
University of Texas

Senior Thesis

Extra invariants in Hamiltonian
Systems

James Dix

supervised by
Dr. Andrew Neitzke
Dr. Philip Morrison

May 12, 2017



Abstract

In this paper, we study the dynamics of physical systems when there are many
invariants of motion that restrict the possible motion of the system. First we
introduce the relevant concepts for the study of dynamical systems, starting
from basic Newtonian physics and working up to general Hamiltonian systems.
Then we study the behavior of integrable systems (the systems with what is
normally the “maximum” number of invariants) when they have even more
invariants. Using differential topology, we prove in the 2 degree of freedom
case that the system will exhibit periodic motion and the type of periodicity is
fixed: for instance a periodic system that goes around twice before returning to
its original system will always exhibit such behavior, regardless of its starting
conditions. Extra invariants are seen in systems such as the two-body problem
of gravitational motion.



1 Introduction

1.1 Elementary Physics

A problem in elementary Newtonian physics usually consists of a particle of mass
m and a force acting on this particle. This force can depend on the position
and momentum of the particle. The simplest example is a particle moving in a
single dimension. Then the position q of the particle at a given time is described
by a real-valued function q(t) : R→ R.

By Newton’s second law, the force satisfies the equation F (p, q) = mq̈(t).
Momentum is given by the equation p(t) = mq̇(t), so finding the motion of
a particle is a matter of solving for the position q(t) and momentum p(t) us-
ing a coupled system of differential equations. These differential equations are
namely:

q̇(t) =
p(t)

m
ṗ(t) = F (p, q)

There are then two relevant trajectories in this problem, p(t) and q(t). To-

gether, they can be thought of as a single trajectory ~f(t) : R → R2 into two-

dimensional space with ~f(t) = (q(t), p(t)). Then the physics is reduced to

knowing d~f
dt and solving for ~f(t).

This can be generalized to a particle moving in three dimensions by making
~q(t) and ~p(t) three-dimensional vectors. Then ~f is simply a six-dimensional

vector, but d~f
dt is still known, so it’s simply a problem of solving a differential

equation for a trajectory ~f(t) in R6.
A further extension of this concept is the motion of n particles in three dimen-

sions. If the force ~Fi acting on the ith particle is a function of ~q1, . . . , ~qn, ~p1, . . . , ~pn
then once again solving for ~q1, . . . , ~qn, ~p1, . . . , ~pn is a system of coupled differen-
tial equations. As before, the dynamics of the system can be thought of as a
single vector ~f = (~q1, . . . , ~qn, ~p1, . . . , ~pn) moving through 6n-dimensional space

R6n and ∂ ~f
∂t is known at each point in R6n. Then solving for ~f is the same

process as before.
In all these cases, finding the dynamics of the system is reduced to finding

some path in some 2n-dimensional space by solving a differential equation. This
2n dimensional space is called the phase space of the system. The differential
equation defining the trajectory f(t) in phase space is defined by a vector field
∂f
∂t (p).

1.2 Topology

In general, the phase space doesn’t have to be R2n. For instance if a particle
is restricted to move along a circle, then the position of the particle cannot be
described by just a real number q, but instead a point on a circle.
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In full generality, phase space should be thought of as a 2n-dimensional
manifold M . The exact definition of a smooth manifold is beyond the scope of
this thesis, but simply put an n-dimensional manifold is a collection of points
put together so that around any point there’s a region of points that looks like
Rn. For example, at any point on a circle, the points nearby look like an interval
on the real line. Similarly, at any point on a sphere the points nearby look like a
patch of the plane. More formally, around every point p there’s a neighborhood
of points U such that there’s a map φ : U → Rn that pairs each point in Rn
with exactly one point in U . This puts n “coordinates” on U and allows us to
do calculus in U by treating it as Rn.

Using this concept, we can define a vector on a manifold. Defining a vector
at a point in Rn is simple, the standard example being a vector field in Rn. In
this case, each point p in Rn has a vector ~vp ∈ Rn associated to it, so a vector
at a point can be defined as a pair (p,~v) where p ∈ Rn is the point the vector
is based at and ~v ∈ Rn is the direction of the vector at p.

