corresponds to the existence of an embedded mode in the

continuous spectrum. If the equilibrium is stable, then such an embedded

mode corresponds to a tangency of the Penrose plot to the real axis at the

origin. If the system is perturbed so that the tangency becomes a pair of

transverse intersections, then the winding number of the Penrose plot would

jump to 1 and the system would be unstable. Considering a parametrized small

perturbation, we see that the value of k for the unstable mode, will correspond

to some value of k 6= 0 for which the embedded mode exists. Figures 2.11 and

2.12 illustrate a critical Penrose plot for a bifurcation at k 6= 0. We explore

this bifurcation in Sec. 2.8.1.

Another critical state occurs when H[f ′0] = 0 at a point where f ′0 trans-

versely intersects the real axis. If the Hilbert transform of f ′0 is perturbed,

there will be a crossing with a negative H[f ′0], and the winding number will

be positive for some k. This mode enters through k = 0 because the smaller

the perturbation of H[f ′0] the smaller k must be for Tk to be unstable. Figure

2.13 is a critical Penrose plot corresponding to the bi-Maxwellian distribution

with the maximum stable separation. We explore this kind of bifurcation in

Sec. 2.8.3.
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Figure 2.11: Critical Penrose plot for a k 6= 0 bifurcation.
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Figure 2.12: Close up of a critical Penrose plot for a k 6= 0 bifurcation.
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Figure 2.13: Critical Penrose plot for a bi-Maxwellian distribution function.

2.8.1 Bifurcation at k 6= 0

The linearized Vlasov equation can support neutral plasma modes em-

bedded within the continuous spectrum. The condition for existence of a point

mode is the vanishing of the plasma dispersion relation on the real axis,

ε(u) = 1−H[f ′0] + if ′0 = 0 .. (2.22)

If the spatial domain is unbounded the point modes will be analogues of the

momentum eigenstate solutions of the Schrodinger equation and have infinite

energy. Any violation of the Penrose criterion will guarantee the existence of

zeros of the plasma dispersion function on the real axis because k can take any

value in this case.

If the plasma dispersion vanishes at some u and f ′′0 (u) = 0, there is an

embedded mode in the continuous spectrum. The signature of the continuous

spectrum will not change signs at the frequency of the mode and we will extend
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the definition of signature to the point u even though f ′0(u) = 0. The signature

of an embedded mode is given by sgn(u ∂εR/∂u) (see [7, 43]). The signature

of the continuous spectrum is −sgn(uf ′0). These signatures are the same if the

value of f ′0 in a neighborhood of its zero is the same sign as H[f ′′0 ].

We will prove that if f0 is stable and mildly regular, it is impossible for

there to be a discrete mode embedded in the continuous spectrum with signa-

ture that is the same as the signature of the continuous spectrum surrounding

it. The proof has a simple conceptual outline. Suppose that there exists a

discrete mode with the same signature as the continuum. Then there exists

some point u satisfying f ′0(u) = 0, −sgn(f ′0) = sgn(∂εR/∂u) in a neighborhood

of u, and H[f ′0](u) = 0. Perturbations of f ′0 centered around this point will

give the Penrose plot a negative winding number, contradicting the analyticity

of the plasma dispersion function in the upper half plane. We need f ′0 to be

Hölder continuous so that the Penrose plot is continuous and for the plasma

dispersion function to converge uniformly to its values on the real line.

Lemma 2.8.1. Let g be a function defined on the real line such that g is

Hölder and let h = H[f ]. Then the functions gz, hz that are the solutions of

the Laplace equation in the upper half plane satisfying fz = f and gz = g on

the real line converge uniformly to f and g.

Proof. Because g can be defined as a bounded and continuous function on

R ∪ {∞} and the gz are analytic, the gz must converge uniformly to g. The

same properties hold for h and hz must converge to h = H[g]. �
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Lemma 2.8.2. Let f ′0 be the derivative of an equilibrium distribution function

and let f ′0 be sufficiently regular such that the assumptions of the previous

lemma are true. Then the Penrose plot that is associated with f ′0 cannot have

a negative winding number.

Proof. The Penrose plot associated with f ′0 is the image of the real line under

the map ε(u) = 1 − H[f ′0] + if ′0. This is naturally defined as an analytic

function if u is in the upper half plane. By the argument principle the image

of R + it under this map has a non-negative winding number. Both the real

and imaginary parts of this map converge uniformly to their values on the real

line. Therefore the Penrose plot is a homotopy of these contours, making it

possible to parametrize the contours by some t such that the distance from

the Penrose plot to the contour produced by the image of R+ iδ is always less

than some η(t) that goes to 0. If the winding number of the Penrose plot were

negative, there would be some t for which the winding number was negative

because the winding is a stable property under homotopy, contradicting the

analyticity of the map. �

Theorem 2.8.3. Let f ′0 and f ′′0 be Hölder continuous. If f0 is stable there are

no discrete modes with signature the same as the signature of the continuum.

Proof. Because f0 is stable the winding number of the Penrose plot is equal

to 0. Assume that there is a discrete mode with the same signature as the

continuum surrounding it. Then there exists a point u with f ′0(u) = 0, f ′′0 (u) =
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0, and sgn(f ′0(u+ δ)dH[f ′0](u)/du) = 1. Then we search for a function g such

that the Penrose plot of f ′0 + g has a negative winding number. If such a

function exists it will contradict Lemma 2.8.1. Because f ′′0 is Hölder ∂εR/∂u

is bounded away from zero in a neighborhood of the point. Suppose that in

this neighborhood there is only one zero of f ′0. Then define g such that g has

one sign, is smooth and has compact support, and such that the |∂H[g]/∂u| <

|f ′′0 | in this neighborhood. Then for small enough g the function f ′0 + g will

have two zeros in a neighborhood of the point. Then both of the crossings

will correspond to crossings of negative orientation and the resulting winding

number will be −1, a contradiction. �

Corollary 2.8.4. If f0 is stable it is impossible for there to be a point where

f ′0 = 0, f ′′0 < 0, and H[f ′0] > 0.

If f0 is unstable the winding number is positive. In this case it may be

possible for modes with the same signature as the continuum to exist. It is

possible for a positive energy mode to be embedded in a section of negative

signature and a negative energy mode to be embedded in a section of positive

signature. This situation is structurally unstable under perturbations that

are bounded by the Cn norm and remains so even when a linear dynamical

accessibility constraint is enforced.

Theorem 2.8.5. Let f ′0 be the derivative of an equilibrium distribution func-

tion with a discrete mode embedded in the continuous spectrum. Then there

exists an infinitesimal function with compact support in the Cn norm for each

n such that f ′0 + δf ′ is unstable.
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Proof. Suppose that H[f ′′0 ] is non-zero in a neighborhood of the embedded

mode. Define a dynamically accessible perturbation δf = hf ′0. Then assume

that f ′′′0 6= 0 at the mode. If we define h such that it does not vanish at

the mode we find that δf ′′ = h′′f ′0 + h′f ′′0 + hf ′′′0 and therefore we can choose

h such that the discrete mode becomes a crossing. This can be done with h

infinitesimal and smooth. The resulting perturbation will have an infinitesimal

effect on f ′0. The new crossings will cause a violation of the Penrose criterion,

and therefore the system with the embedded mode is structurally unstable.

�

This is an analog of Krein’s theorem for the Vlasov equation for the case where

there is a discrete mode. As a result of this we see that all discrete modes are

either unstable or structurally unstable.

2.8.2 Little-big man theorem

Consider a linearized equilibrium that supports three discrete modes.

The signature of each mode depends on the reference frame. There is a result

that applies to a number of Hamiltonian systems, the three-wave problem in

particular [54, 28]), that gives a condition on the signature of the modes and

their frequencies in some reference frame such that no frame shift can cause

all the modes to have the same signature. In a shifted frame, the Hamiltonian

changes so the frequencies in the action-angle form are Doppler shifted. Some-

times such shifts can render the Hamiltonian sign definite. A result for finite

systems, which we call the little-big man theorem, indicates that this can-
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not happen when the mode of different signature has frequency with largest

absolute value. A related result exists for the point spectrum of the Vlasov

equation.

Theorem 2.8.6. Let f ′0 be the derivative of an equilibrium distribution func-

tion that has three discrete modes (elements of the point spectrum) with real

frequencies. Consider a reference frame where all of the modes have positive

frequency. Then represent the energies of the three modes as a triplet (±±±)

where the plus and minus signs correspond to the signature of each mode, with

the first mode being the one with the lowest phase velocity (ω/k) and the last

one with the highest phase velocity. Then, if the triplet is of the form (+−+)

or (− + −) there is no reference frame in which all the modes have the same

signature. If the triplet has any other form, then there is a reference frame in

which all the modes have the same signature.

