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Abstract

Cahn-Hilliard-Navier-Stokes (CHNS) systems describe two-phase flows, such as liq-
uids containing bubbles. Obtaining constitutive relations for general dissipative
processes in such systems that remain thermodynamically consistent is challeng-
ing. We demonstrate how the metriplectic 4-bracket formalism provides a straight-
forward, algorithmic approach to this problem. This approach, called the uni-
fied thermodynamic algorithm (UTA), constructs thermodynamically consistent dy-
namical systems combining Hamiltonian and dissipative parts that conserve en-
ergy while producing entropy. A key feature of the UTA is the force-flux rela-
tion Jα = −Lαβ∇(δH/δξβ), where Lαβ are phenomenological coefficients, H is the
Hamiltonian, and ξβ are dynamical variables. The algorithm is applied to various
systems, including Navier-Stokes-Fourier and Brenner-Navier-Stokes-Fourier mod-
els, with significant generalizations obtained for CHNS systems. We exploit the
underlying mathematical structures to ensure thermodynamic consistency is pre-
served during discretization of fluid models. This relies on (1) maintaining the
symmetries and degeneracies of the Poisson and metriplectic 4-brackets in spatial
semi-discretizations and (2) employing energy-conserving time-stepping schemes. A
minimally simple yet nontrivial example— one-dimensional thermal-fluid model—is
treated, showing that preserving these properties in Galerkin spatial discretizations
is relatively straightforward. This suggests a pathway toward thermodynamically
consistent discretizations of more complex fluid models using specialized Galerkin
methods. Furthermore, we investigate the well-posedness of the anisotropic, incom-
pressible CHNS system with variable density in a bounded smooth domain Ω ⊂ Rd.
This extends previous isotropic studies by incorporating anisotropic surface energy,
represented by F =

∫
Ω

ϵ
2
Γ2(∇ϕ). Using a Galerkin approximation scheme, we prove

the existence of global weak solutions in two and three dimensions (d = 2, 3). A
crucial step in extending the existence of approximate solutions from local to global
is the use of Bihari’s inequality combined with a fixed-point argument.
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CHAPTER

INTRODUCTION 1

Two-phase flow refers to the movement of two different types of substances or phases
at the same time in a system. These phases can be solid, liquid, or gas. A common
example is when a liquid and a gas move together through a pipe, such as steam
and water inside a power plant system. Sometimes, the two phases are parts of the
same substance, like water and its vapor (steam). In other cases, they can be two
different materials, like air and oil, or water and sand. In many industries, two-
phase flow happens naturally and is a key part of how machines or systems work. It
can be found in chemical plants, oil and gas pipelines, refrigeration systems, power
generation (especially in boilers and condensers), and even in natural settings like
oceans and underground reservoirs. This type of flow plays a big role in processes
involving heating, cooling, or mixing materials. One of the most studied and used
types of two-phase flow is liquid-gas flow, especially when a change of phase occurs,
like boiling or condensation. This is important because phase change involves a lot
of heat transfer, which can be used to control temperature or energy inside a system.
Engineers and researchers pay close attention to how heat and pressure behave in
these situations, as they affect how safe and efficient a system is.

Understanding two-phase flow is challenging due to the fact that the two phases
typically move at different velocities and possess distinct thermodynamic properties.
For example, the gas may move faster than the liquid, or one may heat up or cool
down faster. In some cases, the boundary between the two phases can be clearly
seen, like oil floating on water. In other cases, such as bubbles in boiling water, the
boundary changes constantly and is hard to track. To describe and predict two-phase
flow, scientists use models. There are mainly two types of models: the separated
flow model and the homogeneous flow model. In the separated flow model, each
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phase is treated as if it flows separately, each with its own speed and thermodynamic
proprieties. In contrast, the homogeneous flow model assumes both phases move and
behave in the same way. Each model is used depending on how the phases interact
and how complex the situation is. Engineers use data from two-phase flow studies to
make systems safer and more reliable. For example, in pipelines, knowing how gas
and liquid interact helps prevent accidents like pipe bursts or pressure build-up. In
heat exchangers, predicting how fluids change phases can improve energy efficiency.
If these flows are not well understood or controlled, they can lead to problems like
corrosion, erosion, or equipment failure.

Overall, two-phase flow is a complex but important topic in fluid mechanics and
engineering. It requires careful analysis and good understanding of both the physical
properties of the fluids and the way they move. With proper models and tools, it
is possible to design systems that work efficiently and safely even when multiple
phases are involved. The well-known Navier-Stokes equations govern the motion of
a single-phase fluid. However, in the case of two-phase fluids, chemical reactions,
changes of phase, and migration between substances of phases become significant
and cannot be disregarded. J. W. Cahn and J. E. Hilliard were the first to formulate
the mathematical equations that describe phase separation in a such a binary fluid
[Cahn and Hilliard, 1958]. Here we investigate generalizations that combine the
Cahn-Hilliard equation with equations that describe the dynamics of fluid flow,
referred to as Cahn-Hilliard-Navier-Stokes (CHNS) systems. CHNS systems aim to
describe the hydrodynamic properties of a mixture of two phases such as bubbles in
a liquid. To narrow down the already broad scope, we assume that the two fluids
share the same velocity field, yet we allow for both extended thermodynamics and
diffusive interfaces between the two phases.

A substantial hurdle in developing CHNS type systems, systems with a variety of
constitutive relations, is to ensure thermodynamic consistency, i.e., adherence to the
first law of thermodynamics, which in this context is to produce a set of dynamical
equations that conserve energy, and the second law which in this context means the
dynamical production of entropy, ensuring the relaxation (asymptotic stability) to
thermodynamic equilibrium. Here, we propose an algorithm for constructing such
systems, an algorithm that produces a large set of CHNS systems.

A central challenge in modeling general dynamical systems, particularly in fluid
dynamics, is ensuring thermodynamic consistency—namely, satisfying the first law
(energy conservation) and the second law (entropy production). In this thesis, we
develop a systematic procedure for constructing such systems in infinite-dimensional
settings. The approach is based on the metriplectic formalism, a nonclassical frame-
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work that naturally incorporates both Hamiltonian (reversible) and dissipative (ir-
reversible) dynamics. The resulting systems, especially in the context of two-phase
fluid flow, exhibit the correct thermodynamic structure. Moreover, the framework
extends to the discrete level, allowing the design of numerical schemes that retain
thermodynamic consistency. Under suitable assumptions, we also investigate the
well-posedness of the resulting two-phase models using tools from functional analy-
sis.

The contributions of this thesis are organized into five chapters. The chapter
2 is structured as follows: We provide an overview of the metriplectic framework,
where foundational concepts are reviewed, starting with the Hamiltonian formalism
(Sec. 2.1) and moving to the metriplectic formalism (Sec. 2.2). Therefor, we linked
the metriplectic 4-bracket to the original binary metriplectic formalism (Metriplectic
2-bracket) (Sec. 2.3). At the end of this section we discuss the critical features needed
in order to develop a systematic method to build the metriplectic 4-bracket. In
Sec. 2.4, we focus on the derivation of the metriplectic 4-bracket. Here, a systematic
approach to the theory is developed (Sec. 2.4), followed by a discussion on the
relationship to non-equilibrium thermodynamics principles (Sec. 2.4.1).

In chapter 3, we propose the Metriplectic 4-bracket algorithm for constructing
thermodynamically consistent dynamical systems in infinite-dimensional. We refer
to this algorithm as “Unified thermodynamic algorithm” (UTA). The algorithm has
four steps: i) Select a set of dynamical variables. For example in Navier-Stokes-
Fourier (NSF) system these will be ψ := {m = ρv, ρ, σ = ρs}, which are the
momentum density, mass density, and entropy density, respectively. And for CHNS
system ψ := {m = ρv, ρ, c̃ = ρc, σ = ρs}, which c is the volume concentration of one
of the constituents. ii) The next step is to select energy and entropy functionals,
H and S, dependent on the dynamical variables. The choice of these functionals
is based on the physics of the phenomena one wishes to describe. iii) The third
step of the algorithm is to obtain the noncanonical Poisson bracket [see Morrison,
1998b] of the ideal (nondissipative) part of the theory that has the chosen entropy
as a Casimir invariant. Since the work of Morrison and Greene [1980], Poisson
brackets for a great many systems, including fluid and magnetofluid systems, have
been found [e.g. Morrison, 1982, Thiffeault and Morrison, 2000, Abdelhamid et al.,
2015, D’Avignon et al., 2016, Zaidni et al., 2023]. Thus, this step may be immediate.
Alternatively, it may be achieved by a coordinate change from a known Hamiltonian
theory in order to align with the chosen entropy functional. In either case, we obtain
at this stage a noncanonical Hamiltonian system. iv) The final step is to construct a
metriplectic 4-bracket as described in Morrison and Updike [2023]. Although there
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are standard metriplectic 4-bracket constructions, there is freedom at this last step
to describe a variety of types of dissipation. However, a natural choice follows upon
consideration of the form of an early metriplectic bracket [Morrison, 1984a]. Given
H, S, and the 4-bracket, the dynamical system with thermodynamically consistent
dissipation is produced.

In this chapter, we present three examples to illustrate the application of the de-
veloped theory by applying the UTA. Specifically, the Navier-Stokes-Fourier (NSF)
system (Sec. 3.1), and the Brenner-Navier-Stokes-Fourier (BNSF) system (Sec. 3.2)
are explored as cases demonstrating the theory’s flexibility and general applicability.
We observe that the NSF and BNSF systems are special cases of a general theory
we develop.

For two-phase fluid dynamics, we provide a more detailed modeling approach.
We apply the algorithm to two cases. First, in Sec. 3.3, we consider a system where
the fluid thermodynamics is extended by allowing the internal energy to depend
on a concentration variable, with the chemical potential being its thermodynamic
dual. Because Gibbs introduced the notion of chemical potential, we refer to the
Hamiltonian version of this fluid systems as the Gibbs-Euler (GE) system and the
dissipative version as the Gibbs-Navier-Stokes (GNS) system. It is a thermody-
namically consistent version of the compressible Navier-Stokes equations with the
inclusion of this concentration variable for describing a second phase of the fluid.
The GNS system generalizes the early work of Eckart [1940a,b] and the treatment in
[de Groot and Mazur, 1962]; it allows for all possible thermodynamics fluxes. Next,
in Sec. 3.4, a general form of CHNS system is produced, a form that models surface
tension effects and allows for diffuse interfaces. Our work is motivated in large part
by the substantial works of Anderson et al. [2000] and Guo and Lin [2015], which
we generalize by obtaining a class of systems that includes theirs as special cases.
There is a huge literature on this topic and these papers contain many important
references to previous work. [Also, see ten Eikelder et al., 2023, for a recent review.]

The GNS system of Sec. 3.3 serves as a straightforward example of our algorithm.
In Sec. 3.3.1 we describe the set of dynamical variables, properties of the system, the
energy and entropy functionals H and S. This amounts to the first and second steps
of the algorithm. Then in Sec. 3.3.2 the Hamiltonian formulation of the dissipation
free part of the system is presented. This is the third step of the algorithm where
the Poisson bracket is obtained, after a brief review of the noncanonical Hamiltonian
formalism. Given the early work of Morrison and Greene [1980] and the classification
of extensions in [Thiffeault and Morrison, 2000], this step is immediate. Based on the
early and recent works [Morrison, 1984a, Morrison and Updike, 2023] the fourth step
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of the algorithm is also immediate. Thus, the thermodynamically consistent GNS
system is determined. In Sec. 3.3.4 we obtain the metriplectic 2-bracket equations
of motion, and the determined fluxes and affinities, making connection to standard
irreversible thermodynamics. Using the results of Sec. 3.3, we proceed in Sec. 3.4
to obtain the main result of the paper, our general CHNS system that can describe
diffuse interface effects. The first and second steps of our algorithm are taken in
Sec. 3.4.1, while the third step, obtaining the correct Poisson bracket, is undertaken
in Sec. 3.4.2. In order to complete this step, one must find the Poisson bracket for
which the entropy of the second step is a Casimir invariant, which we find can be
achieved by a simple coordinate transformation. The fourth step of the algorithm
is taken in Sec. 3.4.3. Here a choice of metriplectic 4-bracket gives a general class of
thermodynamically consistent CHNS systems, a class that contains previous results
as special cases. The formalism also shows how one can transform to a simple
entropy variable at the expense of a more complicated internal energy. We end by
giving a simple alternative for modeling the CHNS system (Sec. 3.5). Following in
Sec 3.6 by a discussion.

In Chapter 4, we develop a fully discrete, thermodynamically consistent scheme
for the one-dimensional Navier–Stokes–Fourier (NSF) model within the metriplectic
framework. The spatial discretization is derived from the weak form implied by
the metriplectic 4-bracket structure (see Sec. 4.3). For time integration, we initially
consider the implicit midpoint method (Sec.4.3.1); however, its failure to conserve
total energy motivates the adoption of a discrete gradient method [Quispel and
McLaren, 2008, Hairer, 2010], which guarantees energy conservation while preserving
the entropy production structure. As a result, the fully discrete system inherits
the thermodynamic consistency of the continuous model. In Sec.4.4, we present
numerical experiments for the discrete NSF model, tracking the evolution of density,
momentum, and entropy. To verify thermodynamic fidelity, we monitor the relative
errors in total energy, entropy, and mass, demonstrating that the scheme accurately
respects the thermodynamic consistency at the discrete level.

In chapter 5, under some assumption, we study the well-posedness of the anisotropic,
incompressible Cahn-Hilliard-Navier-Stokes system with variable density in a bounded
smooth domain Ω ⊂ Rd obtained in the chapter 3. This work extends previous stud-
ies on the isotropic case [Giorgini and Temam, 2020, Abels et al., 2024, Munteanu,
2024, Rui et al., 2024, Abels et al., 2013] by incorporating anisotropic surface en-
ergy. Using a Galerkin approximation scheme, we prove the existence of global weak
solutions in both two and three dimensions (d = 2, 3).

The final chapter 6 addresses the problem of two-velocity models. Starting from
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Hamilton’s principle, we derive an ideal two-phase fluid model in Lagrangian form.
This description, yields to build principally two different models, The two velocity
model (TVM) and the one velocity model which referred to as zero drift velocity
model (zDVM). This chapter is structured as follows: The Sec. 6.2 is dedicated
to the TVM. We begin by further elucidating the tools needed for the Lagrangian
variable description. The equations of motion in the Lagrangian form follow from
Hamilton’s principle (principal of least action) [see e.g. Morrison, 1998a] which leads
us to their Hamiltonian form. Then equations of motion in Lagrangian coordinate
are given and mapped to Eulerian coordinate. The Sec. 6.3 is dedicated to the
one velocity fluid zDVM model. By including the effect of viscosity on each phase
of the fluid and we study the behavior of linear sound waves in this type of (real
multi-fluid) medium. This is a classical physics question that is an extension of the
wave studies of Kirchhoff [1868] and Stokes [1845] in an ordinary fluid.
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CHAPTER

OVERVIEW ON
METRIPLECTIC FRAMEWORK 2

2.1 HAMILTONIAN FORMALISM

Let us recall the Hamiltonian formalism in infinite-dimensions. To describe a dy-
namic one must select a set of dynamical variables. It is preferable to choose con-
served quantities as the variables. For example, in fluid dynamics, one might select
the mass density, momentum density, and entropy density. In the general, we con-
sider the dynamics of classical field theories involving multi-component fields

ξ(z, t) =
(
ξ1(z, t), ξ2(z, t), . . . , ξN(z, t)

)
(2.1)

defined on z = (z1, z2, . . . , zn) ∈ Ω for times t ∈ R. Here we use z to be a label
space coordinate with the volume element dnz, but with the domain Ω unspecified.
For example, in fluid mechanics Ω would be the 3-dimensional domain occupied by
the fluid and we will use x = (x1, x2, x3) to indicate a point in Ω for this case. In
general we suppose that ξ1, . . . , ξN can be real-valued scalars or densities defined on
space-time Ω×R, vector fields in the tangent or cotangent bundles of the manifold
Ω, or even elements in its tensor bundle. Thus, for some α, ξα could be a scalar, a
vector, or any tensorial quantity that is convenient for the system being described.
We will forgo formal geometric considerations and suppose our infinite-dimensional
phase space has coordinates ξ = (ξ1, . . . , ξN) and observables are functionals that
map ξ 7→ R at each fixed time. We will denote the space of such functionals by B.
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Then a Poisson bracket is an antisymmetric bilinear operator

{ · , · } : B × B → B , (2.2)

where this bracket is assumed to satisfy the following identities/properties:
(i) Anticommutativity:

{F,G} = −{G,F} (2.3)

(ii) Bilinearity:

{aF + bG,H} = a{F,H}+ b{G,H}, a, b ∈ R (2.4)

(iii) Leibniz’s Rule:

{FG,H} = {F,H}G+ F{G,H} (2.5)

(iv) Jacobi Identity:

{{F,G}, K}+ {{K,F}, G}+ {{G,K}, F} = 0. (2.6)

Thereby providing a realization of a Lie algebra [see, e.g., Sudarshan and Mukunda
[1974] chap. 14]. A general infinite-dimensional form of this bracket, for any given
two functionals F,G ∈ B, can be written as follows:

{F,G } =

∫
Ω

dnz

∫
Ω

dnz′ J αβ δF

δξα(z)

δG

δξβ (z′)
, (2.7)

where J αβ(z, z′) is a 2-tensor functional operator, that is antisymmetric, with co-
ordinate form given by the following integral kernel:

J αβ(z, z′)[ξ] = J (dξα(z),dξβ(z′))[ξ] ,

where α, β range over 1, 2, . . . , N , and δF/δξα, δG/δξβ are the functional derivatives
defined by

δF [ξα; δξα) = lim
ϵ→0

F (ξα + ϵδξα)− F (ξα)

ϵ

=

∫
Ω

δF

δξα
δξα, (2.8)

This expression can be viewed as the directional derivative of a functional F at ξα
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in the direction δξα [see, e.g., Morrison [1998b] for a formal review of these notions].
Upon inserting any functional of ξ, say an observable ξα, into the Poisson bracket

its evolution is determined by

∂tξ
α = {ξα, H} , (2.9)

where H[ξ] ∈ B is a Hamiltonian functional. Here and henceforth we use the
shorthand ∂t = ∂/∂t for the partial derivative with respect time and we will use an
overdot to mean the total derivative d/dt, i.e, Ḟ = dF/dt. For example the evolution
of the Hamiltonian functional is given by

Ḣ = {H,H} = 0, (2.10)

due to the antisymmetry of the bracket. We will also use the shorthand ∂i = ∂/∂zi

for the partial derivative with respect to the spatial variable zi.
Casimir invariants are special functionals C that satisfy

{F,C} = 0 (2.11)

for any functional F , and thus are constants of motion for any Hamiltonian.
We will see later that to describe a dynamic in infinite-dimensional. one must

select the Hamiltonian functional and a Casimir invariant to serve as entropy and
construct the noncanonical Poisson bracket (2.7). First, the choice of the Hamil-
tonian and Casimir invariant functionals is based on the physics of the phenomena
one wishes to describe. However, across all the cases we examine, the Hamiltonian
functional is the total energy of the system and the usual total entropy of the system
is a Casimir invariant. Second, to construct the noncanonical Poisson bracket (2.7)
that consist with the choice of the Hamiltonian functional, there is a huge litera-
ture on this for a variety of systems, e.g., Morrison and Greene [1980], Morrison
[1982, 1998b], Thiffeault and Morrison [2000], Abdelhamid et al. [2015], D’Avignon
et al. [2016], Coquinot and Morrison [2020b], Morrison and Updike [2024], Sato and
Morrison [2024] give Poisson brackets for a great many systems, including fluid dy-
namics, magneto-fluid dynamics, two-phase fluid dynamics, plasma kinetic theory
and so one.
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2.2 METRIPLECTIC FORMALISM

Metriplectic dynamics was established in the 1980s [Morrison, 1984b,a, 1986] to
provide a framework for describing joined Hamiltonian and dissipative dynamics
with the property that thermodynamic consistency is guaranteed. (See Kaufman
and Morrison [1982], Kaufman [1984], Morrison and Hazeltine [1984], Grmela [1984b]
for different attempts at incorporating dissipation in a framework.) Thermodynamic
consistency means the joined Hamiltonian and dissipative system conserves energy,
consistent with the first law of thermodynamics, and produces entropy, consistent
with the second law.

In 1997 the name GENERIC was proposed in [Öttinger and Grmela, 1997,
Grmela and Öttinger, 1997] for a framework that is equivalent to metriplectic dy-
namics (see page 11 of Morrison and Updike [2024]). In a sequence of works [Öttinger
and Grmela, 1997, Grmela and Öttinger, 1997, Öttinger, 2005] these authors were
the first to explicitly incorporate ideas from non-equilibrium thermodynamics (e.g.
de Groot and Mazur [1962]) into the framework. Specifically, Onsager’s reciprocal
relations [Onsager, 1931, Casimir, 1945] were employed to ensure entropy produc-
tion. More recently, the same connection between non-equilibrium thermodynamics
theory and metriplectic dynamics was made in [Coquinot and Morrison, 2020a] for
a general class of magnetofluid models and more generally in [Morrison and Up-
dike, 2024] where the metriplectic 4-bracket, a convenient quantity for constructing
thermodynamically consistent systems, was introduced.