Using this definition we define a vector at a point p on M by choosing a
chart φ : U → Rn around p and choosing a vector at φ(p) ∈ Rn the way
described before. To describe this same vector with a different choice of chart
around the same point, simply require that the vector satisfy the standard vector
transformation laws of a change of coordinates. [3]

Using manifolds and tangent vectors, we can describe dynamics taking place
in more general phase spaces. Let the phase space M be a 2n-dimensional

manifold. In previous examples, we had a vector field ∂ ~f
∂t (p) at every point

p ∈ M , and solved a differential equation for ~f(t). So in general, dynamics are
given by a phase space M and a vector field V on the manifold. One way to
calculate V is knowing the forces acting on the system. Another way is via the
methods of Hamiltonian mechanics.

1.3 Hamiltonian Mechanics

From this point on I assume a basic knowledge of differential topology.
In the simplest case where phase space is R2, representing motion along a

line, a Hamiltonian system is defined by the differential equations ṗ = −∂H∂q and

q̇ = ∂H
∂p . In these equations, q is the position coordinate, p is the momentum,

and H is the Hamiltonian function. The Hamiltonian function H expresses the
energy of the system at a given position q and momentum p.

To produce H, consider the partcle of mass m moving in a potential V (q).

Then the Hamiltonian (the energy) at a given p and q is H(p, q) = p2

2m + V (q),
the sum of kinetic and potential energy.

Applying Hamilton’s equations, ṗ = −∂V∂q and q̇ = p
m . Substituting p = mq̇

yields q̇ = p
m and mq̈ = −∂V∂q , the equations of motion of a particle in a potential.

Generalizing phase space to a 2n dimensional manifold M , a Hamiltonian
function H needs to produce a vector field on M . More precisely, just like (q̇, ṗ)
depends on ∂H

∂p and ∂H
∂q , the differential dH should produce a vector field on M .
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The differential of a function produces a differential 1-form on the manifold
M . The conversion between a vector and a 1-form can be achieved by a bilinear
form on a vector space. The classic example is using a dot product on a vector
space V to produce an isomorphism between V and V ∗. However, any non-
degenerate bilinear form ω can be used to produce an isomorphism f : V → V ∗

sending v 7→ ω(v, ·). Using this isomorphism on the tangent space of M , a
non-degenerate 2-form ω can send dH to a vector field we label ω−1(dH).

In the earlier example, the 2-form that takes dH and produces ~v = (∂H∂p ,−
∂H
∂q )

is ω = dq ∧ dp. To see this, note that ω(~v, ·) acting on an arbitrary vector
~u = (uq, up) can be expressed as

ω((q̇, ṗ), ~u) = q̇up − ṗuq

=
∂H

∂p
up +

∂H

∂q
uq

=
∂H

∂p
dp(~u) +

∂H

∂q
dq(~u)

= dH(~u).

Thus ω(~v, ·) = dH so ω sends ~v to dH and vice versa, which we will denote
as ω−1(dH) = ~v.

For a general phase space M , we require that it be a symplectic manifold,
that is a manifold with a choice of symplectic form ω. Then any function H can
produce a vector field ω−1(dH). Knowing this, we can define a Hamiltonian
system.

Definition 1. A Hamiltonian system is an even-dimensional manifold M to-
gether with a symplectic form ω and a Hamiltonian function H : M → R.

1.4 Integrable Systems

To define an integrable system, we first must define a the Poisson bracket of two
real-valued functions.

Definition 2. The Poisson bracket of two functions f : M → R, g : M → R on
a manifold with symplectic form ω is defined as {f, g} = df(ω−1(dg))

The motivation for this definition is that {f,H} = df(ω−1(H)) = df(~v) = df
dt .

So a function f is an invariant of the evolution of the Hamiltonian system if and
only if {f,H} = 0 Then in some sense the Poisson bracket of two functions is a
measure of their independence, where two functions are “Poisson-independent”
if {f, g} = 0.

Definition 3. An n-degree of freedom integrable dynamical system is a Hamil-
tonian system with n invariants of motion f1, . . . , fn such that ∀i, j < n, {fi, fj} =
0 and the differentials {df1, . . . , dfn} are linearly independent. If this is satisfied,
then there exist canonical coordinates (coordinates where Hamilton’s equations
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apply) J1, . . . , Jn, θ1, θn called action-angle coordinates such that the Hamilto-
nian H is only a function of the action coordinates J1, . . . , Jn. [1]

Hamilton’s equations tell us that ∂θi
∂t = ∂H

∂Ji
and ∂Ji

∂t = ∂H
∂θi

Since H depends

only on the action coordinates, ∂Ji
∂t = 0 and ωi := ∂θi

∂t is constant when the
action coordinates are fixed. Therefore the system evolves as follows: the action
angles stay constant and the angle coordinates vary at a constant velocity on a
given level set of action coordinates.