Proof. The formula for the energy of an embedded mode is sgn(ω ∂εR/∂ω)

[43]. If there are three embedded modes in a frame where the frequencies are

all positive, the triplet is(
sgn

∂εR
∂ω

∣∣∣∣
ω1

, sgn
∂εR
∂ω

∣∣∣∣
ω2

, sgn
∂εR
∂ω

∣∣∣∣
ω3

)
If this is (+−+) then as we shift frames the possible triplets are (0−+), (−−

+), (−0+), (− + +), (− + 0), (− + −). All of these are indefinite. The other

possible initially indefinite triplet is (− − +). However if we shift the two −

modes to negative frequency the triplet becomes (+ + +). All other examples

are either definite or reduce to one of these two. �
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A few observations are in order. First, frame shifts do not change the

structure of Penrose plots, but only induce re-parameterizations. Next, Theo-

rem 2.8.6 differs from its finite-dimensional counterpart in that no restriction

on the wave numbers is involved, a necessary part of the three-wave problem.

Lastly, we are not addressing nonlinear stability here, as in the finite dimen-

sional case, but should a frame exist in which the energy is definite, this is an

important first step in a rigorous proof of nonlinear stability.

2.8.3 Bifurcation at k = 0

Assume that there are no embedded modes and that f0 is stable, but

that there is a point that has f ′0 = 0 and H[f ′0] = 0. This is the critical state for

a bifurcation at k = 0. This can be destabilized in the same way as the critical

state for k 6= 0. There will be a perturbation that makes H[f ′0] < 0 without

changing f ′0 at that point. Therefore the Penrose plot becomes unstable and

the equilibrium is structurally unstable.

Theorem 2.8.7. Suppose that f ′0 is a stable equilibrium distribution function

that has a zero at u of both f ′0 and H[f ′0]. Then f ′0 is structurally unstable

under perturbations bounded by the Cn norm for all n.

Proof. Let δh be symmetric about the point u, be smooth with compact sup-

port and have its first n derivatives less than some ε. Then let δf ′0 = −H[δh].

The resulting perturbation to H[f ′0] is h. If h is positive at u, then by the

symmetry of h f ′0 + δf ′0 has a zero at u and H[f ′0] + h is positive there. Thus
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the Penrose plot has a positive winding number and is unstable. Therefore f ′0

is structurally unstable. �

The previous two sections demonstrated that when the Penrose plot is

critical, no amount of regularity is sufficient to prevent f0 from being struc-

turally unstable. However, when the Penrose plot is not critical all that is

required is that a small perturbation only change the Penrose plot by a small

amount in addition to a condition to prevent perturbations near v =∞. Sup-

pose we arbitrarily restrict the support of the perturbations so that |v| < vmax.

Then if we increase the required regularity such that sup(H[δf ′0]) is bounded

there will be some δ such that for all δf ′0 with ‖δf ′0‖ < δ the distribution

f0 + δf0 is structurally stable. This restriction can be motivated physically

by restricting the particles in the distribution function to be traveling slower

than the speed of light.

2.9 Conclusion

We have considered perturbations of the linearized Vlasov-Poisson equa-

tion through changes in the equilibrium function. The effect of these pertur-

bations on the spectral stability of the equations is determined by the class of

allowable perturbations and the signature of the continuous and point spec-

tra. Every equilibrium can be made unstable by adding an arbitrarily small

function from the space W 1,1. If we rearrange f0 then only when the signature

of f0 changes sign can an arbitrarily small perturbation destabilize it. When
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f0 is stable discrete modes always have the opposite signature of the spectrum

surrounding them. This is the result of Theorem 2.8.3. The equilibria are

structurally unstable under Cn small perturbations for all n. The signature of

the spectrum and the signature of the discrete mode can never be the same.

This generalization of Krein’s theorem is more complicated than the

finite-dimensional original. However the basic ideas of Krein’s theorem are still

important in the infinite-dimensional case. When the perturbations are more

restricted than just belonging to W 1,1 the structural stability is determined

by the signature of the spectrum. Just as in Krein’s theorem there must be a

positive signature interacting with a negative signature to produce structural

instability.

This chapter was devoted primarily to the Vlasov equation, but other

noncanonical Hamiltonian systems admit to a similar treatment, e.g. the 2D

Euler equation with shear flow equilibria, and we hope to chronicle such cases

in future publications.
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Chapter 3

Landau Damping and Hamiltonian Models of

Friction

3.1 Introduction

In 1946 Landau [55] theoretically predicted the collisionless damping

of the electric field in a plasma governed by the Vlasov-Poisson system. This

result has been of great importance in the field of plasma physics, and indeed

collisionless or continuum damping, as it is sometimes called, occurs in a wide

variety of kinetic and fluid plasma models that possesses a continuous spec-

trum. For example, such damping occurs in the context of Alfven waves in

magnetohydrodynamics (see e.g. Chap. 10 of [56]) and has been proposed as

a mechanism for plasma heating in response to electromagnetic waves.

Many other systems also undergo Landau damping, both inside and

outside of plasma physics. It is not surprising that Landau damping exists in

stellar dynamics governed by the Jeans equation [57] because this equation is

of Vlasov type but with an attractive interaction potential. In fact, Landau

damping occurs in collisionless kinetic theories with a rather large class of

potentials, and recently has been proven rigorously to exist in the nonlinear

case [58, 59]. Landau damping exists in the context of the fluid mechanics
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of shear flow (see e.g. [60, 33] which contains a list of original sources over a

period of more than 50 years) and the description of wind driven water waves.

It also appears in multiphase media [61] and has been established for systems

containing large numbers of coupled oscillators, most notably the Kuramoto

model. This has implications for biological models describing the synchroniza-

tion or decoherence of the flashing of fireflies and chirping of crickets as well

as other phenomenon in mathematical biology [62].

Another class of continuum systems involves the interaction of a dis-

crete oscillator with a continuous bath of oscillators. In these systems the

oscillator can be a particle or one mode of some field, and the bath often rep-

resents thermal fluctuations or radiation. One of the first detailed treatments

of such a system is due to Dirac [63], but early on Van Kampen also used such

a model to describe the emission and absorption of light by an atom [64]. The

single wave model of plasma physics, which describes both beam plasma and

laser plasma interaction physics [65, 66, 67], is also an example. The example

of interest in this chapter is the Caldeira-Leggett model [68].

The Caldeira-Leggett model was invented in order to study quantum

tunneling in the presence of dissipation and the quantum limit of Brownian

motion [10]. A model of this type was deemed necessary because quantum me-

chanics is incompatible with frictional forces. However, the Caldeira-Leggett

model is a Hamiltonian system that exhibits dissipation by coupling to a con-

tinuum, i.e., it has Landau damping. The Caldeira-Leggett Hamiltonian is the

sum of the Hamiltonian of a classical harmonic oscillator, the Hamiltonian of
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continuous bath of harmonic oscillators, and a linear coupling term between

the discrete and continuous degrees of freedom. The discrete degree of freedom

corresponds to a macroscopic system and the bath of oscillators represent the

environment. The coupling causes the discrete oscillator to damp by transfer-

ence of energy to the continuum. This system has become a standard model for

studying the physics of low temperature quantum systems, and it has numer-

ous applications ranging from the understanding of superconducting circuit

elements to qubits in quantum computers [69].

We analyze the classical Caldeira-Leggett model using a procedure anal-

ogous to that used by Landau to analyze the Vlasov-Poisson system of plasma

physics. Following Landau, the initial value problem can be solved using the

Laplace transform and the rate of decay can be derived in the weak damping

limit. This paralleling of Landau’s original calculation suggests a connection

between this system and the Vlasov-Poisson system. In fact, we will show

that both systems can be mapped into a normal form that is common to a

large class of infinite-dimensional Hamiltonian systems that have a continuous

spectrum [7, 8, 33, 34].

The Caldeira-Leggett model, like all Hamiltonian systems in the class,

has a continuous spectrum that is responsible for the damping through phase

mixing (filamentation) and the Riemann-Lebesgue lemma. Because this struc-

ture is shared by a number of important physical systems, it is interesting to

determine the nature of their similarities. It is well-known that the properties

of linear ordinary differential equations are closely tied to the spectra of their
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time evolution operators. In fact, for given spectra there are a number of nor-

mal forms. Any linear finite-dimensional Hamiltonian system can be reduced

to one of these normal forms (ODEs) through an appropriate transformation,

and in this sense the behavior of such systems is completely understood. the-

ory of normal forms for infinite-dimensional Hamiltonian systems is not nearly

as well-developed as that for finite-dimensional systems, but for some systems

much is known. For systems with continuous spectra, the analog of diagonal-

ization is conversion into a multiplication operator. If the original system is

ḟ = Lf , then a transformation T such that TLT−1 is a multiplication operator

would diagonalize the system. Any two systems that have the same normal

form would thus be equivalent through some linear transformation.