In the theory of non-equilibrium thermodynamics, it is assumed that the fluxes,
say Jα, are typically linear functions of thermodynamic forces (sometimes called
affinities), say Xβ; i.e.,

Jα = LαβXβ , (2.12)

where Lαβ is a symmetric matrix, α and β are indices for the set of dynamical
variables, and the repeated β index is to be summed. We will see in the next section
that one uses (2.12) to construct the so-called Metriplectic 2-bracket, which leads
to describe the dissipative part of the dynamics in the infinite-dimensional.
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2.2.1 METRIPLECTIC 4-BRACKET FORMALISM

The metriplectic 4-bracket theory was introduced by Morrison and Updike [2023] to
describe the dissipative dynamic. Here, we recall the metriplectic 4-bracket descrip-
tion for infinite-dimensional systems. In this description, we consider the dynamics
of classical field theories with multi-component fields as presented in (2.1). We define
the 4-bracket on functionals as

( · , · ; · , · ) : B × B × B × B → B (2.13)

such that for any four functionals F,K,G,N ∈ B we have

(F,K;G,N) =

∫
Ω

dnz

∫
Ω

dnz′
∫
Ω

dnz′′
∫
Ω

dnz′′′ R̂αβγδ × δF

δξα(z)

δK

δξβ (z′)

δG

δξγ (z′′)

δN

δξδ (z′′′)
,

(2.14)

where R̂αβγδ(z, z′, z′′, z′′′) is a 4-tensor functional operator with coordinate form given
by the following integral kernel:

R̂αβγδ(z, z′,z′′, z′′′)[ξ] = R̂(dξα(z),dξβ(z′),dξγ(z′′),dξδ(z′′))[ξ] ,

where α, β, γ, δ range over 1, 2, . . . , N . The 4-bracket is assumed to satisfy the
following proprieties:
(i) Linearity in all arguments, e.g, for all λ ∈ R

(F + λH,K;G,N) = (F,K;G,N) + λ(H,K;G,N) (2.15)

(ii) The algebraic symmetries

(F,K;G,N) = −(K,F ;G,N) (2.16)

(F,K;G,N) = −(F,K;N,G) (2.17)

(F,K;G,N) = (G,N ;F,K) (2.18)

(iii) Derivation in all arguments, e.g.,

(FH,K;G,N) = F (H,K;G,N) + (F,K;G,N)H . (2.19)
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Here, as usual, FH denotes point-wise multiplication. In addition, to ensure entropy
production we require

Ṡ = (S,H;S,H) ≥ 0 . (2.20)

Metriplectic 4-brackets that satisfy (2.15)–(2.20) are called minimal metriplectic. In
Sec.2.2.1 we will give a construction that ensures such appropriate positive semidef-
initeness.

The minimal metriplectic properties of metriplectic 4-brackets are reminiscent of
the algebraic properties possessed by a curvature tensor. In fact, every Riemannian
manifold naturally has a metriplectic 4-bracket, and (S,H;S,H) provides a notion
of sectional curvature [see Morrison and Updike, 2023].

From the metriplectic 4-bracket (2.14), the dissipative dynamics of an observable
o is generated as follows:

∂to = (o,H;S,H) =

∫
dnz

∫
dnz′
∫
dnz′′
∫
dnz′′′ R̂αβγδ × δo

δξα(z)

δH

δξβ(z′)

δS

δξγ(z′′)

δH

δξδ(z′′′)
.

(2.21)

If we choose o to be the Hamiltonian H, then

Ḣ = (H,H;S,H) ≡ 0, (2.22)

by the antisymmetry condition of (2.16). If we choose o to be the entropy S, then
according to (2.20) we have

Ṡ = (S,H;S,H) ≥ 0. (2.23)

The dissipative dynamics generated by 4-bracket on our set of field variables ξ

is given by

∂tξ
α(z) = (ξα, H;S,H) (2.24)

=

∫
dnz′′Gαβ(z, z′′)

δS

δξβ(z′′)
, (2.25)

where the G-metric is given as follows:

Gαγ(z, z′′) :=

∫
dnz′
∫
dnz′′Rαβγδ(z, z′, z′′, z′′′)× δH

δξβ(z′)

δH

δξδ(z′′′)
, (2.26)

here we use the fact that δξα(z)

δξβ(z′ )
= δαβδ(z−z

′
) were δαβ is the Kronecker symbol and
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δ(z − z
′
)) is the Dirac delta function. For the full metriplectic dynamics we would

add the Poisson bracket (2.7) contribution to the above. Equation (2.25) is written
so as to show that it amounts to a gradient system with the entropy S as generator.

∂tξ
α(z) = {ξα, H}+ (ξα, H;S,H)

=

∫
dnz′′ J αβ(z, z′′)

δH

δξβ(z′′)
+

∫
dnz′′Gαβ(z, z′′)

δS

δξβ(z′′)
, (2.27)

General Kulkarni-Nomizu construction

We can easily create specific metriplectic 4-brackets that have the minimal metriplec-
tic properties: the requisite symmetries and the positive semidefiniteness (S,H;S,H) ≥
0. We do this by using the Kulkarni-Nomizu (K-N) product [Kulkarni, 1972, No-
mizu, 1971]. See also Fiedler [2003] for relevant theorems. Consistent with the
bracket formulation of (2.14), we deviate from the conventional K-N product by
working on the dual. Given two symmetric operator fields, say Σ and M , operating
on the variational derivatives; we again use the subscript notation when convenient,

Fξ :=
δF

δξ
=

(
δF

δξ1
,
δF

δξ2
, . . . ,

δF

δξN

)
,

the K-N product is defined as follows:

(Σ ∧M) (dF, dK, dG, dN) =Σ (dF, dG)M (dK, dN)

− Σ (dF, dN)M (dK, dG)

+M (dF, dG) Σ (dK, dN)

−M (dF, dN) Σ (dK, dG) . (2.28)

A finite-dimensional form of Σ would be a symmetric contravariant 2-tensor, say γ,
and this would give the term

γ(df, dg) = γij
∂f

∂zi
∂g

∂zj
. (2.29)

A conventional for K-N product would involve rank 2 covariant tensors. The form
of (2.29) suggests a general form in infinite dimensions would be

Σ(dF, dG) =

∫
dnz

∫
dnz′Σαβ(z, z′)

δF

δξα(z)

δG

δξβ(z′)
, (2.30)
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where Σαβ(z, z′) is symmetric in both α, β and z, z′ and operates to the right on
both functional derivatives. For example,

Σαβ(z, z′) = Lαβ
ab (z, z

′)LaL′b , (2.31)

where Lαβ
ab is symmetric and La is a differential operator. This implies, e.g.,

Σ(dF, dG) =

∫
dnz

∫
dnz′ Lαβ

ab (z, z
′)× La δF

δξα(z)
L′b δG

δξβ(z′)
. (2.32)

With an expression for M similar to (2.30), a term in the K-N decomposition would
have the following form:

(F,K;G,N) =

∫
dnz

∫
dnz′
∫
dnz′′
∫
dnz′′′ Σαβ(z, z′)Mγδ(z′′, z′′′)

× δF

δξα(z)

δG

δξβ(z′)

δK

δξγ(z′′)

δN

δξδ(z′′′)
+ other terms ,

(2.33)

which could be generalized further by adding filtering kernels.

Semidefinite curvature

In this section, we provide a necessary condition that ensures the non-negativity of
the sectional curvature. The sectional curvature associated with two functionals F
and G is defined by

K(F,G) = (F,G;F,G).

We will show that the non-negativity of this sectional curvature implies entropy
production–second law of thermodynamic, i.e.,

Ṡ = K(S,H) = (S,H;S,H) ≥ 0.

We define the binary operations ⟨·, ·⟩Σ and ⟨·, ·⟩M that satisfy all of the axioms
of an inner product space, except the non-degeneracy condition

⟨F,G⟩Σ :=

∫
dnz

∫
dnz′ Σαβ(z, z′)

δF

δξα(z)

δG

δξβ(z′)
,

⟨F,G⟩M :=

∫
dnz′′
∫
dnz′′′Mγδ(z′′, z′′′)

δF

δξγ(z′′)

δG

δξδ(z′′′)
,
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where Σ and M are positive semi-definites. We have the Cauchy-Schwarz inequality

|⟨F,G⟩Σ| ≤
√
⟨F, F ⟩Σ

√
⟨G,G⟩Σ = ∥F∥Σ∥G∥Σ .

Lemma 1. A metriplectic quadravector constructed using the K − N product, has
non-negative sectional curvature,

K(F,G) =

∫
dnz

∫
dnz′
∫
dnz′′
∫
dnz′′′ Σαβ(z, z′)Mγδ(z′′, z′′′)

× δF

δξα(z)

δF

δξβ(z′)

δG

δξγ(z′′)

δG

δξδ(z′′′)
+ other terms .

Proof. Direct calculation gives

K(F,G) = ∥F∥2Σ∥G∥2M − 2⟨F,G⟩Σ⟨F,G⟩M + ∥G∥2Σ∥F∥2M .

The following inequality

(∥F∥Σ∥G∥M − ∥G∥Σ∥F∥M)2 ≥ 0

implies

∥F∥2Σ∥G∥2M + ∥G∥2Σ∥F∥2M ≥ 2∥F∥M∥F∥Σ∥G∥M∥G∥Σ
≥ 2 |⟨F,G⟩Σ| |⟨F,G⟩M |
≥ 2⟨F,G⟩Σ⟨F,G⟩M ,

where the second inequality follows from the Cauchy-Schwarz inequality. Evidently,
the last inequality implies K(F,G) ≥ 0 for all F and G.

Lemma 2. We suppose that Σ is positive definite, defining an inner product. Given
any two Σ-arbitrary linearly independent δF/δξ and δG/δξ, then the sectional cur-
vature is strictly positive (K(F,G) > 0).

Proof. Since δF/δξ and δG/δξ are Σ-Linearly independent, the Cauchy-Schwarz
inequality given by

|⟨F,G⟩Σ| < ∥F∥Σ∥G∥Σ .

In the same way we have

(∥F∥Σ∥G∥M − ∥G∥Σ∥F∥M)2 ≥ 0
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implies

∥F∥2Σ∥G∥2M + ∥G∥2Σ∥F∥2M ≥ 2∥F∥M∥F∥Σ∥G∥M∥G∥Σ
> 2 |⟨F,G⟩Σ| |⟨F,G⟩M |
> 2⟨F,G⟩Σ⟨F,G⟩M .

Hence, we deduce that K(F,G) > 0 .

Finite-dimensional versions of these two lemmas were first reported in [Morrison
and Updike, 2023]. We notice that it is easy to see that brackets constructed with
this K-N product will have all of the algebraic symmetries described in Sec.2.2.1. In
addition, it is shown in previous lemmas 1 and 2 using the Cauchy-Schwarz inequality
that positivity of (S,H;S,H) is satisfied, if both Σ and M are positive semidefinite.
Moreover, if one of Σ or M is positive definite, defining an inner product, then the
sectional curvature satisfies

K(S,H) := (S,H;S,H) ≥ 0, (2.34)

with equality if and only if δS/δξ ∝ δH/δξ. Thus, it is not difficult to build minimal
metriplectic 4-brackets.

Alternative to (2.30) we can define Σ(dF, dG) pointwise as

Σ(dF, dG)(z) :=

∫
dnz′ Σαβ(z, z′)

δF

δξα(z)

δG

δξβ(z′)

= Aαβ(z)
δF

δξα(z)

δG

δξβ(z)
, (2.35)

which could follow from (2.30) if we added an additional argument to Σ. Then, with
a corresponding form for M the algebraic curvature symmetries would be induced
in the integrand. This is the case for our present purposes, where we assume the
specific K-N form given in [Morrison and Updike, 2023], viz. where the 4-bracket is
given by

(F,K;G,N) =

∫
dnz W (Σ ∧M) (dF, dK, dG, dN) ,

where W is an arbitrary weight, possibly depending on ξ and z, that multiplies
(Σ ∧M) where all of the functional derivatives are evaluated at the same point, z.

The 4-bracket tool plays a crucial role in the dissipative description of dynamics,
provided it satisfies certain properties that guarantee the thermodynamic consis-
tency – namely, the first law (energy conservation) and the second law (entropy
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production). These properties are referred to as “minimal metriplectic properties ”.
Let H be the Hamiltonian functional associated to the Poisson bracket (2.7)

and S its Casimir invariant. As we mentioned previously, In the vast majority of
infinite-dimensional dynamics, particularly in fluid dynamics, H and S present the
total energy and the total entropy, respectively. Thus, the minimal metriplectic
properties are the combination of the requisite symmetries (2.15)-(2.19) and the
positive semi-definiteness in the following manner: The sectional curvature defined
as K(H,S) := (S,H;S,H) should be non-negative

K(H,S) ≥ 0 . (2.36)

Now, for any observable functional of ξ, say ξα, its evolution is prescribed by

∂tξ
α = {ξα, H}+ (ξα, H;S,H) . (2.37)

Thus we have thermodynamic consistency because:

First law (energy conservation):

Ḣ = {H,H}+ (H,H;S,H) ≡ 0 , (2.38)

Second law (entropy production):

Ṡ = {S,H}+ (S,H;S,H)

= 0 +K(H,S) ≥ 0 , (2.39)

where (2.38) follows from the antisymmetry condition of (2.16) and (2.39) follows
from (2.36), i.e., that the sectional curvature is non-negative.

In Sec. 2.4, we will propose an unambiguous method for choosing the operators
M and Σ, and thereby giving a direct construction of the metriplectic 4-bracket.
This approach is general and applicable to a broad range of infinite-dimensional
systems. Various types of fluid dynamics, magnetofluid dynamics, two-phase fluid
flows, and so one, are particular cases. We will see our construction can significantly
generalize systems in the literature.
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2.3 METRIPLECTIC 2-BRACKET AND CONVENTIONAL
FLUXES AND AFFINITIES

For completeness we demonstrate two things in this subsection: how the metriplec-
tic 4-bracket formalism relates to the original binary metriplectic formalism given in
[Morrison, 1984b,a, 1986] and how it relates to conventional nonequilibrium thermo-
dynamics, making the connection between the 4-bracket K-N construction and the
phenomenology of thermodynamics fluxes and thermodynamic forces ( or “affinities”)
(see equation (2.12)).

2.3.1 METRIPLECTIC 2-BRACKET

As noted above we are concerned with the metriplectic dynamics introduced in
[Morrison, 1984b,a, 1986] [see also Morrison, 2009, Coquinot and Morrison, 2020b],
but we mention that other binary brackets for describing dissipation were presented
over the years [e.g. Kaufman and Morrison, 1982, Kaufman, 1984, Morrison and
Hazeltine, 1984, Grmela, 1984a, Grmela and Öttinger, 1997, Beris and Edwards,
1994, Edwards, 1998]. In addition we mention a recent alternative approach to
multiphase fluids, one based on constrained variational principles, that is given in
Eldred and Gay-Balmaz [2020]. For more details, we refer the reader to Morrison
and Updike [2023] for comparisons with other formulations and how they emerge
from the metriplectic 4-bracket.

Metriplectic dynamics was introduced as a means of building thermodynamically
consistent theories in terms of a binary bracket, which we now call the metriplectic
2-bracket. The theory applies to a wide class of dynamical systems, including both
ordinary and partial differential equations. Evolution of an observable o using the
metriplectic 2-bracket has the following form:

∂to = {o,F} − (o,F)H , (2.40)

where as before { . } is the noncanonical Poisson bracket that generates the ideal
part of the dynamics, while now (F,G)H , the metriplectic 2-bracket, generates the
dissipative part. The functional F represents the global Helmholtz free energy of
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the system, and is given by:

F = H − T S , (2.41)

where againH is the Hamiltonian and S the entropy selected from the set of Casimirs
of the noncanonical Poisson bracket (ensuring {F, S} = 0 for any functional F ), and
T is a uniform nonnegative constant (a global temperature). The metriplectic 2-
bracket ( , ) is assumed to be bilinear, symmetric, and satisfies

(F,H)H ≡ 0 for any functional F. (2.42)

Thus, metriplectic systems are thermodynamically consistent:

First law (energy conservation):

Ḣ = {H,F} − (H,F)H

= {H,H}+ T (H,S)H = 0 ; (2.43)

Second law (entropy production):

Ṡ = {S,F} − (S,F)H

= −(S,H)H + T (S, S)H (2.44)

= T (S, S)H ≥ 0 , (2.45)

which follows because {S,F} ≡ 0 and (S,H)H ≡ 0. As shown in Morrison and
Updike [2023] the metriplectic 2-bracket emerges from the 4-bracket as follows:

(F,G)H = (F,H;G,H) , (2.46)

where for convenience here and henceforth we set T = 1. Because of the minimal
metriplectic properties of the 4-bracket, we are assured to have the thermodynamic
consistency of (2.43) and (2.45).

The 2-bracket that emerges from the general 4-bracket of (2.33) is the following:

(F,G)H =(F,H;G,H)

=

∫
dnz

∫
dnz′
∫
dnz′′
∫
dnz′′′ Σαβ(z, z′)Mγδ(z′′, z′′′)× δF

δξα(z)

δG

δξβ(z′)

δH

δξγ(z′′)

δH

δξδ(z′′′)
,

(2.47)
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which in light of the K-N product satisfies (F,H)H = 0 for all F . This will be true
for any choice of the Hamiltonian H. Another 2-bracket can be obtained from (2.33)
by making a convenient choice of variables; viz., we choose the set of variable as in
(2.1):

ξ(z, t) =
(
ξ1(z, t), ξ2(z, t), . . . , ξN(z, t)

)
(2.48)

where the total energy density is used to be ξN instead of the entropy density the last
dynamical variables. That this is possible is well known in thermodynamics because
the entropy must be a monotonic increasing function of the internal energy, which
allows via the inverse function theorem transformation between the extensive energy
or extensive entropy representations [Callen, 1966]. The Hamiltonian functional is
given by

H =

∫
Ω

ξN , (2.49)

δH(z)/δξα(z
′) = δαNδ(z − z′) and ∇δH(z)/δξα(z) ≡ 0. Thus, (2.47) reduces to

(F,G)H =(F,H;G,H)

=

∫
dnz

∫
dnz′ Σαβ(z, z′) × δF

δξα(z)

δG

δξβ(z′)
, (2.50)

From (2.31), we set the following particular choices

Lαβ
ab (z, z

′) = Lαβδ(z − z′), and La = L′a := ∇ , (2.51)

where Lαβ are the coefficients that we will link to (2.12) in the next section. The
metriplectic 2-bracket (2.50) becomes

(F,G)H = (F,H;G,H) =

∫
Ω

dnz∇Fξα · Lαβ · ∇Gξβ , (2.52)

In Sec.2.3.2 we will give a method to build a metriplectic 2-bracket as presented
in Coquinot and Morrison [2020b] and show how the bracket of (2.52) fits into the
framework of conventional non-equilibrium thermodynamics as, e.g., described in
de Groot and Mazur [1962]. In this way we will physically identify the meaning of
Lαβ.
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2.3.2 FLUXES AND AFFINITIES

In this section, we give a method introduced by Coquinot and Morrison [2020b] that
lead to build the metriplectic 2-bracket. A fundamental equations of non-equilibrium
thermodynamics is the general thermodynamic identity

dσ = Xαdξα, (2.53)

which relates σ, the entropy density, to the ξα densities associated with conserved
extensive properties and to Xα := ∂σ/∂ξα, quantities called affinities (or thermo-
dynamic forces). All the densities are characterized by the following conservation
equations:

∂tξα +∇ · Jα = 0 , (2.54)

where Jα is at present an unknown flux associated with the density ξα. Then, the
evolution of the entropy is given by

∂tσ +∇ · (XαJα) = Jα · ∇Xα . (2.55)

The righthand side of (2.55) is the dissipative term, which is the sum of the fluxes Jα

contracted with ∇Xα. The linear assumption of non-equilibrium processes amounts
to relating fluxes and affinities according to (2.12)

Jα = LαβXβ . (2.56)

If we identify the Lαβ of (2.56) with that of (2.52), we see how metriplectic brack-
ets are related to the flux-affinity relations. Onsager symmetry, assumed to arise
from microscopic reversibility, amounts to the symmetry Lαβ = Lβα and the semi-
definiteness property assures the second law, i.e., entropy growth.

To see how L is related to a bracket on the phase space, let us rewrite the
evolution equations, at a space point x and time t, as follows:
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∂tξ
α(z, t) = −∇ · Jα(z, t) (2.57)

= −∇ ·
[
Lαβ(z, t) · ∇

(
∂σ

∂ξβ

)
(z, t)

]
= −

∫
Ω

dnz′δ(z − z′)∇ ·
[
Lαβ(z′, t) · ∇

(
∂σ

∂ξβ

)
(z′, t)

]
=

∫
Ω

dnz′
[
∇ (δ(z − z′)) · Lαβ(z′, t) · ∇

(
∂σ

∂ξβ

)
(z′, t)

]
=

∫
Ω

dnz′
[
∇
(
δξα(z, t)

δξγ(z′, t)

)
· Lγβ(z′, t) · ∇

(
δS(t)

δξβ(z′, t)

)]
(2.58)

where we have used repeated index notation for summation over β and γ. Thus,
the dissipation part of the dynamics can be expressed with the following symmetric
2-bracket

(F,G) : =

∫
Ω

dnz∇
(

δF

δξα(z)

)
· Lαβ · ∇

(
δG

δξβ(z)

)
=

∫
Ω

dnz∇Fξα · Lαβ · ∇Gξβ (2.59)

which match with the 2-bracket (2.52) that comes from the form 4-bracket have
constructed using K-N product with the choice (2.51), i.e

(F,G) ≡ (F,G)H . (2.60)

In the Sec.3.3.4, we will give an example of metriplectic 2-bracket formulation using
the previous method.

2.4 DERIVATION OF METRIPLECTIC 4-BRACKETS

As we mentioned in Sec.2.2.1, the construction of metriplectic 4-bracket facilitated
by making use of the Kulkarni-Nomizu product [Kulkarni, 1972, Nomizu, 1971] (K-
N product) of two operators M and Σ. This shifts the burden to determining the
two operators, which still might not be straightforward. The question of how to
determine the M and Σ leads us to express the dissipative fluxes in a new manner,
one different from the Onsager reciprocal relations approach of (2.12). Instead we
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assume a flux-force relation as follows:

Jα = −Lαβ ∇(δH/δξβ) , (2.61)

where ξβ are the dynamical variables, H is the Hamiltonian functional, and δH/δξβ

is the functional derivative. We will see that expression (2.61) is intimately con-
nected to the distinctive physical roles played by M and Σ, and it guides their
determination. Expression (2.61) can be further generalized (see (2.73) below) by
replacing ∇ by any pseudodifferential operator that has an adjoint, instead of a
simple spatial gradient. This adjoint assumption is crucial for developing a method
to derive the metriplectic 4-bracket by knowing the Hamiltonian functional H, the
entropy functional S, and the unknown coefficients Lαβ. These coefficients are de-
termined by assuming phenomenological laws, as is done with the forces in non-
equilibrium thermodynamics theory [Öttinger, 2005]. This approach also has the
added feature that it makes clear the origin of dependencies on dynamical and ther-
modynamic variables; viz., the forces that arise from δH/δξβ, which depends on
internal energy functionals through H, and those that arise from phenomenological
laws through Lαβ.