Another fact about integrable systems is that a level set of the action coor-
dinates are n-dimensional tori if the level set is compact. In this case, the angle
variables will in fact be periodic, that is θi and θi + 2π refer to the same points.
Then when studying an integrable system, the study of motion devolves into
studying straight-line trajectories on the different toroidal level sets.

In this thesis, we assume an integrable system is such that every level set
is such a torus. This is a very restricted definition of an integrable system and
there are several other ways to define it, but for the study of 2-body celestial
motion this is enough.

1.5 Torus Trajectories

For an n-dimensional torus there are n frequencies ω1, . . . , ωn. Depending on
the values of these frequencies, the trajectory can fill out different amounts of
the torus. Take the case of the two-dimensional torus. Then there are two
frequencies, ω1 and ω2. Suppose the angular coordinates θ1, θ2 are taken mod
2π, that is θi and θi + 2π refer to the same points. Now assume that ω1 and ω2

are commensurate, that is there exist integers a, b ∈ Z such that aω1 + bω2 = 0.
Then after a time ∆t = 2πb

ω1
has elapsed, ∆θ1 = 2πb and ∆θ2 = 2π bω2

ω1
=

2π−aω1

ω1
= −2πa. Both ∆θi are integer multiples of 2π, so the point is back

where it started. So the path of a point would wind around the torus several
times before ending back up at the starting point. It is a circle embedded in
the torus. If ω1 and ω2 are not rationally commensurate, it’s a theorem that
the path will never loop back over itself, and instead densely fill the torus. In
this case, the path is not an embedded 1-dimensional manifold. [1]

2 Results

The results of this thesis deal with integrable systems that have two degrees of
freedom and one extra invariant.

Theorem 1. On an integrable 2 degree-of-freedom system, the existence of an
extra invariant function W : M → R on the phase space M that is functionally
independent from two invariants H, I implies frequency locking: the ratio ω1

ω2
is

rational and constant.

Proof. Since H, I, and W are functionally independent and all invariants of the
motion, then an intersection of level sets of these functions is an embedded

4



1-manifold. Since these functions are invariants of motion, we also know that
any trajectory in the system must be contained in a 1-manifold. Switching to
action-angle variables(J1, θ1, J2, θ2), the level set fixing (J1, J2) is a torus. Then
the frequencies ω1, ω2 must be commensurate in order for the trajectory to lie
within an embedded 1-manifold. Therefore ω1

ω2
is rational. A priori this value

may depend smoothly on the choice of j1, j2. However ω1

ω2
cannot be irrational

and the irrational numbers are dense in the real numbers, so ω1

ω2
cannot vary.

2.1 Construction of Extra-Invariant Systems

We can then classify the the possible Hamiltonians on an integrable system that
admit an extra invariant. Let a

b be the rational number that ω1

ω2
is locked at.

H(J1, J2) must satisfy ∂H
∂J1

/ ∂H∂J2 = a
b , so b ∂H∂J1 − a

∂H
∂J2

= 0. This is equivalent to
the equation ∇H(J1, J2) · (b,−a) = 0, so the differential equation states that H
must be constant along the lines in (J1, J2) space with slope −ab .

Since H is constant along these lines, H(J1, J2) is totally defined by value
of H on the line J2 = 0 so long as b 6= 0 in the fraction a

b . If b = 0, simply use
any other line, such as defining H on the line J1 = 0.

Now supposed H is a Hamiltonian of this form. Then by the construction of
H, the trajectories of motion along a level set of (J1, J2) follow a straight line
of slope b

a in θ1, θ2 space. Thus the function W = sin(bθ1 − aθ2) is an invariant
of motion since it’s a function of only aθ1 − bθ2 and thus constant on lines of
slope a

b in θ1, θ2 space on a level set of (J1, J2). In fact, any 2π-periodic function
f(bθ1 − aθ2) will do. Thus we know {W,H} = 0. We also know {J1, H} = 0
and {J2, H} = 0 by the definition of action-angle coordinates. Since W is
only defined in terms of θ1, θ2 and J1 and J2 are functions independent of these
coordinates, it’s clear that W is functionally independent from J1 and J2. Thus,
a Hamiltonian H of the form constructed above admits the 2 invariants required
for integrability and an extra invariant.