This procedure has been performed for the linearized Vlasov-Poisson

equation [8], and when the spectrum is purely continuous the time evolution

operator is equivalent to the multiplication operator x. This discovery led to

the discovery of an entire class of transformations diagonalizing linear infinite-

dimensional Hamiltonian systems of a certain form [34]. In fact, it is always

possible to perform such a transform in the special case of a bounded, self-

adjoint operator [70]. The operators dealt with here are usually unbounded

and non-normal (even if they did exist in a Hilbert space), as is often the

case when dealing with continuous Hamiltonian matter models. A precursor

to the discovery of such transformations is existence of a complete basis of sin-

gular eigenfunctions of the original equation, a treatment that is common for

systems with continuous spectra that dates back to Dirac [63]. In fact these
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methods have been developed in parallel within the field of plasma physics

beginning with the work of Van Kampen [71] and within condensed matter

physics through the work of Dirac and later Fano [72]. Caldeira and his col-

laborators developed a diagonalization method for the Caldeira-Leggett model

[73], although they were primarily interested in the time evolution of the dis-

crete degree of freedom and thus did not write down the full inverse of their

transformation. In this chapter we complete the treatment of the Caldeira-

Leggett system. Then, we note that the normal form is the same as that of

the Vlasov-Poisson system and that the models are thus equivalent through

the use of an integral transform.

Specifically, in Sec. 3.2 we review the Caldeira-Leggett model and then,

in the spirit of Landau [55], present its Laplace transform solution in Sec. 3.3.

This is followed by obtaining the singular eigenfunctions, in the spirit of Van

Kampen [71] and Dirac [63], and the invertible integral transform akin to that

of [8] for transforming to normal form. In Sec. 3.5 we show explicitly how the

Caldeira-Leggett model is equivalent to a case of the linearized Vlasov-Poisson

system. Then, in Sec. 3.6 we suggest that there may be an echo effect in the

Caldeira-Leggett model, perhaps making the nature of dissipation directly

testable. In Sec. 3.7 variants of the Caldeira-Leggett model which contain

negative energy are introduced, and stability criteria are derived. The results

are interpreted in terms of Krein’s theorem. Finally, in Sec. 3.8 we conclude.
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3.2 Caldeira-Leggett Hamiltonian

As noted above, the Caldeira-Leggett model is an infinite-dimensional

Hamiltonian system describing the interaction of a discrete degree of freedom

with an infinite continuum of modes [10]. The continuum is typically referred

to as the environment. The Caldeira-Leggett model has the following Hamil-

tonian:

HCL[q, p;Q,P ] =
Ω

2
P 2 +

1

2

(
Ω +

∫
R+

dx
f(x)2

2x

)
Q2

+

∫
R+

dx
[x

2
(p(x)2 + q(x)2) +Qq(x)f(x)

]
, . (3.1)

which together with the Poisson bracket

{A,B} =

(
∂A

∂Q

∂B

∂P
− ∂A

∂P

∂B

∂Q

)
+

∫
R+

dx

(
δA

δq

δB

δp
− δA

δp

δB

δq

)
. (3.2)

produces the equation of motion for observables in the form Ḟ = {F,H}, where

F is any functional of the discrete, (Q,P ), and continuum, (q, p), coordinates

and momenta. Note, it is assumed that f(x) is chosen so that the integrals of

(3.1) exist. The coefficient of Q2 includes a frequency shift term that is used

to make the Hamiltonian positive definite. We take p and q to be functions

on the positive real line, R+, and P and Q to be real numbers. Hamilton’s

equations for the Caldeira-Leggett system are thus,

q̇(x) = xp(x) (3.3)

ṗ(x) = −xq(x)−Qf(x) (3.4)

Q̇ = ΩP (3.5)

Ṗ = −
(

Ω +

∫
R+

dx
f(x)2

2x

)
Q−

∫
R+

dx q(x)f(x) .. (3.6)
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This system was originally introduced by Caldeira and Leggett in 1981

[68]. They initially considered a very massive harmonic oscillator coupled to a

large number of light harmonic oscillators with varying frequencies, and then

studied the limit of the light oscillators becoming a continuous spectrum. The

coupling causes Q to decay to zero with time, and therefore the system can be

used to model dissipation. This makes it an ideal system to model the effects

of dissipation in quantum mechanics and especially quantum tunneling. It

has been extensively studied and is frequently mentioned in the condensed

matter literature. There have been some controversies about the physics of

the damping and the physicality of the initial conditions [69]. Connecting this

system with plasma physics, where much intuition has been developed over the

years about wave-particle interaction, can help to improve the understanding

of its behavior. For example, a clear picture of filamentation can be viewed in

the numerical work of [74].

3.3 The Landau solution and Landau damping

One of the classical calculations in plasma physics is the solution of the

linearized Vlasov-Poisson equation using the Laplace transform. This yields

a formula for the solution of the initial value problem and also facilitates the

derivation of the damping rate for the electric field. It is possible to do the same

thing for the Caldeira-Leggett model. We begin with the set of Hamilton’s

equations that were written down in the previous section and eliminate the
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two momenta to derive a pair of second order equations for the coordinates,

q̈(x) = −x2q(x)−Qxf(x) (3.7)

Q̈ = −Ω2
cQ− Ω

∫
R+

dx f(x)q(x) , . (3.8)

where for convenience we use the corrected frequency,

Ω2
c := Ω2 + Ω

∫
R+

dx f(x)2/2x .. (3.9)

Defining the Laplace transform of the coordinates by

q̃(x, s) =

∫
R+

dt q(x, t)e−st (3.10)

Q̃(s) =

∫
R+

dtQ(t)e−st. (3.11)

results in the following set of algebraic equations:

s2q̃(x, s) = −x2q̃(x, s)− Q̃(s)xf(x) + sq(0, x) + q̇(0, x) (3.12)

s2Q̃(s) = −Ω2
cQ̃(s)− Ω

∫
R+

dx q̃(x, s)f(x) + sQ(0) + Q̇(0) , . (3.13)

which can be easily solved for Q̃(s),

Q̃(s) =

[
−Ω

∫
R+

dx
f(x)(sq(0, x) + q̇(0, x))

s2 + x2
+ sQ(0) + Q̇(0)

]
÷
[
s2 + Ω2

c − Ω

∫
R+

dx
xf(x)2

s2 + x2

]
.. (3.14)

The Laplace transform is inverted using the Mellin inversion formula,

Q(t) =
1

2πi

∫ β+i∞

β−i∞
ds Q̃(s)est , . (3.15)
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where β is any real number that ensures Q̃(s) is analytic for Re(s) > β.

This integral is usually evaluated using Cauchy’s integral formula, whence

asymptotically in the long-time limit the behavior of the solution is given by

the poles of Q̃(s). Thus, the solution will be dominated by an exponentially

decaying term arising from the pole of Q̃(s) closest to the real axis. We assume

the closest pole is indeed close to the real axis and that there are no poles with

a positive real part, i.e., that the solutions are stable. This is the weak damping

limit. As long as f(x) is Hölder continuous, the poles of Q̃(s) come from the

zeros of the denominator, so we are interested in the roots of the equation

0 = s2 + Ω2
c − Ω

∫
R+

dx
xf(x)2

s2 + x2
= s2 + Ω2

c − Ω

∫
R
dx

f(|x|)2
−

2(x− is) .. (3.16)

Here f(|x|)2
− is the antisymmetric extension of f(x2) defined by f(|x|)2

− =

sgn(x)f(|x|)2. Making the substitution ω = is, yields the dispersion relation,

which in the limit ω tends to the real axis becomes

ω2 − Ω2
c +

Ω

2
−
∫
R
dx

f(|ω|)2
−

x− ω +
iπΩ

2
f(|x|)2

− = 0 , . (3.17)

where −
∫

denotes the Cauchy principal value integral. For quantities not yet

integrated, we will denote this by PV. This equation can be viewed as the

dispersion relation in the weak damping limit. Let ωc be a real solution to

the real part of the above equation. Then let ω be a root of the previous

equation, assume γ = Im(ω) is small, and solve for γ to first order; i.e. 0 =

2iωcγ + iπΩf(|ωc|)2
−/2 or

γ = − πΩ

4|ωc|
f(|ωc|)2 .. (3.18)
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There are a large number of methods used to derive damping of Q for

this model. The standard approach is to attempt to prove that after suit-

able approximations Q satisfies the equation of motion of a damped harmonic

oscillator. The treatment here is almost identical to the method that was

used to treat the Vlasov-Poisson equation by Landau, and agrees with other

derivations of the damping rate in the weak damping limit [68].