Systematic development of the theory

In this section we propose a method for constructing the metriplectic 4-bracket, by
selecting the bilinear symmetric operators M and Σ of the K-N product. We provide
a direct procedure for making these selections. En route to our goal, we make some
notational choices. As in (2.1), the selection of set of dynamical variables defined
on space-time Ω× R was defined as follows:

ξ(z, t) =
(
ξ1(z, t), ξ2(z, t), . . . , ξN(z, t)

)
, (2.62)

where we previously commented that it is preferable to choose the ξα to be densities.
To be more specific, here we suppose ξ1(z, t), ξ2(z, t), . . . , ξN−1(z, t) satisfy conserva-
tion laws and the last component ξN represent the entropy density, i.e, the entropy
per unit volume. In practice the various ξα besides the entropy ξN may, based on the
physical properties under consideration, have particular tensorial qualities, e.g., they
may be scalars, vectors, or tensors or pseudo-tensors of arbitrary rank. To avoid a
clutter of notation, we will not be explicit about this tensorial character, but strive
for a notation that makes it clear how to proceed in particular cases. The examples
of Sec.3.1, Sec.3.2 and Sec.3.3 should help clarify this. We also assume Ω denotes
an arbitrary domain of Rn with ∂Ω being its boundary. For convenience, we will
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omit the incremental volume element dnz for integrations over Ω, i.e.,
∫
Ω
=
∫
Ω
dnz.

We assume strong boundary conditions such that all integrations by parts produce
vanishing boundary terms.

Given our choice of ξN as the entropy density, the total entropy is evidently given
by the following:

S[ξ] =

∫
Ω

ξN . (2.63)

This functional is required to be a Casimir invariant (see equation (2.11)) of the non-
canonical Poisson bracket { ·, · }, which one is assumed to generate the Hamiltonian
part of the dynamic,

{F, S} = 0, ∀F ∈ B . (2.64)

The Hamiltonian functional H associated to the noncanonical Poisson bracket { ·, · }
is given by

H[ξ] =

∫
Ω

h , (2.65)

where h, the Hamiltonian density, in general depends on all the variables ξ1, ξ2, . . . , ξN .
We will take H to be the total energy, as is indeed the case for the examples men-
tioned in Sec. 2.1. The evolution of the dynamical variables in the ideal case, i.e.,
when dissipation is not included, is given by

∂tξ
α = {ξα, H}, α = 1, 2, . . . , N . (2.66)

Now it remains to add to (2.66) the dissipative evolution, which has the following
natural combined form:

∂tξ
α = {ξα, H}+ L(α) · Jα , α = 1, . . . , N − 1 , (2.67)

∂tξ
N = {ξN , H}+ L(N) · JN + Zα · L̃αβ · Zβ . (2.68)

Equation (2.67) is the sum of two conservative terms, the first being Hamiltonian,
while the second is dissipative. In this second expression α is not summed, but a
particular operator L(α) may act on each flux Jα. Recall, this was the purpose of
the parenthesis. If ξα were a rank m tensor, then usually Jα would be of rank m+1

with the contraction indicated by “ · ” providing tensorial consistency. However, we
leave open the possibility that L(α) may contribute to tensorial consistency. For
usual nonequilibrium thermodynamics L(α) = −∇, for all α, and the conservative
form of (2.67) is manifest. Equation (2.68) similarly has conservative terms, but
the addition of the last term is responsible for entropy production. Because ξN is
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a scalar density, JN is a vector and the contractions of Zα · L̃αβ · Zβ between some
“vector fields" Zα and a quantity L̃αβ produces the correct tensorial form. Since the
entropy production must be guaranteed, we assume L̃αβ is symmetric and positive
semidefinite, giving

Ṡ =

∫
Ω

Zα · L̃αβ · Zβ =:

∫
Ω

ṡprod ≥ 0 . (2.69)

The construction above is similar to that presented in [Coquinot and Morrison,
2020a, see page 14], in order to construct a general form of metriplectic 2-bracket.
However, there the pseudodifferential operators were all taken to be spatial gradients,
i.e., L(α) := −∇. Here we generalize this by supposing each operator L(α) has an
adjoint L(α)

∗ defined with respect to the standard inner product, i.e., (f, g) =
∫
Ω
f g,

which of course is the case for ∇ where ∇∗ = −∇.
What we have accomplished so far is the first step of the anlysis-synthesis

method, the analysis phase. With this method we work backwards from the de-
sired form of the dynamical equations (2.67) and (2.68). In the second step, the
synthesis phase, we determine explicitly the quantities Jα, Zα and L̃αβ. We will
show that these quantities are expressed in terms of the functional derivatives of
the Hamiltonian, Hξα . To be clear, we remind the reader that the goal of this
analysis-synthesis process is to construct the operators M and Σ.

Given any functional F [ξ], we have the basic identity

Ḟ [ξ] =

∫
Ω

δF

δξα
∂tξ

α , (2.70)

which follows upon assuming Ω is fixed and boundary terms vanish, which we have
assumed throughout. Applying this to H and using our notation Hξα = δH/δξα we
obtain upon substitution of (2.67) and (2.68)

Ḣ[ξ] =

∫
Ω

Hξα L(α) · Jα +HξN Zα · L̃αβ · Zβ

=

∫
Ω

Jα · L(α)
∗ Hξα +HξN Zα · L̃αβ · Zβ . (2.71)

To ensure energy conservation, (2.71) must vanish. Simple and natural choices that
achieve this are the following generalized force-flux relations:

Zα = L(α)
∗ Hξα , (2.72)

Jα = −HξN L̃
αβL(β)

∗ Hξβ . (2.73)
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To understand these formulas consider the standard case where L(α) = −∇ for all
α. This gives the force-flux relations,

Zα = ∇Hξα , (2.74)

Jα = −HξN L̃
αβ∇Hξβ = −Lαβ∇Hξβ , (2.75)

where in the second equality of (2.75) we have made comparison with (2.61). Thus

Lαβ = HξN L̃
αβ (2.76)

and we see that the Lαβ of the equation (2.61) is not the same as L̃αβ of (2.68).
If the Hamiltonian obtains its σ dependence in the standard way via an internal
energy function, we will see that these quantities differ by a factor of T , i.e.,

L̃αβ = Lαβ/T . (2.77)

Now we are in position to determine the M and Σ of the K-N product and hence
the metriplectic 4-bracket. We are led the following choices:

M(dF, dG) = FξN GξN , (2.78)

Σ(dF, dG) = L(α)
∗ (Fξα)L̃

αβL(β)
∗ (Gξβ)

= L(α)
∗ (Fξα)

Lαβ

HξN
L(β)

∗ (Gξβ) . (2.79)

Here we have chosen the simplest form for M , which singles out entropy, and makes
the meaning of Σ perspicuous.

Constructing the 4-bracket with these choices of M and Σ, according to

(F,K;G,N) =

∫
Ω

(Σ ∧M) (dF, dK, dG, dN) , (2.80)

gives (2.67) and (2.68), in metriplectic form, viz.

∂tξ
α = { ξα, H }+ (ξα, H;S,H), ∀α = 1, . . . , N . (2.81)
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Manifestly, (2.38) is satisfied and, we have for (2.39)

Ṡ = (S,H;S,H) = K(H,S) =

∫
Ω

Σ(dH, dH)

=

∫
Ω

L(α)
∗ (Hξα) L̃

αβL(β)
∗ (Hξβ) ≥ 0 . (2.82)

Comparison with (2.69) reveals ṡprod becomes

ṡprod = Σ(dH, dH) = L(α)
∗ (Hξα) L̃

αβL(β)
∗ (Hξβ)

= L(α)
∗ (Hξα)

Lαβ

HξN
L(β)

∗ (Hξβ) . (2.83)

Thus, the theory is complete once the phenomenological coefficients Lαβ are de-
termined. We reiterate that our construction clearly delineates between the phe-
nomenological laws embodied in Lαβ and the local thermodynamics contained in
the Hamiltonian, e.g., in the internal energy function. Also, choosing M as in (2.78)
endows Σ with the physical meaning inherent in (2.82) and (2.83) relating entropy
production and sectional curvature. We comment further on these coefficients in the
context of non-equilibrium thermodynamics theory in Sec. 2.4.1.

2.4.1 NON-EQUILIBRIUM THERMODYNAMICS THEORY

Many phenomena can be described by the idea that fluxes are caused by gradients
of quantities, which are viewed as thermodynamic forces (affinities). For example,
Fourier’s law relates heat flow to temperature gradients, Fick’s law relates diffusion
to concentration gradients, and in the Navier-Stokes equation momentum flux is
related to velocity gradients. In non-equilibrium thermodynamics this is generalized
by assuming fluxes are linear combinations of thermodynamic forces and thereby
allowing for cross-effects. This is the essence of the Onsager reciprocal relations
[Onsager, 1931, Casimir, 1945], which are here represented by the force-flux relations
of (2.12) (see, e.g., de Groot and Mazur [1962]).

For gaseous systems, an underlying kinetic theory can provide a justification for
the phenomenological relations embodied in the Lαβ. This is the case for low-density
gases, but in general such calculations are difficult or even prohibitive. However,
many irreversible processes are empirically seen to be governed by linear relations
between fluxes and forces [Miller, 1960] and in this way the Lαβ are provided. How-
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ever they are provided, our theory leaves open the possibility that they can depend
on all the dynamical variables.

Returning to the theory developed in Sec. 2.4, we observe from equation (2.73)
that the thermodynamic force-like terms now take the new form L(α)Hξα , where H
is the Hamiltonian functional (cf. Eq. (2.61)). In the next chapter we will confirm
that our new form L(α)Hξα can match known examples and that our last set of the
UT-algorithm leading to the metriplectic 4-bracket provides a mean for generalizing
known examples and providing new thermodynamically consistent theories.
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CHAPTER

UNIFIED THERMODYNAMIC
ALGORITHM 3

In this chapter, we proposed an algorithm for constructing a metriplectic 4-bracket
and, consequently, a means for producing thermodynamically consistent systems.
As examples, this will be done for a general Navier-Stokes-Fourier system and for
a general Cahn-Hilliard-Navier-Stokes system, a model for two phase flow. The
algorithm has the following four steps: i) First, select a set of dynamical variables. ii)
Next, select energy and entropy functionals, H and S, dependent on the dynamical
variables, based on the physics of the phenomena to be described. iii) The third step
is to obtain the noncanonical Poisson bracket [Morrison, 1998b] of the ideal (non-
dissipative) part of the theory, with the chosen entropy as a Casimir invariant. iv)
The final step is to construct a metriplectic 4-bracket. We will refer to the algorithm
as the “unified thermodynamic algorithm” (UT-algorithm).

3.1 NAVIER-STOKES-FOURIER

As a first example we begin with the Navier-Stokes-Fourier (NSF) system. We
proceed with the UT-algorithm motivated by previous development [Morrison and
Updike, 2024, Zaidni et al., 2024]. En route we find the algorithm produces a
significantly more general system that contains the NSF system as a special case.
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• First step of UT-algorithm: We choose the set of fluid variables as follows:

ξ(x, t) = (ρ(x, t),m(x, t), σ(x, t)) , (3.1)

where ρ is the mass density, m = ρv is the momentum density with v being the
Eulerian velocity field, and σ is the entropy density. Observe we have singled out
the entropy density σ as the last variable, consistent with (2.62).

• Second step of UT-algorithm: Consistent with (2.63), we take the total entropy
to be the integral of the last component

S =

∫
Ω

σ . (3.2)

For the Hamiltonian functional for NSF a natural choice would be

H =

∫
Ω

|m|2

2ρ
+ ρ u(ρ, σ/ρ) , (3.3)

the sum of fluid kinetic energy and the specific internal energy u, which is known
to be conserved by the NSF. More general Hamiltonians including, e.g., the gravi-
tational force would be straightforward. The usual thermodynamics relations are

p = ρ2
∂u

∂ρ
and T =

∂u

∂s
, (3.4)

where the specific entropy s = σ/ρ. Alternatively, we can leave the Hamiltonian
unspecified, i.e., let it be any functional H[ρ,m, σ] – independent of its form any H
will be conserved by the metriplectic 4-bracket dynamics.

• Third step of UT-algorithm: The appropriate Poisson bracket is that given in
[Morrison and Greene, 1980]. For two functionals F,G ∈ B it is defined as follows:

{F,G} = −
∫
Ω

m · [Fm · ∇Gm −Gm · ∇Fm]

+ ρ [Fm · ∇Gρ −Gm · ∇Fρ]

+ σ [Fm · ∇Gσ −Gm · ∇Fσ] , (3.5)

where S is a Casimir invariant, i.e., {S, F } = 0, for any functional F .

• Fourth step of UT-algorithm: To construct the metriplectic 4-bracket, we proceed
the systematic development theory presented in Sec. 2.4, viz., M and Σ are given
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by

M(dF, dG) = Fσ Gσ , (3.6)

Σ(dF, dG) = L(α)
∗ (Fξα)

Lαβ

Hσ

L(β)
∗ (Gξβ) , (3.7)

and the UTA is complete up to the choices for L(α)
∗ and Lαβ. For any choices of

these quantities, according to (2.73) and (2.76), the 4-bracket using (3.6) and (3.7)
will be consistent with the following general expressions for the fluxes:

Jρ = −Lρρ · Lρ
∗(Hρ)− Lρm :Lm

∗ (Hm)− Lρσ · Lσ
∗ (Hσ) ,

J̄m = −Lmρ ⊗ Lρ
∗(Hρ)− Lmm :Lm

∗ (Hm)− Lmσ ⊗ Lσ
∗ (Hσ) ,

Js = −Lσρ · Lρ
∗(Hρ)− Lσm :Lm

∗ (Hm)− Lσσ · Lσ
∗ (Hσ) , (3.8)

where Jρ is the net mass flux, J̄m is the momentum flux, and Js is the net entropy
flux. Thus we have obtained a quite general thermodynamically consistent system,
one that generalizes the NSF system. In fact, the 4-bracket that produces (3.8) is
sufficiently general to produce the Brenner-Navier-Stokes system of Sec. 3.2 and the
significant generalizations of the BNS that we describe there.

Now we specialize and show that the general expressions for the fluxes of (3.8)
reduce to those known for the NSF (see, e.g., de Groot and Mazur [1962], Coquinot
and Morrison [2020b], Morrison [1984a]), viz.

Jρ = 0 , J̄m = − ¯̄Λ : ∇v , Js = − κ̄

T
· ∇T , (3.9)

where Jρ is the net (vector) mass flux, J̄m is the momentum flux (rank 2 tensor), and
Js is the net (vector) entropy flux. In (3.9) κ̄ is the thermal conductivity tensor,
D̄ is the diffusion tensor, which along with κ̄ is assumed to be a symmetric and
positive definite 2-tensor and ¯̄Λ is the viscosity 4-tensor, the usual rank 4 isotropic
Cartesian tensor given by

Λijkl = η

(
δilδjk + δjlδik −

2

3
δijδkl

)
+ ζ δijδkl , (3.10)

with viscosity coefficients η and ζ and i, j, k and l taking on values 1,2,3. In (3.9)
and henceforth we use a single “ · " to indicate neighboring contractions and we use
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the double dot convention as follows:

(κ̄ · ∇Gσ)i = κij∂jGσ

( ¯̄Λ :∇m)ij = Λijkl∂kml

(ϵ :∇m)i = ϵijk∂jmk (3.11)

where repeated indices are summed over. We have added (3.11) for later use, when
we have a double contraction with a 3-tensor ϵ.

To see how the fluxes of (3.9) emerge from our general expressions of (3.8) we
set L(α)

∗ = ∇, for all α, and assume H is given by (3.3); therefore

Hσ = T, Hm = v, Hρ = −|m|2

2ρ2
+ u− T σ

ρ
+
p

ρ
, (3.12)

and comparison of (3.8) with (3.9) reveals that the only nonzero phenomenological
coefficients Lαβ are the following:

Lmm = ¯̄Λ and Lσσ =
κ̄

T
. (3.13)

Thus we immediately obtain Σ from (3.7) as

Σ(dF, dG) = ∇Fm :
Lmm

Hσ

: ∇Gm +∇Fσ ·
Lσσ

Hσ

· ∇Gσ

= ∇Fm :
¯̄Λ

T
: ∇Gm +∇Fσ ·

κ̄

T 2
· ∇Gσ (3.14)

which together with the expression for M of (3.6) gives the 4-bracket

(F,K;G,N) =

∫
Ω

1

T

[
[Kσ∇Fm − Fσ∇Km] : ¯̄Λ: [Nσ∇Gm −Gσ∇Nm]

+
1

T

[
Kσ∇Fσ − Fσ∇Kσ

]
·κ̄·
[
Nσ∇Gσ −Gσ∇Nσ

]]
. (3.15)
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Insertion of H of (3.3) and S of (3.2), yields the NSF dynamical system

∂tρ = {ρ,H}+ (ρ,H;S,H)

= −v · ∇ρ− ρ∇ · v , (3.16)

∂tv = {v, H}+ (v, H;S,H)

= −v · ∇v −∇p/ρ+ 1

ρ
∇ · ( ¯̄Λ : ∇v) , (3.17)

∂tσ = {σ,H}+ (σ,H;S,H)

= −v · ∇σ − σ∇ · v +∇ ·
( κ̄
T

· ∇T
)
+

1

T 2
∇T · κ̄ · ∇T +

1

T
∇v : ¯̄Λ : ∇v .

(3.18)

Here we have dropped surface terms arising from integration by parts and have
used δρ(x)/δρ(x′) = δσ(x)/δσ(x′) = δv(x)/δv(x′) = δ(x− x′). By construction we
automatically have the entropy production

Ṡ = (S,H;S,H) =

∫
Ω

ṡprod ≥ 0 . (3.19)

where

ṡprod = ∇v :
¯̄Λ

T
: ∇v +∇T · κ̄

T 2
· ∇T .

It is important to note that the square of the temperature in the denominator of the
coefficient κ̄/T 2, has factors from different physical origins. One factor comes from
the systematic theory, where temperature is defined as T := Hσ, while the second
arises from the phenomenological law, specifically Fourier’s law, where the heat flux
is given by q = −κ̄∇T/T .

3.2 BRENNER-NAVIER-STOKES-FOURIER

In a series of papers [Brenner, 2005b,a, 2006, 2012] Brenner proposed a modification
to address what he believed to be certain limitations of the traditional Navier-Stokes-
Fourier system. In this section we will show that his theory emerges as a special
case of our development of Sec. 3.1. Moreover, our theory shows the following:
how to unambiguously delineate the dissipative dynamics from the nondisipative
(Hamiltonian) dynamics; that generalizations of Brenner’s theory by other authors
are again special cases of our theory, in particular they all emerge from (3.8); all

37



these theories amount to modifications of the form of dissipation in the Navier-Stokes
equations.

Brenner’s proposed modification is based on a “bivelocity theory" that introduces
the idea of two distinct velocities: the mass velocity vm, which corresponds to the
conventional understanding, and a volume velocity denoted by v. In studies of
classical continuum fluid mechanics, these velocities are assumed to be identical.
However, Brenner argued that, in general, vm ̸= v. This hypothesis leads to a
nontraditional extension of the NSF system, known as the Brenner-Navier-Stokes-
Fourier (BNSF) system, which is formulated as follows:

∂ρ+∇ · (ρvm) = 0 , (3.20)

∂(ρv) +∇ · (ρvmv) = ∇ · (−pĪ + ¯̄Λ : ∇v) , (3.21)

∂σ +∇ · (σvm) = ∇ ·
[ κ̄
T

· ∇T − w

T
(p+ u− ρα)

]
+ ṡprod .

Here, as before, u(ρ, s) is the internal energy per unit volume, α is a new un-
constrained phenomenological parameter, and w represent the velocity difference
vector,

w = v − vm.

(Note, in the works of Brenner the symbol J is used for this velocity difference.)
It remains to close this system by determining w in terms of the dynamical

variables. In [Brenner, 2005b] Brenner first proposed w = α∇ ln(ρ). Later in
[Brenner, 2006] and [Öttinger, 2005, Bedeaux et al., 2006], using using Öttinger’s
version of GENERIC, it was settled on following form for w:

w = D̃ (∇p− γ∇T ) , . (3.22)

where for simplicity we introduced the diffusion-like coefficient D̃ := D′/(ρ2T ) and
the parameter γ is defined by

ρα− u = p− γT .

Thus the system contain one parameter, either α or γ. By taking γ =
(
∂p
∂T

)
ρ
, Brenner

established that the difference velocity w becomes

w =
D̃

κT
∇ ln ρ , (3.23)
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where κT = 1
ρ

(
∂ρ
∂p

)
T

is the coefficient of isothermal compressibility, assumed to be
nonnegative. In these works it is claimed that this is the most general possible
constitutive equation for the velocity difference w. However, a generalization was
given in [Reddy et al., 2019], which we will further generalize below using the UT-
algorithm.

To view the above BNSF system in a form adapted to the UT-algorithm, we
interpret v to be the usual velocity field, and write the system in term of variables
ξ = (ρ,m = ρv, σ) as follows:

∂tρ+∇ · (ρv) = ∇ · (ρw) , (3.24)

∂tm+∇· (m⊗ v) = ∇·(−pĪ + ¯̄Λ:∇v +m⊗w) , (3.25)

∂tσ +∇ · (σv) = ∇·
[ κ̄
T
∇T + (σ − γ)w

]
+ ṡprod . (3.26)

Except for γ and w the quantities above are defined as for the NSF system. Ev-
idently, from (3.24), (3.25), and (3.26) it is seen that the fluxes are given by the
following:

Jρ = −ρw , (3.27)

J̄m = − ¯̄Λ :∇v −m⊗w , (3.28)

Js = − κ̄

T
· ∇T − (σ − γ)w , (3.29)

which determine the phenomenological coefficients in terms of w.
Given the above and the results of Sec. 3.1, there is no need to run through

the steps of the UT-algorithm: the variables ξ are the same, the forms of S and H
of (3.2) and (3.3) are the same, the Poisson bracket is again the Morrison-Greene
Poisson bracket of (3.5) and, the form of the operators L(α) are the same. Thus, it
only remains to determine the phenomenological coefficients and these are provided
by matching (3.27), (3.28) and (3.29) with (3.8).