Thus we have classified the integrable Hamiltionian systems on the phase
space M .

3 Discussion

The most immediate application of this result is to orbital mechanics. In a two-
body system governed by Newtonian gravity, the resulting system is integrable
with an extra invariant called the Runge-Lenz vector. In a particle of mass
m under the influence of the central force ~F = − k

r3~r, this vector is given by

the equation ~A = ~p × ~L − mk ~r
|~r| , where ~L is the angular momentum. After

solving for Kepler’s equations, ~A turns out to be a vector pointing along the
major axis of the elliptical orbit, proportional to the eccentricity of the ellipse.
[2] A priori ~A gives three invariants of motion correspond to the components
Ax, Ay, Az but together these are not completely linearly independent from the
2 invariants needed to prove integrability of the system. In effect, Ax, Ay, Az
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provide a single invariant. Thus orbital mechanics exhibits frequency locking.
This prediction is verified by Keplerian motion. For closed orbits, an object
always orbits in a circle or an ellipse. The motion is periodic and frequency-
locked since all the orbits require exactly one go-around to return to their initial
configuration.

The existence of an extra invariant doesn’t guarantee frequency locking when
there are more than two degrees of freedom. In the case of three degrees of
freedom, having a single extra invariant doesn’t guarantee frequency locking.
Namely, for the three frequencies ω1, ω2, ω3, the ratios formed between some
two frequencies might not be fixed. Having one extra invariant guarantees that
there exist a, b, c ∈ Z such that aω1 + bω2 + cω3 = 0 and a, b, c are not all
identically zero. Suppose c = 0. Then ω3 can vary in any way, and the equation
will still be true. This means ω1/ω3 can vary, for instance.

To achieve a similar phase locking, another invariant is required. This re-
quires the trajectory to lie on a 1-manifold, which is equivalent to requiring
ω1, ω2, ω3 to have some λ > 0 such that the λωi are all integers. So a triple
of frequencies is valid if the line the vector (ω1, ω2, ω3) describes in R3 passes
through a point on the integer lattice. However, there are only countably many
points on the integer lattice so as we vary the action coordinates (J1, J2, J3),
the line in R3 described by the frequencies must be constant since it must vary
continuously while also always passing through a point on the integer lattice.
Thus the system exhibits frequency locking, since (ω1, ω2, ω3) can only vary by
scalar multiplication.

This argument can be easily generalized to n degrees of freedom, where
n− 1 additional invariants are required to prove frequency locking. This bears
a resemblance to reduction of order [2]. Further work can be done in explicitly
writing out how frequency locking is implied from this theorem.

Another potential avenue of exploration is studying what extra invariants
in higher degree of freedom systems imply. It may not necessarily give fre-
quency locking, but there’s reason to believe that extra invariants still put some
strong restrictions on the possible frequencies. For instance in the integrable 3
degree-of-freedom case with one extra invariant, the line described by the vector
(ω1, ω2, ω3) must pass through the set of “coordinate lines”: the set of all points
in R3 with two integer coordinates. Unlike with when the line had to cross the
integer lattice, it’s now possible for the slope of the line to vary as (J1, J2, J3)
varies. There may yet be more restrictions on the possible values of the fre-
quency vector (ω1, ω2, ω3). Keeping track of the first point on the “coordinate
lines” that the line defined by (ω1, ω2, ω3) intersects, as (J1, J2, J3) vary this
point moves on the “coordinates lines”. However it needs to take a right-angle
turn to be able to get to some points. Taking a sharp turn isn’t a smooth tra-
jectory, so it may not be possible to reach all points on the coordinate lines.
If proven true, this could be generalized to a more general form of frequency
locking.

Another possible extension of this work is to do this on a more generalized
type of integrable system. In this thesis it was assumed that phase space could
essentially be decomposed into R2×T2. In more general integrable systems this
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doesn’t hold true, and it would be interesting to study how singular fibers in
the space could affect phase locking.
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