3.4 Van Kampen modes: diagonalization of the Caldeira-
Leggett model

The Laplace transform method is just one way to treat the Vlasov equa-

tion. Another way is to write the solution as a superposition of a continuous

spectrum of normal modes, a method attributed to Van Kampen [71]. Such

modes of the Vlasov equation are called the Van Kampen modes, and we will

see that they exist for the Caldeira-Leggett model as well. We formally cal-

culate the Van Kampen modes for this system and use them to motivate the

definition of an invertible integral transform, akin to those of [7, 8, 33, 34],

that maps the Caldeira-Leggett model to action-angle variables, the normal

form for this Hamiltonian model. The nature of the transformation depends

on the coupling function f(x). In the present treatment we will assume that

f(0) = 0, but that f does not vanish otherwise. We will also assume that the

dispersion relation does not vanish anywhere. This excludes the possibility

of discrete modes embedded in the continuous spectrum. The case where the

Caldeira-Leggett model possesses such modes will be treated in future work.
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As stated above, the normal form of the Caldeira-Leggett Hamiltonian will

be seen to be equivalent to that for the Vlasov-Poisson system through the

integral transformation introduced in [7, 8].

The first step is to obtain a solution with time dependence exp(−iut)

and derive equations for the amplitudes of a single mode (qu, pu, Qu, Pu). To

this end consider

iuqu(x) = −xpu(x)

iupu(x) = xqu(x) +Quf(x)

iuQu = −ΩPu

iuPu =

(
Ω +

∫
R+

dx
f(x)2

2x

)
Qu +

∫
R+

dx qu(x)f(x) .. (3.19)

Note, although we use the subscript, u ∈ R is a continuum label. Eliminating

the momenta from Eqs. (3.19) yields

(u2 − x2)qu(x) = Quxf(x) (3.20)

(u2 − Ω2
c)Qu = Ω

∫
R+

dx qu(x)f(x) , . (3.21)

where recall Ωc is defined by (3.9). Of these, (3.20) is solved following Van

Kampen (a generalized function solution that dates to Dirac [63]) giving the

general form for qu

qu(x) = PV
Quxf(x)

u2 − x2
+ CuQuδ(|u| − x) .. (3.22)
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Substitution of (3.22) into (3.21) determines Cu,

u2 − Ω2
c = Ω−

∫
R+

dx
xf(x)2

u2 − x2
+ ΩCuf(|u|) (3.23)

Cu =
u2 − Ω2

c

Ωf(|u|) −−
∫
R
dx

f(|x|)2
−

2(u− x)f(|u|) .. (3.24)

Therefore we can specify an initial condition on the amplitudes Qu

and compute the corresponding coordinates and momenta by an integral over

the real line. Each mode oscillates with a different real frequency, with the

expression for the solution given by

q(x, t) = −
∫
R
du

Quxf(x)

u2 − x2
e−iut +

∫
R
duCuQuδ(|u| − x)e−iut (3.25)

Q(t) =

∫
R
duQue

−iut , . (3.26)

were Qu acts an amplitude function that determines which Van Kampen modes

are excited.

The Caldeira-Leggett model can be diagonalized and solved by making

use of the integral transform alluded to above. Previously, Caldeira et al.

[73] derived a transformation that diagonalizes the Caldeira-Leggett model.

However, they were interested in solving for the evolution of the variable Q

and therefore did not attempt to write down the full inverse of the operator

(except in a special case where they made use of the evolution of the reservoir).

We will extend their results by deriving the inverse map that we will use to

establish the equivalence with the Vlasov-Poisson system.

In order to define the transform, we introduce a number of other im-

portant maps and introduce our notation. Extensive use will be made of the

84



Hilbert transform, which is defined for a function g(x) on R by

H[g](v) =
1

π
−
∫
R
dx

g(x)

x− v .

We also need some Hilbert transform identities [50, 8]. Let g, g1, and g2 be

functions of x ∈ R and suppose that all the expressions we write down are well

defined, then the following hold:

H[H[g]] = −g (3.27)

H[g1H[g2] + g2H[g1]] = H[g1]H[g2]− g1g2 (3.28)

H[vg] = vH[g] +
1

π

∫
R
dx g .. (3.29)

Next we define two functions, εR and εI by

εI = πf(x)2 and εR = 2
x2 − Ω2

c

Ω
+ πH[f(|x|)2

−] .. (3.30)

These together with |ε|2 := ε2I + ε2R are used to define the following integral

transforms:

Definition For functions h(x) on R+, the transform

T+[h](u) := εRh(|u|) + εIH[h(|x|)](u) ,

while

T̂+[h](u) :=
εR
|ε|2h(u)− εI

|ε|2H[h(|x|)](u) ,

Related to the above transforms are two more transforms,

T−[h](u) := εRh(|u|) + εIH[sgn(x)h(|x|)](u) ,
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and

T̂−[h](u) :=
εR
|ε|2h(u)− εI

|ε|2H[sgn(x)h(|x|)](u) .

Using the transform T+ it is possible to write the map from the ampli-

tudes of the Van Kampen modes Qu to the functions (q(x), Q). To see this

consider the expression for q(x) in terms of the amplitude function Qu, and

simplify it using the Hilbert transform as follows:

q(x) = −
∫
R
du

Quxf(x)

u2 − x2
+

∫
R
duCuQuδ(|u| − x)

= −
∫
R
du

xf(x)Qu

2u

(
1

u− x +
1

u+ x

)
+ CxQx + C−xQ−x

= πxf(x)

(
H

[
Qu

2u

]
(x) +H

[
Qu

2u

]
(−x)

)
+ 2Cx(Qx +Q−x) .. (3.31)

Next, decompose Qu into its symmetric and antisymmetric parts: Qu =

Q+u + Q−u and observe that the antisymmetric parts vanish from both sides

of (3.31),

q(x) = πxf(x)H[Q+u/u](x) + 2CxQ+x

= πf(x)H[Q+u] +

(
2
x2 − Ω2

c

Ωf(x)
−−
∫
R
dx′

f(|x′|)2
−

(x− x′)f(x)

)
Q+x , . (3.32)

where the second line follows from the third Hilbert transform identity com-

bined with the fact that Qu+/u is antisymmetric and thus has a vanishing

integral. Now multiply both sides of (3.32) by f(x) and find

f(x)q(x) = πf(x)2H[Q+u] +

(
2
x2 − Ω2

c

Ω
−−
∫
R
dx′

f(|x′|)2
−

(x− x′)

)
Q+x

= εIH[Q+u] + εRQ+x

= T+[Q+u] .. (3.33)

86



Now we are set to define a transformation.

Definition Let Q+u be a function on R+, then the map

Ic[Q+] :=

(
1

f(x)
T+[Qu+], 2

∫
R+

duQu+

)
.

The map Ic[Q+], a map from the Van Kampen mode amplitudes to

the original dynamical variables, has an inverse. To see this note that εR =

S +H[εI ], where S = 2(x2 − Ω2
c)/Ω, and let g be a function on R+. Then,

H[Sg(|x|)] = SH[g(|x|)] +
4u

πΩ

∫
R+

dx g ,

where we have used our Hilbert transform identities to move the x2 outside

of the Hilbert transform of g. Using this, consider the following sequence of

identities:

T̂+[T+[g]] =
εR
|ε|2 (εRg + εIH[g])− εI

|ε|2H[εRg + εIH[g]]

=
ε2R
|ε|2 g +

εRεI
|ε|2 H[g]− εIS

|ε|2H[g]− εI
|ε|2H[H[εI ]g + εIH[g]]− εI

|ε|2
4u

πΩ

∫
R+

dx g

=
ε2R
|ε|2 g +

εRεI
|ε|2 H[g]− εIS

|ε|2H[g]− εI
|ε|2 (H[εI ]H[g]− gεI)−

εI
|ε|2

4u

πΩ

∫
R+

dx g

= g +
εRεI
|ε|2 H[g]− εIS

|ε|2H[g]− εI
|ε|2H[εI ]H[g]− εI

|ε|2
4u

πΩ

∫
R+

dx g

= g +
εRεI
|ε|2 H[g]− εI

|ε|2H[g](S +H[εI ])−
εI
|ε|2

4u

πΩ

∫
R+

dx g

= g +
εRεI
|ε|2 H[g]− εRεI

|ε|2 H[g]− εI
|ε|2

4u

πΩ

∫
R+

dx g

= g − εI
|ε|2

4u

πΩ

∫
R+

dx g , . (3.34)
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where in each step use has been made of the various identities above. Because

the integral of Q+ is equal to Q/2, we can define the inverse of I as follows:

Îc[q(x), Q] = T̂+[f(x)q(x)] +
2u

πΩ

εI
|ε|2Q .