Comparison of (3.27) with the first equation of (3.8) leads to the determination
of w. We have

Jρ = −Lρρ · ∇Hρ − Lρm :∇Hm − Lρσ · ∇Hσ , (3.30)

where the 2-tensors Lρρ and Lρσ and the 3-tensor Lρm are contracted as in (3.11).
From the functional derivative Hρ of (3.12) and the local thermodynamic identities
(3.4) we find

∇Hρ = −σ
ρ
∇T +

1

ρ
∇p− (∇v) · v (3.31)
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and
∇p = ρ∇Hρ + (∇Hm) ·m+ σ∇Hσ . (3.32)

Thus the difference velocity w of (3.22) can be rearranged as the following linear
combination of ∇Hρ, ∇Hm and ∇Hσ:

w = D̃ρ∇Hρ + D̃ (∇Hm) ·m+ D̃σ̂∇Hσ . (3.33)

where we defined σ̂ := σ − γ. Therefore, according to (3.27)

Jρ = −D̃ρ2∇Hρ − D̃ρ (∇Hm) ·m− D̃ρσ̂∇Hσ , (3.34)

and comparison with (3.30) yields

Lρρ= D̃ρ2 Ī , Lρm= D̃ρ Ī ⊗m , Lρσ= D̃ρσ̂ Ī . (3.35)

Similarly, using (3.8), (3.28), and (3.33),

J̄m = −Lmρ ⊗∇Hρ − Lmm :∇Hm − Lmσ ⊗∇Hσ

= − ¯̄Λ :∇Hm −m ⊗
(
D̃ρ∇Hρ + D̃ (∇Hm) ·m+ D̃σ̂∇Hσ

)
; (3.36)

whence we see

Lmρ = D̃ρm , Lmσ = D̃σ̂m , and

Lmm = ¯̄Λ + D̃m⊗ Ī ⊗m . (3.37)

Note, using our convention ( ¯̄Λ :∇v)ij = Λijkl∂kvl we have(
m⊗ Ī ⊗m) : ∇Hm

)
ij
= (miδjkml)∂kvl

= miml∂jvl . (3.38)

Finally, using (3.8), (3.29), and (3.33),

Js = −Lσρ · ∇Hρ − Lσm :∇Hm − Lσσ · ∇Hσ

= − κ̄

T
· ∇Hσσ̂

(
D̃ρ∇Hρ + D̃ (∇Hm) ·m+ D̃σ̂∇Hσ

)
;
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whence we see

Lσρ = D̃ρσ̂ Ī , Lσσ =
κ̄

T
+ D̃σ̂2 Ī (3.39)

Lσm = D̃σ̂ Ī ⊗m (3.40)

Given phenomenological coefficients we obtain directly the operators M and Σ.
Again M is chosen as in (3.6), while Σ is given as follows:

Σ(dF, dG) =
1

T

[
D̃ρ2∇Fρ · ∇Gρ + D̃ρ

(
∇Fρ · (∇Gm) ·m+∇Gρ · (∇Fm) ·m

)
+ D̃ρσ̂

(
∇Fρ · ∇Gσ +∇Gρ · ∇Fσ

)
+∇Fm :

( ¯̄Λ + D̃m⊗ Ī ⊗m
)
: ∇Gm

+ D̃σ̂
(
∇Fσ · (∇Gm) ·m+∇Gσ · (∇Fm) ·m

)
+∇Fσ ·

( κ̄
T

+ D̃σ̂2Ī
)
· ∇Gσ

]
. (3.41)

Note in the penultimate line of (3.41) we have used

∇Fσ · Ī ⊗m :∇Gm = ∇Fσ · (∇Gm) ·m . (3.42)

(Recall (3.11).) By the metriplectic 4-bracket ( . , . ; . , . ) that comes from the K-N
product of M and Σ and upon insertion of S as given by (3.2) and H as given by
(3.3), the system (3.24), (3.25), and (3.26) is produced according to

∂tρ = {ρ,H}+ (ρ,H;S,H) ,

∂tm = {m, H}+ (m, H;S,H) ,

∂tσ = {σ,H}+ (σ,H;S,H) ,

and the total entropy production is governed by the following:

Ṡ = (S,H; , S,H) =

∫
Ω

Σ(dH, dH)

=

∫
Ω

1

D̃ T
w ·w +∇T · κ̄

T
· ∇T +∇v : ¯̄Λ : ∇v

=

∫
Ω

1

T

[
D̃|vm − v|2 +∇T · κ̄

T
· ∇T +∇v : ¯̄Λ : ∇v

]
≥ 0 . (3.43)
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Alternatively, using (3.23)

Ṡ =

∫
Ω

1

T

[
D̃

κ2Tρ
2
|∇ρ|2 +∇T · κ̄

T
· ∇T +∇v : ¯̄Λ : ∇v

]
≥ 0 . (3.44)

Therefore, we shown that the system proposed by Brenner [2006] can be under-
stood as an extension of the classical Navier-Stokes-Fourier, achieved by introducing
an additional dissipation mechanism. Brenner postulates that his hypothesis primar-
ily alters the ideal part of the dynamics. However, if by ideal is meant Hamiltonian,
we see that this is not true since the Hamiltonian part is still governed by the Poisson
bracket of Morrison and Greene [1980]. In addition, Brenner links this modification
to the compressibility of the fluid and suggests that the mass velocity vm and volume
velocity v coincide if, and only if, the fluid is incompressible (i.e., ρ = const).

We have also shown that the expression of w given by (3.22) is not the most
general form giving a thermodynamically consistent system, since from (3.30)

w =
(
Lρρ · ∇Hρ + Lρm :∇Hm + Lρσ · ∇Hσ

)
/ρ , (3.45)

we see that w can be any linear combinations of ∇Hρ, ∇Hm and ∇Hσ contracted
appropriately with the 2-tensors Lρρ and Lρσ and the 3-tensor Lρm.

In a more recent paper [Reddy et al., 2019] thermodynamically consistent gener-
alizations of the BNSF system were given. In concluding this section we show that
the various generalizations of this reference are again special cases of our metriplec-
tic system of Sec. 3.1 with (3.45). Specifically, the cases of Reddy et al. [2019]
(rewritten in our notation) are as follows:

Equation (77) of Reddy et al. [2019],

w = κm∇ ln ρ , (3.46)

where κm = D̃/κT , is Brenner’s (3.23) using γ =
(
∂p
∂T

)
ρ
;

Equation (78) of Reddy et al. [2019],

w = κT∇ lnT =
κT
T

∇Hσ , (3.47)

is given by our (3.45) with the choices

Lρρ = Lρm = 0, Lρσ = ρ
κT
T
Ī ; (3.48)
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Equation (79) of Reddy et al. [2019]

w = κp∇ ln p =
κp
p
∇p

=
κp
p

(
ρ∇Hρ + (∇Hm) ·m+ σ∇Hσ

)
, (3.49)

where κp is the thermal conductivity at constant pressure and the third equality
follows from (3.32). Equation (3.49) is given by our (3.45) with the choices

Lρρ = ρ2
κp
p
Ī , Lρm = ρ κp Ī ⊗m ;

Lρσ = ρ κp σ Ī; (3.50)

Equation (80) of Reddy et al. [2019],

w = κτ∇× v = κτ∇×Hm , (3.51)

where κτ is another phenomenological quantity. Equation (3.51) is a particular case
of our theory by taking

Lρρ = 0, Lρm = ρ κτ ϵ , Lρσ = 0 . (3.52)

where ϵ is the Levi-Civita 3-tensor (density) and contraction is defined by (3.11).
Note, the tensorial inconsistency of (3.51) can be resolved by assuming κT is a
pseudoscalar.

3.3 GIBBS-NAVIER-STOKES

In this section we describe general features of the metriplectic framework in the
context of the Gibbs-Navier-Stokes system (GNS), a generalization of the Navier-
Stokes equations that includes the dual thermodynamical variables of concentration
and chemical potential.
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3.3.1 DESCRIPTION OF THE GIBBS-NAVIER-STOKES
SYSTEM

The GNS for 2 phase flow proceeds on familiar ground [Eckart, 1940a,b, de Groot and
Mazur, 1962]. It amounts to the single phase thermodynamic Navier-Stokes system
or as it is sometimes called the Fourier Navier-Stokes system with the dispersed phase
described by the addition of a concentration variable, c, giving the set of dynamical
variables {v, ρ, c, s}. Here we review global aspects of this known system, before
showing how it emerges from the metriplectic formalism.

We suppose the mixture of two phases are contained in a volume Ω, and we
consider the following global quantities and their evolution:

M =

∫
Ω

ρ , Ṁ =−
∫
∂Ω

Jρ · n, (3.53)

P =

∫
Ω

ρv , Ṗ = −
∫
∂Ω

J̄m · n, (3.54)

H =

∫
Ω

ρ

2
|v|2 + ρ u(ρ, s, c) , Ḣ =−

∫
∂Ω

Je · n , (3.55)

C =

∫
Ω

ρ c , Ċ =−
∫
∂Ω

Jc · n, (3.56)

S =

∫
Ω

ρ s , Ṡ = −
∫
∂Ω

Js · n+

∫
Ω

ṡprod . (3.57)

Here ρ is the density of the mixture, v is the mass-averaged velocity of the mixture,
s is the specific entropy, and the phase variable c is the specific concentration (di-
mensionless mass concentration) that determines how much of the dispersed phase
of the mixture is present at a point x ∈ Ω ⊂ R3. The variable c̃ = ρc is the
mass density of the dispersed phase. The functionals M , P , H and S are the total
mass, momentum, energy, and entropy of the mixture, respectively, while C is the
total mass of one of the constituents. The local thermodynamics of the mixture
is described by u(ρ, s, c), the internal energy per unit mass. For convenience the
gravitational force is not considered, although its inclusion is straightforward.

Quantities in the time derivatives of the basic functionals are as follows: n is
the unit outward normal vector of the boundary ∂Ω, Jρ is the net mass flux, Jc is
the phase field flux, which depends on gradient of the chemical potential, J̄m is the
stress tensor – surface forces – due to pressure and viscosity, Je the energy flux that
contains the rate of work done by the surface forces (external energy), the rate of
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heat transfer and the rate of diffusivity in phase field (internal energy), Js is the net
entropy flux through the boundary, and ṡprod is the local rate of entropy production.
The second law of thermodynamics is expressed by the requirement that ṡprod is
non-negative.

For the GNS system the fluxes are given by

Jρ = 0 , (3.58)

Jc = −D̄ · ∇µ , (3.59)

J̄m = p Ī − ¯̄Λ : ∇v , (3.60)

Je = −v · ¯̄Λ : ∇v − κ̄ · ∇T − µD̄ · ∇µ , (3.61)

Js = − κ̄

T
· ∇T , (3.62)

ṡprod =
1

T

[
∇v : ¯̄Λ : ∇v +

1

T
∇T · κ̄ · ∇T +∇µ · D̄ · ∇µ

]
≥ 0 , (3.63)

where p is the pressure, T is the temperature, Ī is the unit tensor, κ̄ is the thermal
conductivity tensor, D̄ is the diffusion tensor, which along with κ̄ is assumed to be a
symmetric and positive definite 2-tensor, and µ is the chemical potential. We allow
the possibility that phenomenological quantities such as κ̄ and D̄ can depend on the
dynamical variables. Here, ¯̄Λ is the viscosity 4-tenor as given in (3.10).

The volume density variables are ξ = (m := ρv, ρ, σ := ρs, c̃ := ρc), where m is
the momentum density, σ is entropy per unit volume and c̃ is the concentration per
unit volume. The local energy per unit volume is given by

e =
|m|2

2ρ
+ ρu(ρ, s, c) . (3.64)

From the specific internal energy, u(ρ, s, c), we have the thermodynamic relations

du = Tds+
p

ρ2
dρ+ µdc , (3.65)

where
T =

∂u

∂s
, p = ρ2

∂u

∂ρ
, µ =

∂u

∂c
. (3.66)

Given the content of this section, we have established the first step of UT-
algorithm for the GNS system, the determination of the dynamical variables {m =

ρv, ρ, c̃ = ρc, σ = ρs} or alternatively the set (v, ρ, c, s), and the second step of
UT-algorithm by making the choices of Hamiltonian H of (3.55) and entropy S

of (3.57). In the next section, Sec.(3.3.2), we proceed to the third step of UT-
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algorithm by obtaining the Hamiltonian structure for this system. This system
without dissipation is the GE system.

3.3.2 NONCANONICAL POISSON BRACKET OF THE
GIBBS-EULER SYSTEM

Given that the mixture is assumed to be confined in the domain Ω, the Eulerian
scalars (volume forms) (ρ, c̃, σ) are functions from space-time Ω 7→ R → R, while
the vector field m maps Ω × R 7→ TΩ, where TΩ stands for the tangent bundle
of the manifold Ω. We will forgo formal geometric considerations and suppose our
infinite-dimensional phase space has coordinates

ξ = (m, ρ, c̃, σ) , (3.67)

and observables are functionals that map ξ 7→ R at each fixed time. The appropriate
Poisson bracket, defined on two functionals F,G ∈ B, for the GE system is the
following:

{F,G} = −
∫
Ω

m · [Fm · ∇Gm −Gm · ∇Fm]

+ ρ [Fm · ∇Gρ −Gm · ∇Fρ]

+ σ [Fm · ∇Gσ −Gm · ∇Fσ]

+ c̃ [Fm · ∇Gc̃ −Gm · ∇Fc̃] , (3.68)

where we compactified our notation by defining Fm:= δF/δm, Fρ:= δF/δρ, etc., the
functional derivatives with respect to the various coordinates ξ. That this is the ap-
propriate Poisson bracket is immediate; it is the Lie-Poisson bracket originally given
by Morrison and Greene [1980] with the addition of the last line of (3.68) involving
the concentration, another volume density variable c̃. Adding such a dynamical vari-
able is common place in the fluid modeling of plasmas over the last decades and fits
within the general theory for extension given by Thiffeault and Morrison [2000]. By
construction we have a Poisson bracket that is a bilinear, antisymmetric, and either
by the extension theory or a relatively easy direct calculation using the techniques
of Morrison [1982] it can be shown to satisfy the Jacobi identity, i.e.,

{{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0 , (3.69)
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for all F,G,H ∈ B. The Leibniz property, which is required for the Poisson bracket
to generate a vector field, is built into the definition of functional derivative.

Upon inserting any functional of ξ, say an observable o, into the Poisson bracket
its evolution is determined by

∂to = {o,H} , (3.70)

where the Hamiltonian functional is the total energy of the system, where we rewrite
(3.55) as follows:

H[ρ,m, σ, c̃] =

∫
Ω

e =

∫
Ω

|m|2

2ρ
+ ρu

(
ρ,
σ

ρ
,
c̃

ρ

)
. (3.71)

Using the following functional derivatives:

Hρ = −|v|2/2 + u+ p/ρ− sT − cµ , Hm = v ,

Hσ = T , Hc̃ = µ , (3.72)

the bracket form of 3.70 gives the ideal two-phase flow system

∂tv = {v, H} = −v · ∇v −∇p/ρ , (3.73)

∂tρ = {ρ,H} = −v · ∇ρ− ρ∇ · v , (3.74)

∂tc̃ = {c̃, H} = −v · ∇c̃− c̃∇ · v , (3.75)

∂tσ = {σ,H} = −v · ∇σ − σ∇ · v . (3.76)

Equations (3.73)–(3.75) can also be written easily using , e.g., Dρ/Dt := ∂ρ/∂t+v ·
∇ρ. These equations comprise the GE system.

Casimir invariants are special functionals C that satisfy

{F,C} = 0 ∀F ∈ B , (3.77)

and thus are constants of motion for any Hamiltonian. From (3.68) we obtain the
following equations that a Casimir functional C must satisfy:

∇ · (ρCm) = ∇ · (σ Cm) = ∇ · (c̃Cm) = 0 , (3.78)

and
mj∇Cmj

+ ∂j(mCmj
) + ρ∇Cρ + σ∇Cσ + c̃∇Cc̃ = 0 , (3.79)

where we use the shorthand δC/δm := Cm, δC/δρ := Cρ, etc. and summation of
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repeated indices is assumed. For the purpose at hand we assume C is independent
of m, yielding the single condition

ρ∇Cρ + σ∇Cσ + c̃∇Cc̃ = 0 . (3.80)

Equation (3.80) is satisfied by

C =

∫
Ω

C(ρ, σ, c̃) (3.81)

for any C that is Euler homogeneous of degree one, i.e., satisfies

C(λρ, λσ, λc̃) = λ C(ρ, σ, c̃) . (3.82)

The proof of this is straightforward.
To complete the third step of our algorithm, the entropy functional must be

chosen from the set of Casimir invariants. Writing the Euler homogeneous integrand
as

C(ρ, σ, c̃) = ρf(σ/ρ, c̃/ρ)

it is clear that
S =

∫
Ω

ρ s =

∫
Ω

σ (3.83)

lies in our set of Casimirs. This quantity was first shown to be a Casimir for
the ideal fluid in [Morrison, 1982] and used for the thermodynamically consistent
Navier-Stokes metriplectic system in [Morrison, 1984a]. We note in passing, for
other theories that might have a nontraditional dynamical equilibrium playing the
role of thermodynamic equilibrium, one may wish to choose another Casimir.

3.3.3 METRIPLECTIC 4-BRACKET FOR THE GNS
SYSTEM

To construct the metriplectic 4-bracket, we proceed as in Sec. 3.1 with the forms
of M and Σ given by (3.6) and (3.7). Thus the determination of our system is
complete when we make choices in (2.79) for L(α)

∗ and the Lαβ. For any choices of
these quantities, the 4-bracket constructed from M and Σ will be consistent with
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the following general expressions for the fluxes obtained from (2.61):

Jρ = −Lρρ · Lρ
∗(Hρ)− Lρm : Lm

∗ (Hm)− Lρσ · Lσ
∗ (Hσ)− Lρc̃ · Lc̃

∗(Hc̃) ,

J̄m = −Lmρ ⊗ Lρ
∗(Hρ)− Lmm : Lm

∗ (Hm)− Lmσ ⊗ Lσ
∗ (Hσ)− Lmc̃ ⊗ Lc̃

∗(Hc̃) ,

Jc = −Lc̃ρ · Lρ
∗(Hρ)− Lc̃m : Lm

∗ (Hm)− Lc̃σ · Lσ
∗ (Hσ)− Lc̃c̃ · Lc̃

∗(Hc̃) ,

Js = −Lσρ · Lρ
∗(Hρ)− Lσm : Lm

∗ (Hm)− Lσσ · Lσ
∗ (Hσ)− Lσc̃ · Lc̃

∗(Hc̃) . (3.84)

Thus, we have obtained a quite general class of thermodynamically consistent
systems, one that generalizes GNS systems depending on the choice of H, Lαβ, and
Lα

∗ .
Now we specialize and show that the general expressions for the fluxes of (3.84)

reduce to GNS. For example, if we choose L(α)
∗ = ∇, for all α, and H to be the

expression of (3.71), then we obtain the GNS system using

Hρ = −|m|2

2ρ2
+ u+

p

ρ
− σ

ρ
T − c̃

ρ
µ , (3.85)

Hc̃ = µ , (3.86)

Hm = v , (3.87)

Hσ = T . (3.88)

Upon setting all the Lαβ to zero except

Lmm = ¯̄Λ , Lσσ =
κ̄

T
, and Lc̃c̃ = D̄ . (3.89)

Equations (3.174) for the fluxes reduce to the known fluxes given in (3.58) - (3.62).
The metriplectic 4-bracket for this case, as determined by

M(dF, dG) = FσGσ , (3.90)

Σ(dF, dG) = ∇Fm : ¯̄Λ : ∇Gm +∇Fσ ·
κ̄

T 2
· ∇Gσ +∇(Fc̃) ·

D̄

T
· ∇(Gc̃) , (3.91)

is

(F,K;G,N) =

∫
Ω

1

T

[
[Kσ∇Fm − Fσ∇Km] : ¯̄Λ: [Nσ∇Gm −Gσ∇Nm]

+
1

T

[
Kσ∇Fσ − Fσ∇Kσ

]
· κ̄ ·

[
Nσ∇Gσ −Gσ∇Nσ

]
+
[
Kσ∇Fc̃ − Fσ∇Kc̃

]
·D̄·
[
Nσ∇Gc̃ −Gσ∇Nc̃

]
. (3.92)
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Upon insertion of H as given by (3.71) and S from the set of Casimirs of Sec.3.3.2
to be as in (3.83), the dynamics is given by

∂tξ
α = {ξα, H}+ (ξα, H;S,H) . (3.93)

Using Hm = v, Hσ = T , and Sσ = 1, the following GNS system is produced:

∂tv = {v, H}+ (v, H;S,H)

= −v · ∇v −∇p/ρ+ 1

ρ
∇ · ( ¯̄Λ : ∇v) , (3.94)

∂tρ = {ρ,H}+ (ρ,H;S,H)

= −v · ∇ρ− ρ∇ · v , (3.95)

∂tc̃ = {c̃, H}+ (c̃, H;S,H)

= −v · ∇c̃− c̃∇ · v +∇ · (D̄ · ∇µ) , (3.96)

∂tσ = {σ,H}+ (σ,H;S,H)

= −v · ∇σ − σ∇ · v +∇ ·
( κ̄
T

· ∇T
)
+

1

T 2
∇T · κ̄ · ∇T

+
1

T
∇v : ¯̄Λ : ∇v +

1

T
∇µ · D̄ · ∇µ . (3.97)

By construction we automatically have energy conservation, i.e., for (3.71) Ḣ =

0, and entropy production

Ṡ = (S,H;S,H)

=

∫
Ω

1

T

[
∇v : ¯̄Λ : ∇v +

1

T
∇T · κ̄ · ∇T +∇µ · D̄ · ∇µ

]
≥ 0 . (3.98)

3.3.4 METRIPLECTIC 2-BRACKET FOR GNS SYSTEM

To further identify the meaning of Lαβ we revisit the thermodynamics of (3.65), in
light of the choice of the variables ξ = (ρ,m, c̃, e). Thus, we rewrite the thermody-
namic relation 3.65 upon changing variables,

Tdσ = de− v · dm− µdc̃− gdρ , (3.99)
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where e is the energy density of (3.64) and g is a modified specific Gibbs free energy,
viz.

g := u− Ts+ p/ρ− µc− |v|2/2 . (3.100)

We have assumed in (3.53) that there is no flux associated with ρ, i.e., in CHNS
chemical reactions and/or particle creation and annihilation are ignored. Thus,
the phase space for the thermodynamics is smaller than that for the Hamiltonian
dynamics, because the variable ρ as seen e.g. in (3.95) has no dissipative terms.
This leads us to focus on the thermodynamic variables (m, c̃, e) and (3.99) reduces
to

Tdσ = de− v · dm− µdc̃ . (3.101)

Comparison of (2.53) and (3.66) suggests we require the affinities associated with
m, c̃ and e. The conventional choices for these affinities are ∇(1/T ), ∇(−v/T ),
and ∇(−µ/T ), respectively [de Groot and Mazur, 1962]. However, examination of
(3.63) or (3.98) suggests using instead ∇T , ∇v, and ∇µ, as was done in Coquinot
and Morrison [2020b].

The relationship between the flux-affinity relations in terms of these two choices
of bases are given by the following:

J̄m = Lme · ∇
(
1

T

)
+ Lmm : ∇

(
−v

T

)
+ Lmc̃ · ∇

(
−µ
T

)
= − ¯̄Λ : ∇v , (3.102)

Je = Lee · ∇
(
1

T

)
+ Lem : ∇

(
−v

T

)
+ Lec̃ · ∇

(
−µ
T

)
= −v · ( ¯̄Λ : ∇v)− κ̄ · ∇T − µD̄ · ∇µ , (3.103)

Jc̃ = Lc̃e · ∇
(
1

T

)
+ Lc̃m : ∇

(
−v

T

)
+ Lc̃c̃ · ∇

(
−µ
T

)
= −D̄ · ∇µ . (3.104)

Recall J̄m is a 2-tensor, thus Lme = Lem is a 3-tensor, Lmm is a 4-tensor, and
Lmc̃ = Lc̃m is a 3-tensor. Since Je and Jc̃ are vectors, Lee, Lec̃ = Lc̃e, and Lc̃c̃ are
2-tensors. From (3.102), (3.103), and (3.104), we identify the components of Lαβ as
follows:

Lme = T ¯̄Λ · v , Lmm = T ¯̄Λ , Lmc̃ = 0 , Lec̃ = TµD̄ ,

Lee = T 2κ̄+ Tv · ¯̄Λ · v + Tµ2D̄ , Lc̃c̃ = TD̄ . (3.105)
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The metriplectic 2-bracket in terms of the ξ-variables is given by

(F,G) =

∫
Ω

T
[
∇Fe · (T κ̄+ v · ¯̄Λ · v + µ2D̄) · ∇Ge

+∇Fm : ¯̄Λ : ∇Gm +∇Fc̃ · D̄ · ∇Gc̃

+∇Fe · ( ¯̄Λ · v) : ∇Gm +∇Ge · ( ¯̄Λ · v) : ∇Fm

+ µ∇Fe · D̄ · ∇Gc̃ + µ∇Ge · D̄ · ∇Fc̃

]
. (3.106)

Upon writing

S =

∫
Ω

σ(ρ, e, c̃,m) (3.107)

and using standard thermodynamic manipulations we obtain

Se = 1/T , Sm = −v/T , and Sc̃ = −µ/T . (3.108)

Inserting these into (o, S) using the 2-bracket of (3.106) yields the dissipative terms
of (3.94), (3.96), and with the manipulations of transforming from e to σ, those of
the entropy equation (3.97). By direct calculation, as well as by construction, we
obtain (H,S) = 0 and Ṡ = (S, S) ≥ 0 which reproduces (3.98).

To close the circle we transform the bracket of (3.106) in terms of the variables
(ρ,m, c̃, e) to one in terms of (ρ,m, c̃, σ) via the following chain rule formulas:

Ge → Gσ/T, Gm → Gm − vGσ/T ,

Gc̃ → Gc̃ − µGσ/T . (3.109)

This calculation gives precisely the 2-bracket that comes from the 4-bracket (3.92)

(F,G) = (F,G)H = (F,H;G,H). (3.110)

3.4 FROM GNS TO CAHN-HILLIARD-NAVIER-STOKES

Now we apply the UT-algorithm to obtain the Cahn-Hilliard-Navier-Stokes system
(CHNS) which allows for diffuse-interfaces. We follow the steps in order, just as in
Sec.3.3. However, here we have the additional step of aligning the desired entropy
functional with the Poisson bracket, so that it is indeed a Casimir invariant.
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3.4.1 HAMILTONIAN AND ENTROPY FUNCTIONAL
FORMS

The phenomenon of material transport along an interface is known as the Marangoni
effect. The presence of a surface tension gradient naturally induces the migration of
particles, moving from regions of low tension to those of high tension. This gradient
can be triggered by a concentration gradient (or also a temperature gradient). In
two-phase theory the interface between phases is regarded as being diffuse. Accord-
ing to the work of Taylor and Cahn [1998], one can model the diffuse interface by a
single order parameter, say ϕ and with a free energy functional,

F =

∫
Ω

ϵ

2
Γ2(∇ϕ) + 1

ϵ
V (ϕ) , (3.111)

with Γ being a homogeneous function of degree one, further details on this will be
provided later. Here V can be any non-negative function that equals zero at ϕ = ±1

and ϵ is a small parameter that goes to zero in the sharp-interface limit. We choose
the order parameter ϕ to be the concentration.

In the isotropic surface energy case Guo and Lin [2015] develop a phase-field
model for two-phase flow, which is thermodynamically consistent. The modeling
based on a non-classical choice of energy and entropy, given respectively by

HGL =

∫
Ω

ρ

2
|v|2 + ρu(ρ, s, c) +

ρ

2
λu|∇c|2 , (3.112)

SGL =

∫
Ω

ρs+
ρ

2
λs|∇c|2 , (3.113)

where u and s stand for the classical specific internal energy and entropy, respec-
tively, while the coefficients λs and λu are constant parameters.

Alternatively, Anderson et al. [2000] propose a model of phase-field of solidifica-
tion with convection, the model permits the interface to have an anisotropic surface
energy. The choice of energy and entropy are given by

HAMW =

∫
Ω

ρ

2
|v|2 + ρu(ρ, s, c) +

ϵ2E
2
Γ2(∇c) , (3.114)

SAMW =

∫
Ω

ρs− ϵ2S
2
Γ2(∇c) , (3.115)

where the coefficients ϵS and ϵE are assumed to be constant and Γ is a homogeneous
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function of degree one that takes a vector to a real number.
In this section, we explore a choice of energy and entropy functionals, from which

the previously mentioned choices are special cases, and we consider the associated
free energy functional, viz.

Ha =

∫
Ω

ρ

2
|v|2 + ρu+

ρa

2
λuΓ

2(∇c) =:
∫
Ω

eaTotal , (3.116)

Sa =

∫
Ω

ρs+
ρa

2
λsΓ

2(∇c) =:
∫
Ω

σa
Total , (3.117)

Fa =

∫
Ω

ρf +
ρa

2
λf (T )Γ

2(∇c) , (3.118)

where u, s and f stand for the classical specific internal energy, entropy, and free
energy, respectively, the coefficients λs and λu are constant parameters, and λf (T )

is a parameter depending on the temperature that will lead to anisotropic surface
energy effects. He have defined the total densities eaTotal and σa

Total for later use.
The parameter a takes on two values: a = 0 reduces (3.116) and (3.117) to the
expressions of Anderson et al. [2000], where we set ϵ2E = λu and ϵ2S = −λs, while
for a = 1 they reduce to those used by Guo and Lin [2015] provided the choice of
an isotropic surface energy is assumed, viz., Γ(∇c) = |∇c|. Thus, as is clear from
(3.117), (3.116), and (3.118) that the dimensions of λf , λs, and λu are either specific
or volumetric depending on the case. As usual, we have the thermodynamic relation

f = u− Ts , (3.119)

which allows us to assume the relationship between the coefficients

λf (T ) = λu − Tλs and
dλf (T )

dT
= −λs . (3.120)

To summarize, our expressions (3.116) and (3.117) generalize the model studied
by Guo and Lin [2015] by including Γ, which accounts for anisotropic surface energy
effects, while our expressions generalize the model of Anderson et al. [2000] by
including the factors of ρ in the integrands making all quantities in the integrands
specific quantities multiplied by the density, giving rise to more general sources of
energy.

Because Γ is a homogeneous function of degree unity,

Γ(λp) = λΓ(p) for all λ > 0 . (3.121)
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Differentiating (3.121) with respect to λ and then setting λ = 1 yields the funda-
mental relation

Γ(p) = p · ζ := pj
∂Γ(p)

∂pj
. (3.122)

Then, differentiating (3.122) gives a second well-known relation,

∂Γ

∂pi
=

∂

∂pi
(ζ · p) = ξi +

∂2Γ

∂pi∂pj
pj = ξi , (3.123)

where evidently pj must be a null eigenvector of the matrix ∂2Γ/∂pi∂pj. Henceforth
we will assume the argument of Γ to be ∇c. For the case of isotropic surface energy,
where Γ(∇c) = |∇c|, the associated homogeneous function of degree zero is given
by

ζ =
∇c
|∇c|

. (3.124)

From (3.118) we can obtain a generalized chemical potential

µa
Γ :=

δFa

δc̃
= ρ

∂u

∂c̃
−∇ · (λfρaΓ∇c)

= µ− 1

ρ
∇ · (λfρaΓζ) , (3.125)

where recall c̃ = ρc. For the case of isotropic surface energy, this becomes

µa
|∇c| = µ− 1

ρ
∇ · (λfρa∇c) . (3.126)

Upon setting a = 1 [the case of Guo and Lin, 2015], this reduces to

µ1
|∇c| = µ− 1

ρ
∇ · (λfρ∇c) , (3.127)

an expression that differs from that in Guo and Lin [2015] unless λfρ is constant.
If this is the case and we choose a classical µ = c3 − c, corresponding to the quartic
Laudau potential, we obtain

µCH = c3 − c− λf∇2c , (3.128)

also one can choose a free energy corresponding to Logarithm potential

µ =
λ1
2
(1− c2) +

λ2
2

[
(1 + c) ln

(1 + c)

2
+ (1− c) ln

(1− c)

2

]
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where 0 < λ2 < λ1. the chemical potential of Cahn and Hilliard who indeed make
these assumptions [cf. page 267 of Cahn and Hilliard, 1958]. For α = 0 [the case of
Anderson et al., 2000], we have

µ0
Γ = µ− 1

ρ
∇ · (λf Γζ) , (3.129)

which allows for the weighted mean curvature effects of anisotropy.
Maintaining the same set of dynamical variables as in (3.67) (or an equivalent

set) and making the choices of energy and entropy functionals of (3.116) and (3.117),
we have completed the first two steps of the UT-algorithm.

3.4.2 NONCANONICAL POISSON BRACKET OF THE
CAHN-HILLIARD-EULER SYSTEM

To complete the next step of the algorithm, the third step, we need to manufacture
a bracket that has (3.117) as a Casimir invariant. We do this by starting from
the bracket of (3.68) in terms of the original variables ξ = {m, ρ, c̃, σ} and then
transforming it to a new set of dynamical variables

ξ̂a := {m̂, ρ̂, ˆ̃c, σ̂a} , (3.130)

giving the same bracket in terms of new coordinates. We have included the su-
perscript a because in effect we have two sets of coordinates, corresponding to the
desired entropies of (3.117) for a = 0 and a = 1. To distinguish the old from the new,
we write the bracket in the transformed variables as {F̂ , Ĝ}a. Because of coordinate
invariance, {C,F} = {Ca, F̂}a = 0, where F [ξ] = F̂ [ξ̂a] is any functional written
in one or the other coordinates. The Casimir S =

∫
Ω
σ in our original coordinates

is transformed into a different form in the new coordinates. Specifically, we change
the variables as follows:

m = m̂ , ρ = ρ̂ , c̃ = ˆ̃c ,

σ = σ̂a +
ρ̂a

2
λsΓ

2(∇ĉ) , (3.131)

where ˆ̃c = ρ̂ĉ. Consequently, the entropy S in the old coordinates written in terms
of the new coordinates will, by design, become the following Casimir for the Poisson
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bracket in the new coordinates:

Ŝa =

∫
Ω

σ̂a +
ρ̂a

2
λsΓ

2(∇ĉ) . (3.132)

Thus we have manufactured a bracket with the entropy expression of (3.117) as a
Casimir.

Transformation of the Poisson bracket (3.68) requires use of the functional chain
rule. For convenience we use

σ̂a = σ − ρa

2
λsΓ

2(∇c) (3.133)

and consider the variation of any functional of the new variables. Thus we use
δρ = δρ̂, δm = δm̂, δc̃ = δˆ̃c, and for the entropy variable

δσ̂a = δσ − 1

2
aρa−1λsΓ

2(∇c)δρ− ρaλsΓζ · ∇δ
(
c̃

ρ

)
= δσ − 1

2
aρa−1λsΓ

2(∇c)δρ− ρaλsΓζ · ∇
(
δc̃

ρ

)
+ ρaλsΓζ · ∇

(
c̃

ρ2
δρ

)
,

(3.134)

where use has been made of (3.123). Now let F be an arbitrary functional of the
original variables and F̂ the same functional in terms of the new variables. Thus,∫

Ω

F̂m̂ · δm̂+ F̂ρ̂ δρ̂+ F̂σ̂a δσ̂a + F̂ˆ̃c δ
ˆ̃c =

∫
Ω

Fm · δm+ Fρ δρ+ Fσ δσ + Fc̃ δc̃ .

Note, no sum over a is to be done. By identification of terms we obtain

Fm = F̂m̂ , Fσ = F̂σ̂a ,

Fρ = F̂ρ̂ −
a

2
ρ̂a−1λsΓ

2 F̂σ̂a −
ˆ̃c

ρ̂2
∇ ·
(
ρ̂aλsΓζ F̂σ̂a

)
,

Fc̃ = F̂ˆ̃c +
1

ρ̂
∇ ·
(
ρ̂aλsΓζF̂σ̂a

)
. (3.135)

The transformed Poisson bracket is obtained by inserting the expressions of (3.135)
into (3.68), writing it entirely in terms of the hat variables. Upon doing this and
then dropping the hats, we get for any functionals F and G the following Poisson
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bracket:

{F,G}a = −
∫
Ω

m ·
[
Fm · ∇Gm −Gm · ∇Fm

]
+ ρ

[
Fm · ∇

(
Gρ − aρa−1λsΓ

2Gσa/2− c̃∇ · (ρaλsΓζGσa)/ρ2
)

−Gm · ∇
(
Fρ − aρa−1λsΓ

2Fσa/2− c̃∇ · (ρaλsΓζFσa) /ρ2
)]

+
(
σa + ρaλsΓ

2/2
) [
Fm · ∇Gσa −Gm · ∇Fσa

]
+ c̃
[
Fm · ∇ (Gc̃ +∇ · (ρaλsΓζGσa) /ρ)

−Gm · ∇ (Fc̃ +∇ · (ρaλsΓζFσa) /ρ)
]
. (3.136)

This bracket is clearly bilinear and skew-symmetric. Because it was derived from
the bracket 3.68 by a change of variables, satisfaction of the Jacobi identity is as-
sured. We note, as before, strong boundary conditions are assumed such that all
integrations by parts produce vanishing boundary terms.

Thus we have completed the third part of our algorithm, the construction of
a Poisson bracket that has entropy functional of (3.117) in the set of its Casimir
invariants. Recall the integrand of the entropy is given by

σa
Total := σa +

ρa

2
λsΓ

2(∇c) ; (3.137)

so we find

δSa

δσa
= 1 ,

δSa

δc̃
= −1

ρ
∇ · (ρaλsΓζ)

δSa

δρ
=
a

2
ρa−1λsΓ

2 +
c̃

ρ2
∇ · (ρaλsΓζ) . (3.138)

Using (3.138) one can easily check that {F, Sa} = 0 for all F , which by construction
had to be the case. Now we are free to choose any Hamiltonian we desire in (3.136)
to obtain the evolution of any observable o as follows:

∂to = {o,Ha}a , (3.139)

In Sec.3.4.1 we proposed the Hamiltonian functional of (3.116), which we rewrite as
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follows in order to make all arguments clear:

Ha[ρ,m, σ, c̃] =

∫
Ω

|m|2

2ρ
+ ρu

(
ρ,
σa

ρ
,
c̃

ρ

)
+
ρa

2
λuΓ

2

(
∇
(
c̃

ρ

))
. (3.140)

Using the functional derivatives of this Hamiltonian,

Ha
m = v, Hσa = T ,

Ha
ρ = −|v|2/2 + u+ p/ρ− sT − cµ+ aρa−1λuΓ

2/2 + c∇ · (ρaλuΓζ)/ρ ,
Ha

c̃ = µ−∇ · (ρaλuΓζ)/ρ , (3.141)

in the bracket (3.136) gives the equations of motion in the form of (3.139). At this
point we could write this out and display a general system of equations that includes
both cases, but we choose to consider them separately because the general system
is unwieldy and not particularly perspicuous.

Let us first consider the simplified version of our derived Poisson bracket for the
case a = 1, which is as follows:

{F,G}1 = −
∫
Ω

m ·
[
Fm · ∇Gm −Gm · ∇Fm

]
+ ρ
[
Fm · ∇Gρ −Gm · ∇Fρ

]
− λs

[
Fm · ∇ · (ρGσ1Γζ ⊗∇c)−Gm · ∇ · (ρFσ1Γζ ⊗∇c)

]
+ σ1 [Fm · ∇Gσ1 −Gm · ∇Fσ1 ]

+ c̃ [Fm · ∇Gc̃ −Gm · ∇Fc̃] , (3.142)

where ⊗ denotes tensor product of two vectors and consistent with our convention
we have

∇ · (u⊗ v) = (∇ · u)v + u · ∇v .

Using (3.141), the bracket form of (3.139) gives the ideal diffuse two-phase flow
system

∂tv = {v, H1}1 = −v · ∇v − 1

ρ
∇ · (pĪ + ρλfΓζ ⊗∇c) , (3.143)

∂tρ = {ρ,H1}1 = −v · ∇ρ− ρ∇ · v , (3.144)

∂tc̃ = {c̃, H1}1 = −v · ∇c̃− c̃∇ · v , (3.145)

∂tσ
1
Total = {σ1

Total, H
1}1 = −v · ∇σ1

Total − σ1
Total ∇ · v , (3.146)

where Ī is the unit tensor. Observe in (3.146) we have chosen the observable σ1
Total
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instead of σ1, in order to demonstrate its conservation.
Similarly, for the case where a = 0, the Poisson bracket has the following form:

{F,G}0 = −
∫
Ω

m ·
[
Fm · ∇Gm −Gm · ∇Fm

]
+ ρ
[
Fm · ∇Gρ −Gm · ∇Fρ

]
− λs

[
Fm · ∇ · (Gσ0Γζ ⊗∇c)−Gm · ∇ · (Fσ0Γζ ⊗∇c)

]
+ λs

[
Fm · ∇

(
Γ2Gσ0

)
−Gm · ∇

(
Γ2Fσ0

)]
/2

+ σ0 [Fm · ∇Gσ0 −Gm · ∇Fσ0 ]

+ c̃ [Fm · ∇Gc̃ −Gm · ∇Fc̃] . (3.147)

Same as above, using (3.141), the ideal diffuse two-phase flow system is produced

∂tv = {v, H0}0 = −v · ∇v − 1

ρ
∇ ·
[ (
p− λfΓ

2/2
)
Ī + λfΓζ ⊗∇c

]
, (3.148)

∂tρ = {ρ,H0}0 = −v · ∇ρ− ρ∇ · v , (3.149)

∂tc̃ = {c̃, H0}0 = −v · ∇c̃− c̃∇ · v , (3.150)

∂tσ
0
Total = {σ0

Total, H
0}0 = −v · ∇σ0

Total − σ0
Total ∇ · v . (3.151)

where recall from (3.122), ζ = ∂Γ/∂p .
Let us now comment on these two Hamiltonian systems. By construction both

the a = 1 and a = 0 systems conserve their Hamiltonians and entropies, as given
by (3.117) and (3.116) with a = 1 and a = 0 , respectively. Both systems have
momentum equations containing a term describing anisotropic surface energy (cap-
illary) effects. The a = 0 system of (3.148)–(3.151) is identical to the ideal limit of
that given in the work of Anderson et al. [2000]. Upon choosing Γ(∇c) = |∇c|, the
a = 1 system of (3.143)–(3.146) should correspond to the ideal limit of that of Guo
and Lin [2015], but it does not. In fact the system of Guo and Lin [2015] in this
limit does not conserve energy. Moreover, the capillary effect in their momentum
equation (equation (3.40)), which should be replaced by (3.143) with Γ(∇c) = |∇c|,
vanishes in the one-dimensional limit. Since such surface effects are determined by
mean or weighted mean curvature [Taylor, 1992], it is clear that this is physically
untenable. Fortunately, our method provides a simple fix to their equations, while
showing how to generalize them to include anisotropic surface effects.
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3.4.3 METRIPLECTIC 4-BRACKET FOR THE
CAHN-HILLIARD-NAVIER-STOKES SYSTEM

Now we turn to the 4th and final step of the UT-algorithm. As we did in the con-
struction of noncanonical Poisson Bracket, we change variables and use the obtained
4-bracket of GNS of Sec.3.3.3. The transformed metriplectic 4-bracket is obtained
by inserting the expressions of (3.135) into (3.92), we get

(F,K;G,N)a =

∫
Ω

1

T

[
[Kσa∇Fm − Fσa∇Km] : ¯̄Λ: [Nσa∇Gm −Gσa∇Nm]

+
1

T

[
Kσa∇Fσa − Fσa∇Kσa

]
· κ̄ ·

[
Nσa∇Gσa −Gσa∇Nσa

]
+
[
KσaLa

c̃(F )− FσaLa
c̃(K)

]
·D̄·
[
NσaLa

c̃(G)−GσaLa
c̃(N)