The above transform ignores the (p, P ) variables and only produces

the symmetric part of the Van Kampen modes. We derive the other half

of the transformation from a mixed variable generating functional. To this

end, define Q+ = Q̄ and Q− = P̄ and rescale the coordinate part of the

transformation by choosing Q = 2
∫
R+
du Q̄

√
εI/(π|ε|2) :

Q̄ =

√
π|ε|2
εI

(
T̂+[f(x)q(x)] +

2u

πΩ

εI
|ε|2Q

)
= Î[q(x), Q] (3.35)

(Q, q(x)) =

(
2

∫
R+

du Q̄

√
εI
π|ε|2 ,

1

f(x)
T+

[√
εI
π|ε|2 Q̄

])
= I[Q̄] .. (3.36)

Then we introduce the mixed variable type-2 generating functional

F[q,Q, P̄ ] =

∫
R+

du P̄ Î[q(x), Q] ,

which produces the transformations in the usual way:

p(x) =
δF

δq
= f(x) T̂+

†

√π|ε|2
εI

P̄

 (3.37)

P =
δF

δQ
=

∫
R+

du
2uP̄

Ω

√
εI
π|ε|2 .. (3.38)

Calculating the adjoint of T̂ simplifies the resulting expression for p(x),

viz.,

p(x) =
1

f(x)
T−

[√
εI
π|ε|2 P̄

]
.. (3.39)
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Now, analogous to I we define the operator J [P̄ ] = (p(x), P ) by

J [P̄ ] =

(
1

f(x)
T−

[√
εI
π|ε|2 P̄

]
,

∫
R+

du
2uP̄

Ω

√
εI
π|ε|2

)
, . (3.40)

which can be inverted through the use of the Hilbert transform identities.

Define P̄c = P̄
√
π|ε|2/εI , and consider the expression

εR
|ε|2p(x)− εI

|ε|2H [sgn(x)p(|x|)]

=
εR
|ε|2 (εIH[sgn(u)P̄c] + εRP̄c)−

εI
|ε|2H[sgn(x)εIH[sgn(u)P̄c] + sgn(x)εRP̄c] ..

(3.41)

Paralleling the method used to invert the map from Q̄ to (q,Q), we see

a difference occurs when evaluating the term εIH[sgn(x)εRP̄ ]/|ε|2, i.e.

εI
|ε|2H[sgn(u)u2P̄c] = x2 εI

|ε|2H[sgn(u)P̄c] +
2

π

εI
|ε|2

∫
R+

du uP̄c

= x2 εI
|ε|2H[sgn(x)P̄c] +

Ω

π

εI
|ε|2P .. (3.42)

With this expression we can directly use the inversion calculation for the (q,Q)

case to obtain the following expression for the full transformation:

P̄ =

√
π|ε|2
εI

(
T̂−[f(x)p(x)] +

2

π

εI
|ε|2P

)
(3.43)

Q̄ =

√
π|ε|2
εI

(
T̂+[f(x)q(x)] +

2u

πΩ

εI
|ε|2Q

)
.. (3.44)

Applying this transformation to Hamilton’s equations yields the equa-

tions for a continuum of harmonic oscillators. This can be seen directly for
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both P̄ and Q̄.

˙̄Q =

√
π|ε|2
εI

(
T̂+[f(x)q̇(x)] +

2u

πΩ

εI
|ε|2 Q̇

)

=

√
π|ε|2
εI

(
T̂+[xf(x)p(x)] +

2u

π

εI
|ε|2P

)

=

√
π|ε|2
εI

(
εR
|ε|2 uf(u)p(u)− εI

|ε|2 H[|x|f(|x|)p(|x|)] +
2u

π

εI
|ε|2P

)

=

√
π|ε|2
εI

(
εR
|ε|2 uf(u)p(u)− εI

|ε|2 uH[sgn(x)f(|x|)p(|x|)] +
2u

π

εI
|ε|2P

)
= uP̄ .. (3.45)

Similarly, for P̄ ,

˙̄P =

√
π|ε|2
εI

(
T̂−[f(x)ṗ(x)] +

2

π

εI
|ε|2 Ṗ

)

=

√
π|ε|2
εI

(
T̂−[−xf(x)q(x)− f(x)2Q]− 2Ωs

π

εI
|ε|2Q−

2

π

εI
|ε|2

∫
R+

dx f(x)q(x)

)

=

√
π|ε|2
εI

(
−uT̂+[f(x)q(x)] +

2

π

εI
|ε|2

∫
R+

dx f(x)q(x)− T̂−[f(x)2]Q

)
− 2Ωs

π

εI
|ε2| Q−

2

π

εI
|ε|2

∫
R+

dx f(x)q(x)

=

√
π|ε|2
εI

(
−uT̂+[f(x)q(x)]− εR

|ε|2 f(x)2Q+
εI
|ε|2 H[sgn(x)f(|x|)2]Q− 2Ωs

π

εI
|ε|2 Q

)

=

√
π|ε|2
εI

(
−uT̂+[f(x)q(x)]− 2u2

πΩ

εI
|ε|2 Q

)
= −u Q̄ .. (3.46)

Let this full map be called If and consider If as a map from the Banach

space Lp × Lp × R2, p > 1, to the Banach space Lp × Lp. The operator If
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is a bounded linear functional between these two spaces, because each term

is either a multiplication operator that is bounded on Lp, an Lp function,

or a bounded function multiplied by the Hilbert transform, which is another

bounded operator. In order to establish the equivalence with the normal mode

it is important to specify the phase space of the dynamical variables. Using

this map we can simply choose each functional space to be Lp and have a well

defined map in each case. This map demonstrates how the Caldeira-Leggett

model can be written as a superposition of a continuous spectrum of singular

eigenmodes.

Because the transformation to the normal form was a canonical one, the

normal form Hamiltonian should be the original Hamiltonian of the Caldeira-

Leggett model written in the new coordinates. We will verify this by direct

substitution. For convenience we introduce the quantities

A =
Ω

2
P 2 +

1

2

∫
R+

dx xp(x)2

B =
Ωs

2
Q2 +

∫
R+

(x
2
q(x)2 + f(x)q(x)Q

)
dx , .
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where Ωs = Ω2
c/Ω. Evidently, HCL = A+B. Then,

A =
Ω

2
P

∫
R+

du
2uP̄

Ω

√
εI
π|ε|2 +

1

2

∫
R+

du xp(x)f(x)T̂+

†

√π|ε|2
εI

P̄


= P

∫
R+

du uP̄

√
εI
π|ε|2 +

1

2

∫
R+

du T̂+ [xp(x)f(x)]

√
π|ε|2
εI

P̄

= P

∫
R+

du uP̄

√
εI
π|ε|2 +

1

2

∫
R+

du uT̂− [f(x)p(x)]

√
π|ε|2
εI

P̄

=
1

2

∫
R+

du uP̄

√π|ε|2
εI

(
T̂−[f(x)p(x)] +

2

π

εI
|ε|2P

)
=

1

2

∫
R+

du uP̄ 2 .. (3.47)

Similarly,

1

2

∫
R+

dx xq(x)2 =
1

2

∫
R+

du

√
εI
π|ε|2 T̂+

†
[
xq(x)

f(x)

]
Q̄

=
1

2

∫
R+

du Q̄

√
εI
π|ε|2

(
u
εRq(u)

f(u)
− uH

[
εI(|x|)q(|x|)

f(|x|)

]
− 2

∫
R+

dx f(x)q(x)

)

= −1

2

∫
R+

dxQf(x)q(x) +
1

2

∫
R+

du Q̄u

√
π|ε|2
εI

T̂+ [f(x)q(x)] ..

(3.48)
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Now, analyzing the entire expression for B in a sequence of steps,

B =
1

2

∫
R+

dxQf(x)q(x) +
1

2

∫
R+

du Q̄u

√
π|ε|2
εI

T̂+ [f(x)q(x)] +
Ωs

2
Q2

=
1

2

∫
R+

du Q̄u

√
π|ε|2
εI

T̂+ [f(x)q(x)] + ΩsQ

∫
R+

du Q̄

√
εI
π|ε|2 +

Q

2

∫
R+

dx T+

[√
εI
π|ε|2 Q̄

]

=
1

2

∫
R+

du Q̄u

√
π|ε|2
εI

T̂+ [f(x)q(x)]

+
Q

2

∫
R+

dx

((
2u2

Ω
Q̄+ πH[sgn(x)f(|x|)2]Q̄

)√
εI
π|ε|2 + εIH[

√
εI
π|ε|2 Q̄]

)

=
1

2

∫
R+

du Q̄u

√π|ε|2
εI

T̂+ [f(x)q(x)] +
2u

Ω

√
εI
π|ε|2Q


=

1

2

∫
R+

du uQ̄2 .. (3.49)

With (3.47) and (3.49) we obtain HCL =
∫
R+
duu

(
Q̄2 + P̄ 2

)
/2 – the

Hamiltonian for a continuous spectrum of harmonic oscillators and the normal

form for the Caldeira-Leggett model.

3.5 Equivalence to the Linearized Vlasov-Poisson equa-
tion

The treatment of the Caldeira-Leggett model of Sec. 3.4 is similar to

an analysis of the linearized Vlasov-Poisson equation performed in [8, 44]. In

those papers an integral transform was presented that transforms the Vlasov

equation into a continuous spectrum of harmonic oscillators. The two systems

are identical except the spectrum of the Caldeira-Leggett model only covers

the positive real line. Now we explicitly produce a transformation that takes

93



one system into the other.

The Vlasov equation describes the kinetic theory of a collisionless plasma.

Spatially homogeneous distribution functions are equilibria, and linearization

about such states are often studied in plasma physics. In the case of one spa-

tial dimension and an equilibrium distribution function f0(v), the linearized

Vlasov-Poisson equation around f0 is given by

∂f

∂t
+ v

∂f

∂x
− e

m

∂φ

∂x
f ′0 = 0 (3.50)

∂2φ

∂x2
= −4πe

∫
R
dv f. (3.51)

where f ′0 = df0/dv. These equations inherit the noncanonical Hamiltonian

structure of the full Vlasov-Poisson system [19] and have a Poisson bracket

given by

{F,G}L =

∫ ∫
dxdv f0

[
δF

δf
,
δG

δf

]
.. (3.52)

This bracket is of a form that is typical for Hamiltonian systems describing

continuous media (cf. e.g. [20, 14]). The Hamiltonian is given by

HL = −m
2

∫ ∫
dvdx v

f 2

f ′0
+

1

8π

∫
dx

(
∂φ

∂x

)2

, . (3.53)

and the Vlasov-Poisson equation can be written as ḟ = {f,HL}L.

The spatial dependence of the Vlasov-Poisson equation can be removed

by performing a Fourier transform. This allows the potential to be explicitly

eliminated from the equation

∂fk
∂t
− ikvfk −

4πie2

mk
f ′0(v)

∫
R
dv fk = 0 .. (3.54)
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The Hamiltonian structure in terms of the Fourier modes has the new bracket

{F,G}L =
∞∑
k=1

ik

m

∫
R
dv f ′0

(
δF

δfk

δG

δf−k
− δG

δfk

δF

δf−k

)
.. (3.55)

and the Hamiltonian functional is simply (3.53) written in terms of the Fourier

modes.

One way to canonize this bracket is with the following scalings:

qk(v, t) = fk and pk(v, t) =
mf−k
ikf ′0

, . (3.56)

where k > 0. In terms of these variables the Poisson bracket has canonical

form, i.e.

{F,G}L =
∞∑
k=1

∫
R
dv

(
δF

δqk

δG

δpk
− δG

δqk

δF

δpk

)
.. (3.57)

From this point it is possible to derive a canonical transformation that

diagonalizes the Hamiltonian. We make the following definitions:

εI(v) = − 4π2e2f ′0
mk2

∫
Rdv f0

εR(v) = 1 +H[εI ] , (3.58)

Gk[f ] = εRf + εIH[f ] Ĝk[f ] =
εR
|ε|2f −

εI
|ε|2H[f ] . . (3.59)

It was proven in [8] that Gk = Ĝk

−1
.

A transformation to the new set of variables (Qk,Pk) that diagonalizes

the system will be given in terms of the variables (qk, pk). To this end we first

introduce the intermediate variables (Q′k,P
′
k) defined by

qk = Gk[Q
′
k] and Q′k = Ĝk[qk] .. (3.60)
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The corresponding momentum portion of the canonical transformation is in-

duced by the following mixed variable generating functional:

F[qk,P
′
k] =

∞∑
k=1

∫
R
duP′kĜk[qk] , . (3.61)

whence we obtain via Q′k = δF/δP′k and pk = δF/δqk,

Q′k = Ĝk[qk] and P′k = Ĝk

†
[pk]. (3.62)

Then, the variables (Qk,Pk) are defined as

Qk = (Q′k − iP′k) /
√

2 and Pk = (P′k − iQ′k) /
√

2 , . (3.63)

in terms of which the Vlasov-Poisson Hamiltonian has the form of a continuum

of harmonic oscillators (see [44] for an explicit calculation),

HL =
∞∑
k=1

∫
R
du
(
Q2
k + P2

k

)
/2 .. (3.64)

Thus, for a single value of k, this is the same normal form as that of

the Caldeira-Leggett model, with the exception that the integral here is over

the entire real line instead of just the half line. If we consider two copies of the

Caldeira-Leggett model the normal form would be the same as that for a single

k value of the linearized Vlasov-Poisson system. By composing the transfor-

mation that diagonalizes the Caldeira-Leggett model with the inverse of the

transformation that diagonalizes the Vlasov-Poisson system we obtain a map

that converts solutions of one system into solutions of the other system. Ex-

plicitly suppose that we have two copies of the Caldeira-Leggett Hamiltonian,
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with the same coupling function f(x). Then set the normal form of the second

copy equal to the normal form of the Vlasov equation on the negative real line.

Let (q1(x), p1(x), Q1, P1) be one set of solutions to the Caldeira-Leggett model

and let (q2(x), p2(x), Q2, P2) be another and let Θ(x) be the Heaviside func-

tion. Then we can write a solution to the linearized Vlasov-Poisson equation

using the following map:

fk(v, t) = Gk

[
1√
2

(
Θ(u)

√
π|ε|2
εI

(
T̂+[f(x)q1(x)] +

2u

πΩ

εI
|ε|2Q1

)
(3.65)

+ Θ(−u)

√
π|ε|(−u)2

εI(−u)

(
T̂+[f(x)q2(x)](−u) +

−2u

πΩ

εI(−u)

|ε(−u)|2Q2

)
(3.66)

+ iΘ(u)

√
π|ε2|
εI

(
T̂−[f(x)p1(x)] +

2

π

εI
|ε|2P1

)
(3.67)

+ iΘ(−u)

√
π|ε(−u)|2
εI(−u)

(
T̂−[f(x)p2(x)] +

2

π

εI(−u)

|ε(−u)|2P2

))]
(3.68)

f−k(v, t) =
kf ′0
m
G†k

[
1√
2

(
Θ(u)

√
π|ε|2
εI

(
T̂+[f(x)q1(x)] +

2u

πΩ

εI
|ε|2Q1

)
(3.69)

+ Θ(−u)

√
π|ε|(−u)2

εI(−u)

(
T̂+[f(x)q2(x)](−u) +

−2u

πΩ

εI(−u)

|ε(−u)|2Q2

)
(3.70)

− iΘ(u)

√
π|ε2|
εI

(
T̂−[f(x)p1(x)] +

2

π

εI
|ε|2P1

)
(3.71)

− iΘ(−u)

√
π|ε(−u)|2
εI(−u)

(
T̂−[f(x)p2(x)] +

2

π

εI(−u)

|ε(−u)|2P2

))]
. (3.72)

This map is invertible using the formulas presented earlier in the chap-

ter. Given a single mode of the linearized Vlasov-Poisson system, fk(v, t), we
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can write two solutions to the Caldeira-Leggett model as follows:

(q1(x, t), Q1(t)) = I[
1

2
<(Ĝ[fk](u, t) + Ĝ[fk](−u, t))] (3.73)

(p1(x, t), P1(t)) = J [
1

2
=(Ĝ[fk](u, t)− Ĝ[fk](−u, t))] (3.74)

(q2(x, t), Q2(t)) = I[
1

2
=(Ĝ[fk](u, t) + Ĝ[fk](−u, t))] (3.75)

(p2(x, t), P2(t)) = J [
1

2
<(Ĝ[fk](−u, t)− Ĝ[fk](u, t))]. (3.76)

Therefore one would expect the solutions of the Caldeira-Leggett model

to share the same properties as the solutions of the Vlasov-Poisson system.

It was remarked earlier that both systems exhibit damping. In the

Vlasov-Poisson case the electric field decays, and in the Caldeira-Leggett model

it is the discrete coordinate Q. The existence of the transformation between

the two systems gives us a way to understand what determines the damping

rate in each case. In the standard calculation of the Landau damping rate

for the Vlasov equation, it is clear that the rate depends only on the location

of the closest zero in the lower half complex plane of the dispersion relation,

which only depends on the equilibrium f0. The same is true for the Caldeira-

Leggett model, where the damping of Q depends on the coupling function f .

It is clear that integral transformations change the rate of damping, as all the

instances of the Vlasov equation and the Caldeira-Leggett model share the

same normal form but generally have different damping rates.