]
.

where a, of course, is not to be summed over and the pseudodifferential operator La
c̃

has the following form:

La
c̃(F ) := ∇

(
Fc̃ +∇ · (ρaλsΓζFσa) /ρ

)
. (3.152)

Upon insertion of Ha as given by (3.116) and S from the set of Casimirs to be
as in (3.117), the dynamics is given by

∂tξ
α = {ξα, Ha}a + (ψα, Ha;Sa, Ha)a . (3.153)

Using La
c̃(H

a) = ∇µa
Γ, Ha

m = v, Ha
σa

= T , Sa
σa

= 1 and La
c̃(S

a) = 0, the following

61



diffuse-interface CHNS system for a = 1 is produced:

∂tv = {v, H1}1 + (v, H1;S1, H1)1

= −v · ∇v − 1

ρ
∇ ·
[
pI+ λfρΓζ ⊗∇c

]
+

1

ρ
∇ · ( ¯̄Λ : ∇v) , (3.154)

∂tρ = {ρ,H1}1 + (ρ,H1;S1, H1)1

= −v · ∇ρ− ρ∇ · v , (3.155)

∂tc̃ = {c̃, H1}1 + (c̃, H1;S1, H1)1

= −v · ∇c̃− c̃∇ · v +∇ · (D̄ · ∇µ1
Γ) , (3.156)

∂tσ
1
Total = {σ1

Total, H
1}1 + (σ1

Total, H
1;S1, H1)1

= −v · ∇σ1
Total − σ1

Total ∇ · v (3.157)

+∇ ·
( κ̄
T

· ∇T
)
+

1

T 2
∇T · κ̄ · ∇T (3.158)

+
1

T
∇v : ¯̄Λ : ∇v +

1

T
∇µ1

Γ · D̄ · ∇µ1
Γ . (3.159)

Similarly, for a = 0 we obtain

∂tv = {v, H0}0 + (v, H0;S0, H0)0

= −v · ∇v − 1

ρ
∇ ·
[ (
p− λfΓ

2/2
)
I+ λfΓζ ⊗∇c

]
+

1

ρ
∇ · ( ¯̄Λ : ∇v) ,

(3.160)

∂tρ = {ρ,H0}0 + (ρ,H0;S0, H0)0

= −v · ∇ρ− ρ∇ · v , (3.161)

∂tc̃ = {c̃, H0}0 + (c̃, H0;S0, H0)0

= −v · ∇c̃− c̃∇ · v +∇ · (D̄ · ∇µ0
Γ) , (3.162)

∂tσ
0
Total = {σ0

Total, H
0}0 + (σ0

Total, H
0;S0, H0)0

= −v · ∇σ0
Total − σ0

Total ∇ · v (3.163)

+∇ ·
( κ̄
T

· ∇T
)
+

1

T 2
∇T · κ̄ · ∇T +

1

T
∇v : ¯̄Λ : ∇v

+
1

T
∇µ0

Γ · D̄ · ∇µ0
Γ . (3.164)

Thus we have extracted from our general system with arbitrary a, two thermody-
namically consistent CHNS systems. By construction both the a = 1 and a = 0

systems must conserve energy and both must produce entropy, which we find is
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governed by the following:

Ṡa = (Sa, Ha;Sa, Ha)a

=

∫
Ω

1

T

[
∇v : ¯̄Λ : ∇v +

1

T
∇T · κ̄ · ∇T +∇µa

Γ · D̄ · ∇µa
Γ

]
≥ 0 . (3.165)

3.5 AN ALTERNATIVE OF CHNS’S MODELING

An alternative but equivalent Hamiltonian formulation of the above systems exists,
in fact, one that has a standard entropy functional of the form of (3.83). Given that
the bracket of (3.136) was obtained via a transformation of the bracket of (3.68),
we can transform it back from one that has (3.117) as a Casimir to the original that
has (3.57) as a Casimir. However, to generate equivalent equations of motion, we
would have to transform the Hamiltonian of (3.116) into a more complicated form.
Tracing back through our transformations, we would replace the coordinate σa in
the Hamiltonian by σ − ρaλsΓ

2/2, which means the internal energy becomes

u 7→ u(ρ, (σ − ρaλsΓ
2/2)/ρ, c̃/ρ) , (3.166)

while otherwise the Hamiltonian remains the same. Just as with finite-dimensional
Hamiltonian systems, one can change coordinates and arrive at equivalent systems
with different Poisson brackets and Hamiltonians, and in the noncanonical case dif-
ferent expressions for the Casimir invariants. Often one has the options of a simple
bracket and complicated Hamiltonian or vice verse. In the next section, we will pro-
ceed the UT-algorithm for the a = 0 case, with the options of a simple noncanonical
Poisson bracket and usual entropy functional but complicated Hamiltonian func-
tional.

• First step of UT-algorithm: We choose our dynamical variables as the following

ξ(x, t) = (ρ(x, t),m(x, t), c̃(x, t), σ̄(x, t)) (3.167)

where again the mixture of two phases is assumed to be contained in a volume Ω,
with coordinate x, and to the densities ρ,m, and σ̄ used as in Sec. 3.1 we add c̃.
Again we have singled out the entropy density σ̄ as the last variable of ξ, consistent
with (2.62). (Note, the reason for the bar will soon become clear.) The specific
concentration associated with c̃ is given by c = c̃/ρ.
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• Second step of UT-algorithm: Again, consistent with (2.63), we take the total
entropy to be the integral of the last component

S =

∫
Ω

σ̄ . (3.168)

It was shown in Zaidni et al. [2024] that this simple entropy can be used instead of
complicated entropy expressions used in Anderson et al. [2000, 1998], Anderson and
McFadden [1996], Guo and Lin [2015], which were modeled after the free energy of
the Cahn-Hilliard equation.

We record here for later use the relationship between our simple entropy σ̄ and
the previous one which we denote by σ̄, viz.

σ̄ = σ +
λs
2
Γ2(∇c) . (3.169)

Any Hamiltonian H[ρ,m, c̃, σ̄] would be possible; however, as also shown in Zaidni
et al. [2024], the price paid for a simplified entropy is the following complicated
Hamiltonian:

H =

∫
Ω

|m|2

2ρ
+ ρ u

(
ρ, σ/ρ, c̃/ρ

)
+
λu
2

Γ2
(
∇(c̃/ρ)

)
, (3.170)

where in the second argument of the internal energy u we have inserted σ as a
shorthand for the expression in terms of σ̄, c̃ and ρ obtained upon inserting σ from
(3.169),

H =

∫
Ω

|m|2

2ρ
+ ρ u

(
ρ,
σ̄

ρ
− λs

2ρ
Γ2(∇c), c̃/ρ

)
+
λu
2

Γ2
(
∇(c̃/ρ)

)
, (3.171)

From this extensive internal energy function, we obtain the intensive thermodynam-
ical variables including the chemical potential as

p = ρ2
∂u

∂ρ
, T =

∂u

∂s
, and µ =

∂u

∂c
. (3.172)

where now s = σ̄/ρ and recall c = c̃/ρ.

• Third step of UT-algorithm: The appropriate Poisson bracket, defined on two
functionals F,G ∈ B, is that for the Gibbs-Euler system given in Zaidni et al.
[2024]. This bracket, which is a natural generalization of that given in Morrison and
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Greene [1980], is given by

{F,G} = −
∫
Ω

m · [Fm · ∇Gm −Gm · ∇Fm]

+ ρ [Fm · ∇Gρ −Gm · ∇Fρ]

+ σ̄ [Fm · ∇Gσ̄ −Gm · ∇Fσ̄]

+ c̃ [Fm · ∇Gc̃ −Gm · ∇Fc̃] . (3.173)

It is simple to verify that the S of (3.168) is a Casimir invariant of this bracket.

• Fourth step of UT-algorithm: To construct the metriplectic 4-bracket, we proceed
as in Sec. 3.1 with the forms of M and Σ given by (3.6) and (3.7), albeit with σ̄

replacing σ in (3.6). Thus the determination of our system is complete when we
make choices for L(α)

∗ and the Lαβ. For any choices of these quantities, the 4-bracket
constructed from M and Σ will be consistent with the following general expressions
for the fluxes obtained from (2.61):

Jρ = −Lρρ · Lρ
∗(Hρ)− Lρm : Lm

∗ (Hm)− Lρσ · Lσ̄
∗ (Hσ̄)− Lρc̃ · Lc̃

∗(Hc̃) ,

J̄m = −Lmρ ⊗ Lρ
∗(Hρ)− Lmm : Lm

∗ (Hm)− Lmσ ⊗ Lσ̄
∗ (Hσ̄)− Lmc̃ ⊗ Lc̃

∗(Hc̃) ,

Jc = −Lc̃ρ · Lρ
∗(Hρ)− Lc̃m : Lm

∗ (Hm)− Lc̃σ̄ · Lσ̄
∗ (Hσ̄)− Lc̃c̃ · Lc̃

∗(Hc̃) ,

Js = −Lσ̄ρ · Lρ
∗(Hρ)− Lσ̄m : Lm

∗ (Hm)− Lσ̄σ̄ · Lσ̄
∗ (Hσ̄)− Lσ̄c̃ · Lc̃

∗(Hc̃) . (3.174)

Thus, we have obtained a quite general class of thermodynamically consistent
systems, one that generalizes a variety of existing CHNS systems depending on the
choice of H, Lαβ, and Lα

∗ .
Now we specialize and show that the general expressions for the fluxes of (3.174)

reduce to those known for the CHNS. For example, if we choose L(α)
∗ = ∇, for all α,

and H to be the expression of (3.170), then we obtain the CHNS system of Anderson
et al. [Anderson et al., 2000, 1998, Anderson and McFadden, 1996] (see also Zaidni
et al. [2024]). Using

Hρ = −|m|2

2ρ2
+ u+ ρuρ −

(
σ

ρ
− λs

2ρ
Γ2

)
us −

c̃

ρ
uc

+
c̃

ρ2
∇ · (usλsΓζ) +

c̃

ρ2
∇ · (Γζλu) (3.175)

Hc̃ = uc +
λs
ρ
∇ · (usΓζ)−

1

ρ
∇ · (λsΓζ) =: µΓ , (3.176)

Hm = v, Hσ̄ = us = T . , (3.177)
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where, from (3.101), we defined uρ := ∂u/∂ρ = p/ρ, us := ∂u/∂s = T and uc :=

∂u/∂c = µ. Upon setting all the Lαβ to zero except

Lmm = ¯̄Λ , Lσ̄σ̄ =
κ̄

T
, and Lc̃c̃ = D̄ . (3.178)

Equations (3.174) for the fluxes reduce to the following form:

Jρ = 0 , (3.179)

J̄m = − ¯̄Λ : ∇v , (3.180)

Jc = −D̄ · ∇µΓ , (3.181)

Js = − κ̄

T
· ∇T , (3.182)

where µΓ := µ− 1
ρ
∇ · (λfΓζ). Equations are the known fluxes for the CHNS system

of Anderson et al. [2000, 1998], Anderson and McFadden [1996].
The metriplectic 4-bracket for this case, as determined by

M(dF, dG) = Fσ̄Gσ̄ , (3.183)

Σ(dF, dG) = ∇Fm : ¯̄Λ : ∇Gm +∇Fσ̄ ·
κ̄

T 2
· ∇Gσ̄ +∇(Fc̃) ·

D̄

T
· ∇(Gc̃) , (3.184)

is given by

(F,K;G,N) =

∫
Ω

1

T

[
[Kσ̄∇Fm − Fσ̄∇Km] : ¯̄Λ: [Nσ̄∇Gm −Gσ̄∇Nm]

+
1

T

[
Kσ̄∇Fσ̄ − Fσ̄∇Kσ̄

]
· κ̄ ·

[
Nσ̄∇Gσ̄ −Gσ̄∇Nσ̄

]
+
[
Kσ̄∇Fc̃ − Fσ̄∇Kc̃

]
·D̄·
[
Nσ̄∇Gc̃ −Gσ̄∇Nc̃

]
. (3.185)

Upon insertion of H as given by (3.170) and S given by (3.168), using (3.175),
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(3.176), and (3.177) with Sσ̄ = 1, the following CHNS system is produced

∂tρ = {ρ,H}+ (ρ,H;S,H)

= −v · ∇ρ− ρ∇ · v , (3.186)

∂tv = {v, H}+ (v, H;S,H)

= −v · ∇v − 1

ρ
∇ ·
[ (
p− λfΓ

2/2
)
Ī + λfΓζ ⊗∇c

]
+

1

ρ
∇ · ( ¯̄Λ : ∇v) , (3.187)

∂tc̃ = {c̃, H}+ (c̃, H;S,H)

= −v · ∇c̃− c̃∇ · v +∇ · (D̄ · ∇µ0
Γ) , (3.188)

∂tσ̄ = {σ̄, H}+ (σ̄, H;S,H)

= −v · ∇σ̄ − σ̄∇ · v +∇ ·
( κ̄
T

· ∇T
)
+

1

T 2
∇T · κ̄ · ∇T (3.189)

+
1

T
∇v : ¯̄Λ : ∇v +

1

T
∇µΓ · D̄ · ∇µΓ .

where Ī is the identity and recall ξ is defined in (3.122),

µΓ := uc +
λs
ρ
∇ · (usΓζ)−

1

ρ
∇ · (λsΓζ) , (3.190)

and ⊗ is the usual tensor product (w ⊗ v)ij = wivj.
The total entropy is governed by the following:

Ṡ = (S,H;S,H)

=

∫
Ω

1

T

[
∇v : ¯̄Λ : ∇v +

1

T
∇T · κ̄ · ∇T +∇µΓ · D̄ · ∇µΓ

]
≥ 0 , (3.191)

whence it is seen to be produced.
In Sec. 3.4.1 the entropy of (3.117) was simplified to the standard form of

(3.168) by a coordinate change. This resulted in the more complicated internal
energy function of (3.170), as compared with (3.116), where in the former the σ in
the argument of u is replaced by σ = σ̄ − λs

2
Γ2(∇c). Given that an incremental

volume of fluid contains both phases, it is perhaps not surprising that the internal
energy should reflect this.

A cornerstone of Hamiltonian dynamics is its geometric invariance under co-
ordinate changes. Because the minimal metriplectic properties are algebraic and
geometric, they too are invariant under coordinate changes. Thus, we can write our
CHNS class of dissipative systems with a standard entropy functional of the form
of (3.83), but with a more complicated Hamiltonian using (3.166).
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3.6 DISCUSSION AND CONCLUSION

From the examples presented in this chapter, it is clear that the 4-bracket formalism
can be applied to obtain a wide variety of dynamical systems in various fields.
In fact it was recently applied to obtain generalized collision operators in kinetic
theory [Sato and Morrison, 2024] and a thermodynamically consistent model for
radiation hydrodynamics [Tran et al., 2024]. Although incompressible flows don’t
have the usual thermodynamics associated with compression and pressure, they can
be included in the metriplectic formalism by using the techniques of Chandre et al.
[2013].

The main contribution in this chapter is the unified thermodynamical algorithm
(UTA) that uses the metriplectic 4-bracket of previous work [Morrison and Updike,
2024, Zaidni et al., 2024, Sato and Morrison, 2024] to methodically lead one to
general classes of thermodynamically consistent systems. An important and novel
by-product of this algorithm is the definition of fluxes given by (2.61). In Sec. 3 we
present examples that generalize previous results. In particular, we showed that the
Brenner-Navier-Stokes-Fourier system and its generalization of Reddy et al. [2019]
are special cases of our generalization of the Navier-Stokes-Fourier system. They all
amount to modifying the dissipation in the Navier-Stokes equations.

The dichotomies of dissipative vs. nondissipative and reversible vs. irreversible
can be confused or used inappropriately, particularly when one is dealing with sys-
tems that contain a set of conservation laws such as those of (2.67). One clear
distinction can be made: that between Hamiltonian vs. nonHamiltonian, where the
former is an unambiguous definition of what is meant by nondissipative. The dis-
tinction between reversible and irreversible is also often confused. All systems of
autonomous ordinary differential equations are reversible because the solution is
a one-parameter Lie group, and not all Hamiltonian systems have time reversible
symmetry, a special case of a point symmetry. Again, there is no confusion if one
distinguishes Hamiltonian from nonHamiltonian, and the metriplectic 4-bracket for-
malism makes it clear which parts are Hamiltonian and which parts are dissipative.

Another dichotomy concerns the placement of temperature in the metriplectic
formalism. Temperature may appear as a result of the assumption of local thermo-
dynamic equilibrium, e.g., via an internal energy function u in the Hamiltonian, or
it may appear in the assumed forms of the phenomenological coefficients Lαβ. In
the first work on the metriplectic dynamics of the NSF fluid [Morrison, 1984a], it
was observed that the temperature needed to be placed in an ad hoc manner so as
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to make things work out. Similarly, the same observation was noted in Chap. 3 of
Öttinger [2005]. A resolution of this dichotomy is achieved with the UTA, where
temperature may appear according to (2.67) and (2.79) or in the choice of phe-
nomenological coefficients. It is interesting to note that once M and Σ are chosen
and the 4-bracket is determined, one can use any Hamiltonian and obtain a ther-
modynamically consistent system. This provides additional freedom for modeling.

In closing we mention some possibilities for future work. The results of this paper
pertain to macroscopic or purely continuum theories. Underlying kinetic theory can
place constraints on such continuum theories. For example, in [Mills, 2006] it was
noted that the results of Brenner are in disagreement with a number of kinetic-
theory studies. In the present context, an open question is how to connect the
4-bracket to a class of underlying kinetic theories with dissipative mechanisms such
as collision operators. On the kinetic level, a metriplectic 4-bracket was given in
[Sato and Morrison, 2024] for a generalization of the Landau collision operator and
the same can be done for a variety of kinetic theories. So far, no connection has
been made between fluid and kinetic 4-brackets.

The UTA can be both restricted and generalized. For example, additional sym-
metries beyond Onsager, such as Galilean or Poincaré invariance, can constrain the
choices of M and Σ . These symmetries might be traced from a kinetic theory or
considered on the macroscopic level. Here we have not considered these possibilities,
so as to keep the development general. An avenue for further generalization would
be to break the linear force-flux relations of (2.12) or (2.61). The essential feature
of thermodynamic consistency is global asymptotic stability and the concomitant
production of entropy. Dynamical systems with global asymptotic stability can be
recast into the form of (2.12) or (2.61) by using rectification arguments similar to
those described in [Morrison and Updike, 2024]. Rectification arguments fail when
additional fixed points exist. Systems with this property would not be expected
to be thermodynamically consistent, but one could still linearize within basins of
attraction.

A point regarding the UT algorithm that is not addressed here is why the K-N
form is used at all. This is a deeper question that could be addressed by appealing to
general principles of an underlying kinetic theory. The universality of the 4-bracket
applicability, ranging from various collisional kinetic theories to a large variety of
complex fluids, suggest that this might be possible.

In the next chapter, we will see that the metriplectic 4-bracket formalism also
provides an avenue for designing structure preserving numerical algorithms [see e.g.
Morrison, 2017]. Any discretization that preserves the symmetries of the 4-bracket,
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which is not a difficult task, will be thermodynamically consistent on the semi-
discrete level, i.e. produce a set of ordinary differential equations that conserve
energy and produce entropy. For simplicity, we have chosen to make a discretization
of Navier-Stokes-Fourier equations in one dimension using their metriplectic formal-
ism.
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CHAPTER

NUMERICAL SCHEME USING
METRIPLECTIC FORMALISM 4

4.1 INTRODUCTION

The Navier-Stokes-Fourier system is known to satisfy the first and second laws of
thermodynamics. Therefore, it is desirable that a numerical scheme for this system
should likewise be consistent with the laws of thermodynamics. In this chapter we
derive such a scheme in one spatial dimension by preserving the symmetries of the
Poisson bracket and the metriplectic 4-bracket formulation of the model in its spatial
discretization.

The metriplectic 2-bracket has previously been used in the discretization of col-
lisional kinetic plasmas [Kraus and Hirvijoki, 2017, Jeyakumar et al., 2024], and
the calculation of MHD equilibria [Bressan et al., 2018]. The formalism has also
been employed in reduced order modeling [Gruber et al., 2023]. Previous thermo-
dynamically consistent discretizations of thermal-fluid models have been derived
based on the Lagrange d’Alembert principle, a dissipative extension of Lagrangian
mechanics [Gawlik and Gay-Balmaz, 2024]. There is also prior work considering
thermodynamic consistency in the context of sub-grid parameterizations in atmo-
spheric modeling [Gassmann and Herzog, 2015]. This paper is the first to use a
metriplectic 4-bracket in the design of a numerical method.

It is worth mentioning that the natural variables for fluid models using the
metriplectic formulation use entropy rather than internal energy as a prognostic
variable. This makes our formulation incompatible with many tools in common

71



practice for numerical methods for hyperbolic conservation laws. Standard methods
use conservation form to great effect in deriving finite difference [Richtmyer and Mor-
ton, 1967, Toro, 2013], finite volume [Toro, 2013, LeVeque, 2002], and discontinuous
Galerkin methods [Cockburn and Shu, 2001, Hesthaven and Warburton, 2008], with
well-developed stabilization techniques for shocks inextricably connected to the use
of conservation form. However, there is precedent in the literature for using a skew-
symmetric split form—a weak formulation that incorporates both the advective and
conservative forms of the transport operator—rather than solely using conservative
form to simulate fluid models [Morinishi et al., 1998, Gassner, 2013, Gassner and
Winters, 2014, Palha et al., 2017]. Similar to this work, the motivation for employ-
ing these split forms is to construct invariant-preserving schemes. Moreover, prior
studies have explored the use of entropy, rather than total energy, as a prognostic
variable in compressible flow simulations (see Shakib et al. [1991] and references
therein). While this work builds on prior research, the approach proposed herein
does not aim to compete with the state-of-the-art methods based on conservation
form without substantial further research addressing the need for stabilization and
shock-capturing techniques tailored to this formalism.