It is possible to interpret Landau damping using the normal forms and

canonical transformation. The dynamical variables of the normal form have a
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time evolution ∼ exp(−iut). The observables can then be expressed as some

operator on this oscillatory dynamical variable. The result will be an oscilla-

tory integral over the real line, and by the Riemann-Lebesgue lemma we know

that that such an integrated quantity will decay to zero in the long-time limit.

For the systems at hand, this integral can be deformed into the lower half

complex plane, and Cauchy’s theorem can be used to see that the behavior

is governed by the locations of the poles of the analytic continuation of the

oscillatory integrand. These poles determine the exponential damping rate. In

these systems the poles are clearly introduced by the continuation (following

the Landau prescription) of the dispersion relation in the integral transforma-

tions, which is therefore the origin of Landau damping. We will demonstrate

this explicitly for the damping of the coordinate Q in the Caldeira-Leggett

model.

Starting from the solution,

Q(t) =

∫
R
du (Q̄(|u|) cos(ut) + sgn(u)P̄ (|u|) sin(ut))

f(|u|)
|ε|

=

∫
R
du (Î [̊q(x), Q̊] cos(ut) + Ĵ [p̊(x), P̊ ]sgn(u) cos(ut))

f(|u|)
|ε| , . (3.77)

we see that each term in the integrand of (3.77) has an oscillatory part and

has poles at the zeros of |ε|2. The damping rate will be based on the closest

zero of |ε|, the dispersion relation for the Caldeira-Leggett model. Likewise,

for the Vlasov-Poisson system we can write a similar expression for the density
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ρk(t),

ρk(t) =

∫
R
dv Gk[Ĝk[f̊ ]e−iut]

=

∫
R
du
(
εR(Ĝk[f̊ ]e−iut)−H[εI ]Ĝk[f̊ ]e−iut

)
=

∫
R
du Ĝk[f̊ ]e−iut .. (3.78)

The damping rates are given by the poles of Ĝk, and the observed rate will be

due to the closest zero of |ε|2 to the real axis. Therefore, mathematically the

source of the damping in the Vlasov-Poisson and Caldeira-Leggett models are

identical, it being the nearest pole introduced by the integral transformation

that diagonalizes the system.

3.6 Application: echo effects in the Caldeira-Leggett
model

The analysis of the past section established the equivalence between

the Caldeira-Leggett model and the evolution equation of a single mode of

the linearized Vlasov-Poisson equation. The establishment of mathematical

connections between theories of very different physical systems is potentially

extremely useful if the phenomenon of one of theories can be discovered in

the other theory, or if the correspondence can hint at the existence of new

effects. One promising scenario would be the potential existence of an echo in

the Caldeira-Leggett model.

The plasma echo [75] is one of the hallmarks of plasma systems de-

scribed by kinetic theory. The basis for the effect is that Landau damping
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does not destroy the structure of the distribution function in phase space, so

that as long as collisions are weak, highly oscillatory distributions functions

can persist long after the electric field has damped away. These structures can

be observed by perturbing the plasma. An antenna can be used to disturb

the electric field, causing a fluctuation of the distribution function. The same

antenna can be used again, after the original fluctuation has Landau damped,

to excite another fluctuation with a different wave number [76]. These fluctua-

tions interact to the lowest order ignored by the linear theory, and the resulting

non-linear interaction produces a disturbance in the electric field from seem-

ingly out of nowhere. This is the plasma echo effect. The observation of the

plasma echo [76] was an important experiment. It confirmed the nature of col-

lisionless damping in plasmas and allowed for measurement of the collisional

damping rate through observation of the decay of the echoes in time.

It is unlikely that a completely analogous effect could be observed

within a system described by the Caldeira-Leggett model. The correspon-

dence with the Vlasov equation only extends to the linearized version. On the

other hand, the situation in both cases remains the same, there is a highly

oscillatory dynamical variable. In order to verify the nature of damping in

these models, the oscillatory structure must be uncovered after the damping

has already caused moments of the dynamical variables to vanish.

The simplest way (from the prospective of a theorist) to cause such an

effect is to directly drive the bath. Incidentally this method of exciting an echo

in the Caldeira-Leggett model has been proposed before, in an unpublished
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paper on the arxiv dating back 10 years [11].

Suppose that the Hamiltonian of the bath can be controlled externally.

Let H[q(x), p(x)] =
∫

dx
2

(c(t)q(x)2 + p(x)2) be the Hamiltonian of the bath.

Then consider an initial condition where the bath is undisturbed, P (0) = 0,

and Q(0) = Q0. As time advances the discrete degrees of freedom damp

through Landau damping and the energy is transferred to the continuum.

Suppose the externally controlled parameter c(t) can be chosen so that c(t) = 1

except for an extremely small interval of time centered around t = τ . In the

limit c(t) = 1 + εδ(t − τ). The result of such a force would be to transform

p(x, τ) to p(x, τ) + εq(x, τ). Then consider the resulting initial value problem

for the further evolution of the Caldeira-Leggett model.

The initial condition is a superposition of the solution to the Caldeira-

Leggett model at time t = τ and an additional term from the impulse. This

additional term in the initial condition has the form qa(x) = 0 and pa(x) =

δq(x, τ). The first term can be rewritten as qa(x) = δ
2
(p(x, τ)− p(x, τ). There

the additional initial condition has one term that is proportional to the time

reversal of the solution to the original equations of motion, except with the

roles of q and p reversed. The other term continues to Landau damp, just

like the initial condition from the original evolution. The time reversed piece

is equal to δ times the initial solution running backwards in time and with

q and p reversed. Therefore at time t = 2τ , the Landau damping is undone

and there is an echo of the original initial condition in the discrete variables,

with amplitude proportional to δ. An experimental study of this type of echo
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would reveal information about the nature of damping in system/bath models

as well as the nature of actual dissipation within the bath.

3.7 Negative energy variants of the Caldeira-Leggett
model

The original motivation for the present study of the Caldeira-Leggett

model was a general desire to understand the interaction of the continuous

spectrum with embedded eigenvalues of both positive and negative energy.

This was done with an eye towards proving a generalization of the Krein-Moser

theorem for infinite-dimensional Hamiltonian systems. The Caldeira-Leggett

model turned out to be the simplest system imaginable with discrete modes

embedded in the continuous spectrum. In fact we were completely unaware

that the Caldeira-Leggett model was an important system in physics used

to describe real phenomenon for more than two years after we had proposed

the model and and finished initially studying it. At that time it was simply

referred to as the toy model, and we used it because we believed that it was

likely to be a normal form for the linearized Vlasov-Poisson equation in the

case where there were discrete modes embedded in the continuous spectrum

(in the case where the coupling vanishes).

Because the motivation was to study the effect of signature on the struc-

tural stability of linear Hamiltonian systems, variants of the Caldeira-Leggett

model were introduced with interesting features, most notably different types

of negative energy. Both the discrete modes and parts of the continuous spec-
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trum were allowed to possess negative energy in the systems that were exam-

ined. The result of these studies was the production of interesting archetypal

systems for exhibiting bifurcations into instability or structural stability in

infinite-dimensional Hamiltonian systems. Furthermore, the stability analyses

resulted in the development of geometric criteria in the spirit of the Penrose

criterion for the Vlasov-Poisson equation.

Gyroscopically or magnetically stabilized systems generically have neg-

ative energy modes. Various authors have investigated the effects of coupling

such systems to both discrete and continuous heat baths [77]. In a sense, their

work quite similar to the work presented here, however the interpretation here

will be in terms of Krein’s theorem, the geometric stability criteria introduced

here is intriguing, and some of the systems and perturbations are slightly more

exotic.

Consider the Hamiltonian of a discrete oscillator with negative energy

and a continuous bath of oscillators with positive energy with some coupling:

H = −Ω

2

(
P 2 +Q2

)
+

∫
R+

dx
x

2

(
p(x)2 + q(x)2

)
+Hc. (3.79)

When the coupling term Hc is equal to 0 this system is stable. It was

mentioned earlier that if the discrete oscillator has positive energy, and care is

taken to prevent the occurrence of zero frequency modes, general couplings be-

tween the continuum and the discrete oscillator lead to stability. This case will

prove to be very different. Let Hc = Q
∫
R+
dxf(x)q(x). Hamilton’s equations
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are:

dQ

dt
= −ΩP

dP

dt
= ΩQ−

∫
R+

dxf(x)q(x)

∂q

∂t
= xp

∂p

∂t
= −xq −Qf.

Search for discrete modes by assuming that the time evolution is ∼

e−iut:

iuQ = ΩP

iuP = −ΩQ+

∫
R+

dxf(x)q(x)

iuq = −xp

iup = xq +Qf(x).