4.2 A THERMAL-FLUID MODEL AND ITS
METRIPLECTIC STRUCTURE

A thermodynamically-consistent model of compressible flow, frequently called the
Navier-Stokes-Fourier system, was shown to possess metriplectic 4-bracket structure
in Sec.3.1. In a single spatial dimension, the equations of motion are given by

∂tρ+ ∂x(ρu) = 0 ,

∂t(ρu) + ∂x(ρu
2) + ∂xp = ∂x(µ∂xu) ,

∂t(ρs) + ∂x(ρsu) =
µ

T
(∂xu)

2 + ∂x

( κ
T
∂xT

)
+

κ

T 2
(∂xT )

2 ,

(4.1)

where µ and κ are the viscosity and thermal-conductivity coefficients, respectively,
and there exists an internal energy U = U(ρ, s) such that the pressure and temper-
ature are prescribed by p = ρ2∂ρU and T = ∂sU . It may be shown that this model
possesses a metriplectic structure.

It is convenient to use density coordinates: (ρ,m, σ) = (ρ, ρu, ρs) when writing
the metriplectic structure of the Navier-Stokes-Fourier system. The Hamiltonian is
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given by

H[ρ,m, σ] =

∫
Ω

(
1

2

m2

ρ
+ ρU

(
ρ,
σ

ρ

))
dx , (4.2)

and, using the functional derivative shorthand δF/δu = Fu, the Poisson bracket is
given by

{F,G} = −
∫
Ω

[
m (Fm∂xGm −Gm∂xFm) + ρ (Fm∂xGρ −Gm∂xFρ)

+ σ (Fm∂xGσ −Gm∂xFσ)

]
dx . (4.3)

Assuming homogeneous or periodic boundary conditions, the evolution law Ḟ =

{F,H} for arbitrary F = F [ρ,m, σ] recovers the conservative part of the dynamics
given by the right-hand side of equation (4.1). This Poisson bracket possesses a
Casimir invariant of the form S[ρ,m, σ] =

∫
Ω
σdx. This is the total entropy, and is

used as the generator for the dissipative dynamics.
The metriplectic structure is prescribed by a 4-bracket constructed using the

Kulkarni-Nomizu product (see e.g. Morrison and Updike [2023], Zaidni et al. [2024],
Zaidni and Morrison [2024]) from the following symmetric operators:

M(F,G) = FσGσ , and Σ(F,G) = (∂xFm)
µ

T
(∂xGm) + (∂xFσ)

κ

T 2
(∂xGσ) . (4.4)

The Kulkarni-Nomizu product is given by

(Σ ∧M)(F,K,G,N) = Σ(F,G)M(K,N)− Σ(F,N)M(G,K)

+M(F,G)Σ(K,N)−M(F,N)Σ(G,K) ,
(4.5)

from which one then defines the 4-bracket:

(F,K;G,N) =

∫
Ω

(Σ ∧M)(F,K,G,N)dx

=

∫
Ω

1

T

[
µ (Kσ∂xFm − Fσ∂xKm) (Nσ∂xGm −Gσ∂xNm)

+
κ

T
(Kσ∂xFσ − Fσ∂xKσ) (Nσ∂xGσ −Gσ∂xNσ)

]
dx . (4.6)

The rationale for choosing the operators M and Σ as given in (4.4) comes from a
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closer examination of the implied dissipative evolution:

(F, S)H =

∫
Ω

(Σ ∧M)(F,K,G,N)dx =

∫
Ω

(−Σ(F,H)M(S,H) +M(F, S)Σ(H,H)) dx

=

∫
Ω

(
−
[
(∂xFm)µ∂xu+ (∂xFσ)

κ

T
(∂xT )

]
+ Fσ

[µ
T
(∂xu)

2 +
κ

T 2
(∂xT )

2
])

dx .

(4.7)
By letting M = FσGσ, we find that Σ(H,H) is the entropy production rate while
Σ(F,H) gives rise to the reciprocal couplings which ensure energy conservation.
This rationale for finding the metriplectic 4-bracket is generally applicable for many
compressible flow models, see [Morrison and Updike, 2023, Zaidni and Morrison,
2024], and directly connects with standard arguments from non-equilibrium ther-
modynamics [de Groot and Mazur, 1962], e.g. the force and flux pairs from Onsager
reciprocity.

The metriplectic 2-bracket is then defined to be (F,G)H := (F,H;G,H). The
evolution law Ḟ = {F,H} + (F, S)H for arbitrary F = F [ρ,m, σ] recovers the full
Navier-Stokes-Fourier system. To be explicit, one finds that

{F,H} = −
∫
Ω

[
m (Fm∂xu− u∂xFm)+ρ (Fm∂xη −m∂xFρ)+σ (Fm∂xT − u∂xFσ)

]
dx ,

(4.8)
where we used the fact that Hm = m/ρ = u, Hσ = ∂sU = T , and

Hρ := η =
m2

2ρ2
+ U + ρUρ

(
ρ,
σ

ρ

)
− ρ

σ
Us

(
ρ,
σ

ρ

)
, (4.9)

is related to the enthalpy. Combining this with the dissipative vector field implied
by equation (4.7), we obtain the weak evolution equations:

Ḟ = {F,H}+ (F, S)H

= −
∫
Ω

[
m (Fm∂xu− u∂xFm) + ρ (Fm∂xη −m∂xFρ) + σ (Fm∂xT − u∂xFσ)

]
dx

+

∫
Ω

(
−
[
(∂xFm)µ∂xu+ (∂xFσ)

κ

T
(∂xT )

]
+ Fσ

[µ
T
(∂xu)

2 +
κ

T 2
(∂xT )

2
])

dx . (4.10)

Integration by parts and some algebraic manipulation recovers the strong evolution
equations given in equation (4.1). However, it is this weak form in equation (4.10)
implied by the Hamiltonian and metriplectic structure, and not the evolution equa-
tions themselves in equation (4.1), from which a thermodynamically-consistent finite
element method will be derived.
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It is convenient to non-dimensionalize the equations of motion. The viscosity
and conductivity coefficients are assumed to be constant. Define the following di-
mensionless quantities:

x̃ =
x

L
, ũ =

u

V
, ρ̃ =

ρ

ρ0
, σ̃ =

σ

ρ0R
, t̃ =

Lt

V
, p̃ =

p

ρ0V 2
, and T̃ =

RT

ρ0V 2
,

(4.11)
where tildes indicate dimensionless quantities; L, V , and ρ0 are taken to be the char-
acteristic length, velocity, and density, respectively; and R is the ideal gas constant.
Dropping the tildes for notational ease, the equations of motion become

∂tρ+ ∂x(ρu) = 0 ,

∂t(ρu) + ∂x(ρu
2) + ∂xp =

1

Re
∂2xu ,

∂t(ρs) + ∂x(ρsu) =
1

Re
(∂xu)

2

T
+

1

Re Pr
γ

γ − 1

(
∂x

(
1

T
∂xT

)
+

(∂xT )
2

T 2

)
,

(4.12)

where Re = (ρ0V L)/µ, Pr = κ/(µcP ), and γ = cp/cv are the Reynolds number,
Prandtl number, and heat capacity ratio respectively. Recall that R/cv = γ − 1.

For the purposes of this paper, it is sufficient to consider the ideal gas equation
of state. In dimensionless units, the internal energy is written U(ρ, s) = ργ−1e(γ−1)s

so that p = ρ2∂1U = (γ − 1)ργe(γ−1)σ/ρ, and T = ∂2U = (γ − 1)ργ−1e(γ−1)σ/ρ, where
∂i indicates differentiation with respect to the ith argument. In these units p = ρT

as required.

4.3 A THERMODYNAMICALLY CONSISTENT
DISCRETIZATION

In this work, we consider simulations on a periodic domain: Ω = [0, L]/∼, where
L > 0 and the equivalence relation identifies the endpoints. Let Vh ⊂ H1(Ω) be the
degree-p continuous Galerkin finite element space defined over a uniform grid, Th,
on Ω: i.e.

Vh = {vh ∈ H1(Ω) : vh|K ∈ Pp(K) , ∀K ∈ Th} , (4.13)

where Pp(K) is the space of degree-p polynomials on K ⊂ Ω. The discretization is
accomplished using the method of lines by positing that all dynamical fields have
spatial dependence modeled in this Galerkin subspace. However, rather than dis-
cretizing the equations of motion themselves, we discretize the weak forms implied
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by the metriplectic formulation.
Let (ρh,mh, σh) ∈ Vh × Vh × Vh. The discretized Hamiltonian and entropy are

given by

Hh[ρh,mh, σh] =

∫
Ω

[
1

2

m2
h

ρh
+ ρhU

(
ρh,

σh
ρh

)]
dx , Sh[σh] =

∫
Ω

σhdx , (4.14)

the antisymmetric bracket is given by

{F h, Gh}h(ρh,mh, σh) = −
∫
Ω

[
mh

(
F h
mh
∂xG

h
mh

−Gh
mh
∂xF

h
mh

)
+ ρh

(
F h
mh
∂xG

h
ρh

−Gh
mh
∂xF

h
ρh

)
+ σh

(
F h
mh
∂xG

h
σh

−Gh
mh
∂xF

h
σh

) ]
dx , (4.15)

and the metriplectic 4-bracket is given by

(F h, Kh;Gh, Nh)h =
1

Re

∫
Ω

1

Th

[ (
Kh

σh
∂xF

h
mh

− F h
σh
∂xK

h
mh

) (
Nh

σh
∂xG

h
mh

−Gh
σh
∂xN

h
mh

)
+

1

Pr
γ

γ − 1

1

Th

(
Kh

σh
∂xF

h
σh

− F h
σh
∂xK

h
σh

) (
Nh

σh
∂xG

h
σh

−Gh
σh
∂xN

h
σh

) ]
dx , (4.16)

where F h = F |Vh
, and similarly for the other functionals. We call the bracket in

equation (4.15) an antisymmetric bracket, and not a Poisson bracket, because it is
fails to satisfy the Jacobi identity: i.e. the identity

{F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0 ∀F,G,H . (4.17)

This is an essential algebraic property of Poisson brackets. However, no grid-based
discretization of the kinds of Poisson brackets found in fluid models (or indeed
those of most Hamiltonian partial differential equations) which preserves the Jacobi
identity is known. This deficiency motivates the use of the terminology “almost
Poisson" sometimes found in the literature [Cotter, 2023] to describe discretizations
of Poisson brackets which fail to satisfy the Jacobi identity. These discretizations
nonetheless preserve antisymmetry and the Casimir invariants giving rise to mass
and total entropy conservation, which is sufficient for the purposes of this work.
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The functional derivatives of the Hamiltonian are as follows:

Hh
ρh

= QVh

(
− m2

h

2ρ2h
+ U

(
ρh,

σh
ρh

)
+ ρh∂1U

(
ρh,

σh
ρh

)
− ρh
σh
∂2U

(
ρh,

σh
ρh

))
,

Hh
mh

= QVh

(
mh

ρh

)
, and Hh

σh
= QVh

(
∂2U

(
ρh,

σh
ρh

))
, (4.18)

where QVh
is the L2 projection onto Vh. These derivatives must be projected be-

cause the functional derivatives are taken with respect to constrained variations in
the space Vh. Similarly, one finds Sh

ρh
= Sh

mh
= 0, and Sh

σh
= 1, since Vh interpolates

constant functions exactly. For convenience, and to match notation used subse-
quently, we write δsh = (0, 0, 1) to denote the vector of derivatives of the entropy
with respect to the three dynamical fields, (ρh,mh, σh).

The evolution is then given by Ḟ h = {F h, Hh}h + (F h, Hh;Sh, Hh)h. One
immediately finds that the semi-discrete model is thermodynamically consistent,
Ḣh = 0 and Ṡh ≥ 0, as the discretized brackets possess the same symmetries
and degeneracies as the continuous brackets. If we consider an observable of the
form F h = (ϕm,mh)L2 + (ϕρ, ρh)L2 + (ϕσ, σh)L2 , then we obtain the following vari-
ational problem: find (uh, δhh) := ((ρh,mh, σh), (ηh, uh, Th)) ∈ V 3

h × V 3
h , where

V 3
h = Vh × Vh × Vh, such that

(vh, ∂tuh)L2−{vh, δhh} (uh)−(vh, δsh)H(δhh)+(δhh−DH(uh),wh)L2 = 0 (4.19)

∀(vh,wh) := ((ϕρ, ϕm, ϕσ), (ϕηh , ϕuh
, ϕTh

)) ∈ V 3
h × V 3

h , where

(vh, ∂tuh)L2 = (∂tρh, ϕρ)L2 + (∂tmh, ϕm)L2 + (∂tσh, ϕσ)L2 , (4.20)

the discrete Poisson bracket is defined to be

{vh, δhh} (uh) = {F h, Hh}h(uh) = − (mh∂xuh, ϕm)L2 + (mhuh, ∂xϕm)L2

− (ρh∂xηh, ϕm)L2 + (ρhuh, ∂xϕρ)L2 − (σh∂xTh, ϕm)L2 + (σhuh, ∂xϕσ)L2 , (4.21)

the discrete metriplectic bracket yields

(vh, δsh)H(δhh) = (F h, Hh;Sh, Hh)h = − 1

Re

[
(∂xuh, ∂xϕm)L2 −

(
(∂xuh)

2

Th
, ϕσ

)
L2

+
1

Pr
γ

γ − 1

[(
∂xTh
Th

, ∂xϕσ

)
L2

−
(
(∂xTh)

2

T 2
h

, ϕσ

)
L2

]]
, (4.22)
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and the L2 projections of the derivatives of the Hamiltonian are imposed via

(δhh −DH(uh),wh)L2 =

(
ηh −

δHh

δρh
, ϕηh

)
L2

+

(
uh −

δHh

δmh

, ϕuh

)
L2

+

(
Th −

δHh

δσh
, ϕTh

)
L2

.

(4.23)

This notation attempts to stress three essential features of the spatial discretization.

• The derivatives of the generating functions are computed as via projections
and must be thought of as distinct from the evolving state vector, uh =

(ρh,mh, σh). Hence, we keep track of the derivatives of the Hamiltonian,
δhh = (ηh,mh, Th), as additional degrees of freedom (note, δsh = (0, 0, 1)

takes a simple form in momentum coordinates).

• The bilinear two-brackets generating the conservative and dissipative dynam-
ics,

{vh, δhh} (uh) and (vh, δsh)H(δhh) , (4.24)

respectively, take the derivatives of the generating functions, δhh and δsh, as
one argument, and arbitrary the test function, vh as the other.

• These brackets also have nonlinear field dependence. The discrete antisym-
metric bracket depends directly on the state-vector, uh, while the discrete
symmetric bracket depends on the derivative of the Hamiltonian, δhh. The
nonlinear dependence of the dissipative bracket on δhh, rather than uh, is
dictated by the 4-bracket formalism and essential for energy conservation.

By including the L2 projection of the derivatives of the Hamiltonian as additional
fields to solve for in the variational problem, we formulate the semi-discrete problem
as a differential algebraic equation. The derivatives of the Hamiltonian with respect
to momentum and entropy density have the physical interpretation of being the
velocity and temperature, respectively. The derivative of the Hamiltonian with
respect to density is related to the enthalpy, and one may readily recover the gradient
of the pressure through a Bernoulli-like equation:(

∂xph +
1

2
∂x(u

2
h)− ρh∂xηh + σh∂xTh, ϕ

)
L2

= 0 , ∀ϕ ∈ Vh . (4.25)

To be perfectly explicit, the variational form for the momentum equation is
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obtained as follows. Letting ϕρ = ϕσ = 0, we find

(ϕm, ∂tmh) + (mh∂xuh, ϕm)L2 − (mhuh, ∂xϕm)L2

+ (ρh∂xηh, ϕm)L2 + (σh∂xTh, ϕm)L2 +
1

Re
(∂xuh, ∂xϕm)L2 = 0 , ∀ϕm ∈ Vh , (4.26)

where for all (ϕη, ϕu, ϕT ) ∈ V 3
h(

ηh +
m2

h

2ρ2h
− U

(
ρh,

σh
ρh

)
− ρh∂1U

(
ρh,

σh
ρh

)
+
ρh
σh
∂2U

(
ρh,

σh
ρh

)
, ϕη

)
L2

= 0 ,(
uh −

mh

ρh
, ϕu

)
L2

= 0 , and
(
Th − ∂2U

(
ρh,

σh
ρh

)
, ϕT

)
L2

= 0 . (4.27)

The continuity and entropy equations are obtained in a similar fashion.
As mentioned previously, the spatially semi-discretized evolution equations given

in equation (4.19) are thermodynamically consistent. This may be verified by letting
vh = δhh, yielding

Ḣh = (δhh, ∂tuh)L2 = 0 , (4.28)

and vh = δsh, yielding

Ṡh = (δsh, ∂tuh)L2 =
1

Re

[(
(∂xuh)

2

Th
, 1

)
L2

+
1

Pr
γ

γ − 1

(
(∂xTh)

2

T 2
h

, 1

)
L2

]
≥ 0 .

(4.29)

4.3.1 TEMPORAL DISCRETIZATION

One convenient and simple choice for temporal discretization is the implicit midpoint
method. That is, for a differential equation ż = V (z), its evolution is given by

zn+1 − zn

∆t
= V

(
zn+1 + zn

2

)
. (4.30)

This is done because the method is symplectic, A-stable, and known to preserve in-
variants well: quadratic invariants are preserved exactly [Hairer et al., 2013]. Mass
is conserved exactly, and in the dissipation-free limit, so is entropy. The energy
is not a polynomial invariant and therefore is not conserved exactly even in the
dissipation-free limit. In fact, as the spatially semi-discrete model is not Hamil-
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tonian even in the dissipation-free limit (although it does conserve energy due to
antisymmetry of the Poisson bracket and degeneracy of the metriplectic bracket)
there is no guarantee of the long-time near energy conservation property symplectic
integrators usually enjoy [Hairer et al., 2013]. This is because the proof of long-time
energy conservation for symplectic integrators applied to Hamiltonian systems cru-
cially relies on the Hamiltonian structure, namely that the time-advance map is a
canonical transformation. In fact, a small drift in energy is observed in the numeri-
cal results section in both the dissipation-free and dissipative test cases, see Figures
4.2(a) and 4.2(b) respectively. Entropy production of the fully discrete system is
given by

Sn+1 − Sn

∆t
=

1

Re

[(
(∂xu

n
h)

2

T n
h

, 1

)
L2

+
1

Pr
γ

γ − 1

(
(∂xT

n
h )

2

(T n
h )

2
, 1

)
L2

]
≥ 0 . (4.31)

The failure of the implicit midpoint method to yield a thermodynamically-
consistent time-discretization motivates us to consider a time-stepping strategy
based on the averaged vector-field discrete gradient method [Quispel and McLaren,
2008, Hairer, 2010]. The time-stepping method based on the averaged vector-field
discrete gradient method for equation (4.19) is given by the weak form(

un+1
h − un

h

∆t
,vh

)
L2

+ {δhn
h,vh}

(
un+1

h + un
h

2

)
+ (δsnh,vh)H(δh

n
h)

+ (DH(un
h,u

n+1
h )− δhn

h,wh)L2 = 0 , ∀(vh,wh) ∈ V 3
h × V 3

h (4.32)

where

DH(un
h,u

n+1
h ) =

∫ 1

0

DH((1− t)un
h + tun+1

h )dt . (4.33)

This method is equivalent to the implicit midpoint method if we approximate the
integral in (4.33) using the midpoint rule. In fact, this integral must be approx-
imated via quadrature in general. We find that Gauss-Legendre quadrature with
≥ 4 quadrature points achieves sufficient accuracy to achieve energy conservation
to machine precision in the tests considered in this work. From this definition of
the time-stepping scheme, it follows that if we let vh = δhh, then the fundamental
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theorem of calculus implies that(
un+1

h − un
h

∆t
, δhh

)
L2

=

(
un+1

h − un
h

∆t
,DH(un

h,u
n+1
h )

)
L2

=
1

∆t

∫ 1

0

DH((1− t)un
h + tun+1

h ) · (un+1
h − un

h)dt

=
1

∆t

∫ 1

0

d

dt
H((1− t)un

h + tun+1
h )dt =

H(un+1
h )−H(un

h)

∆t
= 0 ,

(4.34)
verifying energy conservation. Positive entropy production follows from letting vh =

δsnh:

Sn+1 − Sn

∆t
= (δsnh, δs

n
h)H(δhh)

=
1

Re

[(
(∂xu

n
h)

2

T n
h

, 1

)
L2

+
1

Pr
γ

γ − 1

(
(∂xT

n
h )

2

(T n
h )

2
, 1

)
L2

]
≥ 0 .

Hence, the fully discrete method is found to be thermodynamically-consistent. This
is verified in figures 4.2(c) and 4.2(d) for both the dissipation-free and dissipative test
cases. The averaged vector field discrete gradient method is O(∆t2), however higher
order generalizations were derived in [Cohen and Hairer, 2011]. Moreover, both the
Gauss-Legendre implicit Runge-Kutta methods and energy conserving methods of
the kind found in [Cohen and Hairer, 2011] were recently shown to fit into a general
framework in [Andrews and Farrell, 2024].

4.4 NUMERICAL EXAMPLES

The spatial discretization is accomplished using the Firedrake library [Ham et al.,
2023], and the temporal discretization with the Irksome module [Farrell et al., 2021].
For the finite element discretizations, we use piecewise linear interpolation. Although
there is no inherent limitation which forces one to use linear finite elements, sharp
gradients form in this compressible flow problem making it advantageous to use a fine
grid with low order interpolation. In the following examples, we use the parameters

Re = 10 , Pr = 0.71 , and γ = 1.4 (4.35)
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to reflect the standard parameters of dry air with a relatively low Reynolds number
(so that the effects of dissipation might be readily seen). We present two simulations
with initial conditions mh(x, 0) = sin(2πx/L)/2, ρh(x, 0) = 1, and σh(x, 0) = 1/2.
In one simulation, we use the parameter set (4.35), in the other, we let Re → ∞
to simulate the dissipation-free dynamics (terminated prior to shock formation).
The spatial domain is taken to be [0, L] = [0, 100]. Tests are run using both the
implicit midpoint and discrete gradient time-stepping schemes. In all tests, the time
step is taken to be ∆t = 0.1, and the grid size is ∆x = L/2000 = 0.05. For the
dissipative simulations, the simulation is run for t ∈ [0, 200], while the dissipation-
free simulation is run for t ∈ [0, 50] (due to the lack of viscous regularization, a
shock forms at t ≈ 50). See Figure 4.1 for a visualization of the simulation results,
and Figure 4.2 for a visualization of the mass, energy, and entropy as a function of
time for each simulation.