These can be simplified along the lines of the previous sections to yield

the dispersion relation:

0 = u2 − Ω2 + Ω

∫
R
dx
sgn(x)f(|x|)2

2(x− u)
. (3.80)

If this expression has any solutions for Im(u) > 0 the system is spec-

trally unstable. In order to determine whether or not there are zeros in the

upper half plane, consider the fact that the expression on the right hand side

is an analytic function for u in the upper half plane. Therefore the argument

principle may be used to calculate the number of zeros that occur in the upper
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half plane in a manner analogous to the derivation of the Penrose criterion

for the Vlasov-Poisson equation. Consider the limiting value of the dispersion

function, which is now denoted as D(u), as u approaches the real line from

the top:

D(u) = u2 − Ω2 +
Ω

2
H[f(|x|)2

−] +
iπΩ

2
f(|x|)2

−. (3.81)

The winding number of the image of the real line around the origin

is equal to the number of zeros minus the number of poles in the upper half

plane, assuming that the contour is traversed positively. Dividing both sides

of the equation by u2 +Ω2 introduces a pole in the upper half plane, but makes

it easier to visualize the contours. Therefore, to determine the stability, the

winding number of D(u)
u2+Ω2 is calculated.

This is simple to compute, as the imaginary part is negative for u < 0

and positive for u > 0. The behavior of the real part depends on the Hilbert

transform of f(|x|)2
− and the location of Ω. One can assume that for a small

perturbation, the coupling function f(x) will also be small. In this case it is

obvious that generic choices of f(x) all lead to instability. When the discrete

oscillator has positive sign, the orientation around which the contour is circled

changes and the stability of the original Caldeira-Leggett model is recovered.

Likewise, the behavior when f(x) vanishes in a region near x = Ω indicates

that the coupling did not produce unstable modes (although it does produce

zero frequency modes). This allows a very simple interpretation in terms of

Krein’s theorem. The negative energy discrete mode is structurally unstable
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when placed in a continuous spectrum with positive energy, just as is the case

in Chapter 2.

This should not be surprising and is not even new. Indeed this system

satisfies all the conditions needed for the paper of Grillakis to apply, and the

structural instability could be inferred from the results contained in that paper.

A similar type of analysis can be used to study the behavior of interacting

continua, which is not directly covered by theorems contained there.

3.8 Conclusion

To summarize, we have shown how the Caldeira-Leggett model can be

analyzed the same way as the Vlasov-Poisson system. We wrote down the

solution using the Laplace transform, an expression for the time evolution

as an integral in the complex plane over the initial conditions. It was then

indicated how Cauchy’s theorem can be used to derive the time asymptotic

behavior of the solution, and it was described how the long-time damping rate

is equal to the distance from the real axis of the closest zero of the dispersion

relation (when analytically continued into the lower half complex plane). Thus,

the damping of the Caldeira-Leggett model can be seen to be a rediscovery

of Landau (or continuum) damping. Caldeira and Leggett introduced their

system to study damping in quantum mechanical systems, and it is now seen

to be one of many interesting physical examples of Hamiltonian systems that

exhibit such behavior.

Next we described how to analyze the Caldeira-Leggett model by means
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of singular eigenmodes, paralleling Van Kampen’s well-known treatment of the

Vlasov-Poisson system. Here the solution was written as an integral over a

distribution of such modes, each of which is itself a solution that oscillates with

some real frequency. We described how Hamiltonian systems with continuous

spectra generally have a solution formula in terms of such an integral over

singular eigenmodes. This type of formal expansion led to a an explicit integral

transformation that transforms the original Caldeira-Leggett system into a

pure advection problem, just as is the case for the Vlasov-Poisson system. It

was noted that a general class of such transformations was written down in [8]

and was subsequently extended to a larger class of Hamiltonian systems [34].

The existence of these transformations amounts to a theory of normal forms

for systems with a continuous spectrum, analogous to theory of normal forms

for finite degree-of-freedom Hamiltonian systems. This enabled us to write

down an explicit transformation that converts the time evolution operator for

the Caldeira-Leggett Hamiltonian into a multiplication operator and we found

the inverse of this map. In this way we showed that the Caldeira-Leggett

model shares the same normal form as the Vlasov-Poisson system, along with a

number of other Hamiltonian systems that occur in different physical contexts.

One reason for investigating Hamiltonian structure is the existence of

universal behavior shared by such systems. For example, linear Hamiltonian

system with the same normal form are equivalent. This suggests some fur-

ther avenues for research. Here we only treated the case where the dispersion

relation of the Caldeira-Leggett model has no roots with real frequency; i.e.
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spectrum was purely continuous. When there are roots, the spectrum is no

longer purely continuous and there are embedded eigenvalues, as is known to

be the case for the Vlasov-Poisson system [78]. Consequently, one obtains a

different normal form, one with a discrete component, and this and more com-

plicated normal forms could be explicated. We expect that there is a trans-

formation that takes Vlasov-Poisson system with embedded modes into the

Caldeira-Leggett model with embedded modes. Also, finite degree-of-freedom

Hamiltonian systems are known to have only certain bifurcations of spectra,

for example, as governed by Krein’s theorem. Since there is a generalization

of this theorem for Vlasov-like systems [6], one could investigate bifurcations

in the context of the Caldeira-Leggett model. Another possibility would be to

use the tools developed in [44] to do statistical mechanics over the continuum

bath.

The integral transform we presented is intimately related to the Hilbert

transform, which is known to be an important tool in signal processing. In the

same vein the integral transform for the Vlasov-Poisson system of Ref. [8] has

been shown to be a useful experimental tool [79, 80] and one could explore ex-

perimental ramifications in the context of the Caldeira-Leggett model. Indeed

it would be interesting to search for echoes in the Caldeira-Leggett model, and

we feel that it would be quite worthwhile if it was feasible.
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Chapter 4

Conclusions and Directions for Future

Research

The theory of infinite-dimensional Hamiltonian systems is relatively

young from the point of view of mathematical physics. Although infinite-

dimensional systems are typically much more difficult to study rigorously than

finite-dimensional ones, in many important cases rigorous results from finite-

dimensional theories can be extended to the infinite-dimensional case. The

generalization of Krein’s theorem to the Vlasov-Poisson equation, which was

proved in Chapter 2, is an example of one such case. This work illustrated

both the technical difficulties that arise in attempts to correctly define Hamil-

tonian systems on infinite-dimensional spaces and the power of the intuition

that comes from applying the theorems of finite-dimensional Hamiltonian sys-

tems theory. There are a number of interesting problems that were left un-

solved here, although in some cases there has been substantial effort already

expended. These ideas are classified into two categories, canonical systems

and noncanonical systems. In the canonical case much work has been done by

Grillakis, but the case with a purely continuous spectrum remains and it would

be interesting to solve that case to close that problem. In the noncanonical

case, there are variety of additional systems to which Krein’s theorem could
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be generalized. Since many of the most important classical field theories are

of Lie-Poisson form, this problem is at least of equal interest to the canonical

case. As was seen here, it appears as if Krein’s theorem holds only within a

single symplectic leaf, and it would be interesting to see how this is manifested

in systems like Maxwell-Vlasov or incompressible Euler. Ultimately, it would

also be interesting if it would be possible to make the Hamiltonian formula-

tion completely rigorous for some of these infinite-dimensional noncanonical

systems. The finite-dimensional picture has such a formulation and the result-

ing intuitive picture would be worth extending to infinite-dimensions.

The third chapter was about a specific system, the Caldeira-Leggett

model, but ultimately it touches on a deep question: is all damping continuum

damping? The Caldeira-Leggett model is quite believable as a general model of

dissipation, and in many simple dissipative systems it seems clear that a system

bath decomposition is valid description of the physics of damping. If we believe

that all systems are Hamiltonian, then we must believe that all damping must

arise as some sort of irreversible (or nearly so) transfer of energy from different

parts of some Hamiltonian system. Continuum damping is a clear realization

of this phenomenon, but it is not obvious how to formulate some physical

systems, such as a highly collissional gas, in this way. It would be interesting

to continue working to understand the nature of dissipation. In the case of

Caldeira-Leggett model, some ways forward are clear as it may be possible to

realize an echo in an experiment. Additionally, there are many other possible

problems, some of which relate to nonlinear systems and quantum mechanics.
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Progress in these areas may lead to a much improved understanding of the

physics of real matter and to the realization of new technologies.

112



Bibliography

[1] K. Weierstrass. Uber ein die homogenen functionen zweiten grades betr-

effendes theorem, nebst anwendung desselben auf die theorie der kleinen

schwingungen. Weierstrass: Mathematische Werke vol 1, pages 233–246,

1894.

[2] J. Williamson. On the algebraic problem concerning the normal forms of

linear dynamical systems. Amer. J. Math., 58(1):141–163, Jan 1936.
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