As previously mentioned, the implicit midpoint method fails to conserve en-
ergy whereas the discrete gradient method does, as seen in Figure 4.2. Because
the dissipation-free system is not Hamiltonian, there is no guarantee that a sym-
plectic integrator should enjoy long-time energy conservation. However, even if the
dissipation-free spatially discrete system were Hamiltonian—so that symplectic inte-
gration yielded a long-time energy near-conservation result—proving energy conser-
vation for the fully-discrete metriplectic system remains problematic. The conserved
modified energy obtained through backward error analysis would most likely fail to
lie in the null space of the metriplectic bracket. Thus, overall energy conservation of
the coupled conservative-dissipative dynamics remains uncertain even in this opti-
mistic case. For these reasons, symplectic integration is not an appropriate choice for
the time-integration of metriplectic systems. Rather, energy conserving methods—
such as the averaged vector field discrete gradient method used in this work—are
more appropriate.

4.5 DISCUSSION AND CONCLUSION

In this short chapter, we derived a thermodynamically consistent discretization of
the one dimensional Navier-Stokes-Fourier model using the metriplectic 4-bracket
formalism. For Galerkin methods, one simply restricts the brackets and functionals
to act on finite dimensional function spaces. A comparable discretization using finite-
differences could be derived by directly approximating the functionals and brackets
using quadrature. Virtually any spatial discretization method, if applied at the level
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(a) Re = 10

(b) Re = ∞

Figure 4.1: Visualization of solutions. The dissipation-free solution is shown prior to
shock formation at t ≈ 50. The results using implicit midpoint and discrete-gradient
time-stepping look indistinguishable to the eye.

of the brackets and generating functions, would yield a thermodynamically consis-
tent spatial semi-discretization as long as the resulting discrete brackets retain the
symmetries and degeneracies of the continuous formulation. Many other models fit
into the metriplectic formalism [Morrison and Updike, 2023, Zaidni et al., 2024, Sato
and Morrison, 2024], and one may reasonably expect their discretization to likewise
be thermodynamically consistent if one uses analogous methods to those employed
in this paper. The implicit midpoint method was found to yield largely favorable
behavior as a time-integrator, however it fails to exactly conserve energy. The av-
eraged vector field discrete gradient method [Hairer, 2010, McLachlan et al., 1999]
applied to the bracket-based spatial discretization yielded a thermodynamically con-
sistent fully-discrete method. Other energy-conserving methods such as those found
in [Cohen and Hairer, 2011, Andrews and Farrell, 2024] could likewise be used. The
simultaneous guarantee of energy conservation and the positive production of phys-
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(a) Re = ∞ with implicit midpoint time-
stepping.

(b) Re = 10 with implicit midpoint time-
stepping.

(c) Re = ∞ with discrete gradient time-
stepping.

(d) Re = 10 with discrete gradient time-
stepping.

Figure 4.2: Evolution of relative error in total energy, entropy, and mass.

ical entropy at the correct rate makes these energy-conserving methods preferable
to standard time-stepping methods. Finally, compressible flow models exhibit dis-
continuous shock solutions in the inviscid case, and effective shocks if the spatial
discretization does not resolve the viscous boundary layer. A thermodynamically
consistent spatial discretization based on a discontinuous Galerkin, finite volume, or
finite difference method with stabilization for shock solutions using the metriplectic
formalism is an intriguing future direction of inquiry.

Previously, 2-brackets have been used and proposed in [Kraus and Hirvijoki,
2017, Hirvijoki et al., 2018, Bressan et al., 2018, Gruber et al., 2023, Jeyakumar et al.,
2024] to obtain thermodynamically consistent numeric, i.e., where the semi-discrete
equations are a finite-dimensional metriplectic system in terms of the 2-bracket.
However, the 4-bracket was found to be particularly useful because maintaining
symmetries while projecting onto a Galerkin basis is essentially automatic.
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CHAPTER

WELL-POSEDNESS ANALYSIS
OF CHNS SYSTEM 5

5.1 INTRODUCTION

In this chapter, We study the well-posedness of anisotropic, incompressible Cahn-
Hilliard-Navier-Stokes system derived from Sec. 3.4.3 (for the case a = 0 (3.160)–
(3.162)). This extends previous studies on the isotropic case by incorporating the
anisotropic surface energy, represented by F =

∫
Ω

ϵ
2
Γ2(∇ϕ). Using a Galerkin ap-

proximation scheme, we will prove the existence of global weak solutions in both
two and three dimensions. Here, we adjust the notation to better accommodate
readers familiar with PDEs analysis. In this case, the nonlinear system of equations
governing the motion of a mixture of two incompressible non-Newtonian fluids is
given by:

∂tρ+ u · ∇ρ = 0, (5.1)

ρ∂tϕ+ ρu · ∇ϕ = div(D(ϕ)∇µ), (5.2)

ρ∂tu+ ρ(u · ∇)u− div(ν(ϕ)D(u)) = −∇π − div(Γζ(∇ϕ)⊗∇ϕ), (5.3)

ρµ = ρF ′(ϕ)− div(Γζ(∇ϕ)), (5.4)

where π the pressure, ν(ϕ) the viscosity, D(ϕ) the diffusion coefficient, and µ the
chemical potential. The symmetric strain-rate tensor of u is denoted by D(u) =
1
2
(∇u+∇uT ). The function F represents the logarithmic function defined on [−1, 1],
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which follows from a mean-field model:

F (s) =
λ1
2
(1−s2)+ λ2

2

[
(1 + s) ln

(1 + s)

2
+ (1− s) ln

(1− s)

2

]
:=

λ1
2
(1−s2)+G(s).

where 0 < λ2 < λ1. As above, Γ is a homogeneous function of degree one of
p = (p1, . . . , pd) ∈ Rd, and ζ is defined as:

Γ(p) = p · ζ := pj
∂Γ(p)

∂pj
.

The system is considered in Ω × (0, T ), where Ω is a bounded domain (open and
connected set) in Rd for d = 2, 3, with a regular boundary ∂Ω, and T > 0 is a given
positive time.

We complete the system with the following initial conditions:

ρ(·, 0) = ρ0, u(·, 0) = u0, ϕ(·, 0) = ϕ0 in Ω, (5.5)

and one of the alternative boundary conditions:

• No-slip boundary condition for the velocity and homogeneous Neumann-Neumann
boundary condition:

u = 0, ∂nµ = ∂nϕ = 0, Γζ(∇ϕ) · n = 0 on ∂Ω× (0, T ) (5.6)

• Dirichlet boundary condition:

u = 0, µ = ϕ = 0, on ∂Ω× (0, T ) (5.7)

In the case of homogeneous Neumann-Neumann boundary condition (5.6), we make
the following assumption

• H0: The Laplacian operator ϕ 7→ ∆ϕ on H1(Ω), with the zero Neumann-
Neumann boundary conditions ∂nϕ = 0, Γζ(∇ϕ) · n = 0 (cf. (5.6)) admits a
basis of eigenfunctions {ωj}j≥1.

Throughout this work, the functions ν(s) andD(s) are assumed to be inW 1,∞(R)
such that 0 < ν∗ ≤ ν ≤ ν∗ and 0 < D∗ ≤ D ≤ D∗, where ν∗, ν∗, D∗, and D∗ are
positive constants.

Previous works primarily focused on the isotropic case. We present here a con-
cise review of systems with variable density that have been studied in the literature.
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The existence of global weak solutions for the incompressible Cahn-Hilliard-Navier-
Stokes (CHNS) system with variable density has been established in both two and
three dimensions Giorgini and Temam [2020], Abels et al. [2024], Munteanu [2024],
Rui et al. [2024], Abels et al. [2013]. For results concerning strong solutions, we
refer the reader to Zhao [2019], Li et al. [2024], Kotschote and Zacher [2015]. In the
compressible case, results have been proven in one dimensional Chen et al. [2018],
Cherfils et al. [2019], Elbar and Poulain [2024], Giorgini et al. [2021]. Beyond the
isotropic case, the global existence of solutions for higher-order Navier-Stokes-Cahn-
Hilliard systems in two dimensions has also been established Pan et al. [2020].

In this chapter, we prove the existence of global weak solutions for the incom-
pressible anisotropic Cahn-Hilliard-Navier-Stokes system (5.1)-(5.4). To do this, let
us state our assumptions regarding the anisotropic surface energy. We assume that
the function Γ satisfies:

• H1: There exist two positive numbers, r and R, such that for any p ∈ Rd, we
have r∥p∥22 ≤ Γ2(p) ≤ R∥p∥22, where ∥p∥22 =

∑d
i=1 p

2
i .

• H2: The map p 7→ Γζ(p) is linear.

• H3: The inner product p · Γζ(p) is non-negative for any p ∈ Rd.

Taylor and Cahn [1998] provide a family of candidate functions Γ, specifically:

Γ2
α,β(p) = p21+p

2
2+p

2
3+2α(|p1p2|+|p1p3|+|p2p3|)+2β(|p1−p2|2+|p1−p3|2+|p2−p3|2),

for d = 3 and α, β > −1. The functions Γα,β satisfy H1, H2, and H3 for α = 0

and β > −1/8. A set of functions that satisfy the previous assumptions is provided
by Γ2(p) = pTMp, where M is a positive definite matrix. In this case, R and r

represent the largest and smallest eigenvalues of the matrix M, respectively.
Here, we give an example where α = 0 and β = 1/2. In this case, we have

Γζ(∇ϕ)⊗∇ϕ =

 3(∂xϕ)
2 − ∂xϕ∂yϕ− ∂xϕ∂zϕ −(∂yϕ)

2 + 3∂xϕ∂yϕ− ∂2ϕ∂zϕ −(∂zϕ)
2 − ∂yϕ∂zϕ+ 3∂xϕ∂zϕ

−(∂xϕ)
2 + 3∂xϕ∂yϕ− ∂xϕ∂zϕ 3(∂yϕ)

2 − ∂xϕ∂yϕ− ∂yϕ∂zϕ −(∂zϕ)
2 + 3∂yϕ∂zϕ− ∂yϕ∂zϕ

−(∂xϕ)
2 − ∂xϕ∂yϕ+ 3∂xϕ∂zϕ −(∂yϕ)

2 − ∂xϕ∂yϕ+ 3∂2ϕ∂zϕ 3(∂zϕ)
2 − ∂zϕ∂xϕ− ∂zϕ∂yϕ


(5.8)

The equation (5.4) then becomes

ρµ = ρF ′(ϕ)− 3∆ϕ− 2∂xyϕ− 2∂xzϕ− 2∂yzϕ. (5.9)
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5.2 GLOBAL EXISTENCE OF WEAK SOLUTIONS TO
INCOMPRESSIBLE CHNS

Before formulating our main result, we need to introduce some definitions and no-
tations. Let Ck

c (Ω), k ∈ N be the space of all functions which, together with all
partial derivatives up to order k, are continuous in Ω. Let p ≥ 1 and q > 0.
Then Lp(Ω) and W q,p(Ω) are the usual Lebesgue and Sobolev spaces, respectively.
(f, g) :=

∫
Ω
f(x)g(x) dx denotes the scalar product with respect to the spatial vari-

able. Moreover, for a Banach space X and a real interval I, we denote by Lp(I;X)

the Bochner space, which is equipped with the norm
(∫

I
∥ . ∥pX dt

)1/p.
We introduce the following velocity spaces

C =
{
u ∈ (C∞

c (Ω))d ; divu = 0
}
,

V = the closure of C in
(
H1

0 (Ω)
)d
,

H = the closure of C in
(
L2(Ω)

)d
,

where C∞
c (Ω) is the space of smooth functions with compact support in Ω.

Given 1 ≤ p ≤ +∞, the Besov spaces denoted by B
1
4
p,∞(0, T ;X) consist of the

set of functions f ∈ Lp(0, T ;X) with finite norm

∥f∥
B

1
4
p,∞(0,T ;X)

= ∥f∥Lp(0,T ;X) + sup
0<h≤1

h−
1
4 ∥∆hf∥Lp(Ih;X) ,

where ∆hf(t) = f(t+ h)− f(t) and Ih = {t ∈ (0, T ) : t+ h ∈ (0, T )}.
We now state the main result of our paper as follows.
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Theorem 1. Let T be a positive time. Assume that ρ0 ∈ L∞(Ω) with
0 < ρ∗ ≤ ρ0 ≤ ρ∗ < ∞, u0 ∈ L2(Ω), and ϕ0 ∈ H1(Ω) ∩ L∞(Ω) such that
∥ϕ0∥L∞(Ω) ≤ 1. With the initial conditions (5.5), and taking as boundary
conditions either; (5.6), supplemented with the assumption H0, or alterna-
tively (5.7), and assuming H1, H2 and H3, then, there exists a weak solution
(ρ,u, ϕ, µ) to the system (5.1)-(5.4) satisfying

ρ ∈ C([0, T ];L2(Ω)) ∩ L∞(Ω× (0, T )) ∩W 1,∞ (0, T ;H−1(Ω)
)
, (5.10)

u ∈ L2 (0, T ;V) ∩B
1
4
2,∞ (0, T ;H) , (5.11)

ϕ ∈ L2
(
0, T ;H1(Ω)

)
∩B

1
4∞,∞

(
0, T ;L2(Ω)

)
, (5.12)

µ ∈ L2
(
0, T ;H1(Ω)

)
, (5.13)

In the following we present the proof of Theorem 1 with the boundary condition
(5.6) and the assumption H0. The case with the boundary condition (5.7) can be
treated similarly. The proof is structured as follows. In Sect. 5.3, we derive the
energy balance. In Sec. 5.4, we introduce a system with the regularized logarithmic
potential, which is defined on R and parameterized by ε ∈

(
0, 1−

√
1− λ2/λ1

)
.

In Sec. 5.5, we establish, through a Galerkin scheme, the global existence of the
solution to the system with the regularized logarithmic potential. The proof is
divided into three steps:

• Step 1: We construct a linearized version of the system and prove the existence
of a solution using the classical Cauchy-Lipschitz theorem. The solution is
defined only on a local time interval [0, T0), where T0 depends on the initial
data.

• Step 2: By analyzing the mapping that uses the function we linearized around
as input and yields the solution from the Cauchy-Lipschitz theorem as output,
and applying Bihari’s inequality [Bihari, 1956], we establish the existence of
a small time interval [0, T̃ ] where both the input and output data remain
well-defined.

• Step 3: We establish the regularity of the solution, and we show that the map
from input data to output data has a Schauder fixed point. This argument
follows the same approach used in [Giorgini and Temam, 2020].

At the end of Sec. 5.5, we prove that the fixed point cannot blow up near a given
finite time T0. In Sec. 5.6, we present the proof of the main result, which is
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structured in two parts. First, we establish that the Galerkin approximation has a
convergent subsequence, and its limit is a global weak solution of the system with
the regularized logarithmic potential. Second, we prove uniform estimates, and by
passing to the limit as ε→ 0+, we obtain a weak solution of our system (5.1)-(5.4).

5.3 ENERGY BALANCE

In this section, we report the total energy balance. By multiplying (5.3) by u and
integrating over Ω, we obtain

1

2

d

dt

∫
Ω

ρ|u|2dx+
∫
Ω

ν(ϕ)|D(u)|2dx =

∫
Ω

− div(Γζ ⊗∇ϕ) · u dx. (5.14)

We have

div(Γζ ⊗∇ϕ) = ∇ϕ(div(Γζ)) + Γζ · ∇(∇ϕ) = ∇ϕ(div(Γζ)) +∇
(
1

2
Γ2(∇ϕ)

)
.

(5.15)
Using (5.4), we find

− div(Γζ ⊗∇ϕ) = ρµ∇ϕ− ρF ′(ϕ)∇ϕ−∇
(
1

2
Γ2(∇ϕ)

)
= ρµ∇ϕ− ρ∇F (ϕ)−∇

(
1

2
Γ2(∇ϕ)

)
. (5.16)

Assuming the boundary condition on u (5.6), the equation (5.14) becomes

1

2

d

dt

∫
Ω

ρ|u|2dx+
∫
Ω

ν(ϕ)|D(u)|2dx =

∫
Ω

ρµu · ∇ϕ− ρu · ∇F (ϕ)dx. (5.17)

Multiplying (5.4) by ∂tϕ and integrating, we have∫
Ω

ρµ ∂tϕ =−
∫
Ω

∂tϕ div(Γζ)dx+

∫
Ω

ρF ′(ϕ)∂tϕ dx

=

∫
Ω

Γζ · ∂t∇ϕdx+
∫
Ω

ρF ′(ϕ)∂tϕ dx

=
d

dt

∫
Ω

1

2
Γ2(∇ϕ) + ρF (ϕ) dx−

∫
Ω

F (ϕ)∂tρ dx.

(5.18)

Here, we used the boundary conditions Γζ(∇ϕ) · n = 0.
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Multiplying (5.2) by µ and integrating, we find using the Newman boundary
conditions on µ∫

Ω

ρµ∂tϕ dx+

∫
Ω

ρµu · ∇ϕ dx+
∫
Ω

D(ϕ)|∇µ|2dx = 0. (5.19)

By combining (5.17), (5.18), and (5.19), we get

d

dt

∫
Ω

1

2
ρ|u|2 + 1

2
Γ2(∇ϕ) + ρF (ϕ) dx+

∫
Ω

ν(ϕ)|D(u)|2 +D(ϕ)|∇µ|2dx = 0. (5.20)

Here, the Ginzburg–Landau energy
∫
Ω

1
2
Γ2(∇ϕ)+ ρF (ϕ) dx describes an interfa-

cial energy associated with the region where ϕ is not close to the minima of F (ϕ)
and

∫
Ω

1
2
ρ|u|2 dx is the kinetic energy of the fluid.

5.4 REGULARIZED LOGARITHMIC POTENTIAL

We introduce a family of regular potentials Fε that approximate the logarithmic
potential (5.1). For any ε ∈ (0, 1−

√
1− λ2/λ1), we define

Fε(s) =
λ1
2
(1− s2) +Gε(s), (5.21)

where Gε is defined by

Gε(s) =


∑2

j=0
1
j!
G(j)(1− ε)[s− (1− ε)]j for s ≥ 1− ε,

G(s) for s ∈ [−1 + ε, 1− ε],∑2
j=0

1
j!
G(j)(−1 + ε)[s− (−1 + ε)]j for s ≤ −1 + ε.

(5.22)

We have Fε ∈ C2(R) and

Fε(s) ≤ F (s) for all s ∈ (−1, 1), |F ′
ε(s)| ≤ |F ′(s)| for all s ∈ (−1, 1). (5.23)

In order to construct weak solutions by an approximation procedure, we intro-
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duce the following regularized problem:

∂tρ
ε + uε · ∇ρε = 0, (5.24)

ρε∂tϕ
ε + ρεuε · ∇ϕε = div(D(ϕε)∇µε), (5.25)

ρε∂tu
ε + ρε(uε · ∇ε)uε − div(ν(ϕε)D(uε)) = −∇πε − div(Γξ(∇ϕε)⊗∇ϕε), (5.26)

ρεµε = ρεF ′
ε(ϕ

ε)− div(Γξ(∇ϕε)). (5.27)

Furthermore, we complete the system with the same boundary and initial conditions
(5.6). The existence of weak solutions to the system (5.24)–(5.27) can be established
by a standard argument: in the case of bounded domains, we construct approximate
solutions via a Galerkin approximation scheme, derive uniform bounds, and thus
obtain solutions by passing to the limit. This will be detailed in the next Sec. 5.5.

5.5 GLOBAL EXISTENCE OF APPROXIMATE SOLUTION

In this section, we construct a converging sequence using the Galerkin approxima-
tion scheme. We define the inner product on V by (u,v)V = (∇u,∇v) and the
norm ∥u∥V = ∥∇u∥L2(Ω). For any integer n ≥ 1, we define the finite-dimensional
subspaces of V and H1(Ω), respectively, by Vn = span{v1, . . . ,vn} and Hn =

span{ω1, . . . , ωn}, where the families of functions {vj}j≥1 and {ωj}j≥1 represent the
eigenfunctions of the Stokes operator (with zero Dirichlet boundary conditions) and
Laplace operator (with zero Neumann boundary conditions and Γζ(∇ϕ) · n = 0)
(according to the assumption H0), respectively. We denote (0 < λs1 ≤ λs2 ≤ . . .) and
(λ1 ≤ λ2 ≤ . . .) as the corresponding eigenvalues of the Stokes operator and Laplace
operator, respectively. We denote by P 1

n and P 2
n the orthogonal projections onto Vn

and Hn with respect to the inner product in H and L2(Ω), respectively. We define
the initial data as follows: we consider the triplet (ρ0n,u0n, ϕ0n), where u0n = P 1

nu0

and ϕ0n = P 2
nϕ0, and ρ0n constructed using mollification by convolution such that

for any n ≥ 1, ρ0n ∈ C∞(Ω) and ρ∗ ≤ ρ0n(x) ≤ ρ∗ for any x ∈ Ω. The constructed
initial data satisfy

ρ0n → ρ0 strongly in L2(Ω), (5.28)

ρ0n ⇀ ρ0 weak-star in L∞(Ω), (5.29)

u0n → u0 strongly in (L2(Ω))d, (5.30)

ϕ0n → ϕ0 strongly in H1(Ω). (5.31)
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We have u0n = 0, ∂nµ0n = ∂nϕ0n = 0, on ∂Ω× (0, T ). Since Γζ is linear, we also
have

Γζ(∇ϕ0n) · n =
n∑

i=1

(ϕ0n, ωi)L2(Ω)Γζ(∇ωi) · n = 0.

We recall that, for any un ∈ Vn and ϕn ∈ Hn, we have

∥un∥L2(Ω) ≤
1√
λs1

∥∇un∥L2(Ω), (5.32)

∥un∥V ≤
√
λsn∥un∥L2(Ω), (5.33)

∥ϕn∥H2(Ω) ≤
√
λn∥ϕn∥H1(Ω), (5.34)

∥un∥L∞(Ω) ≤ K∥un∥H2(Ω) ≤ Kn∥un∥L2(Ω), (5.35)

where K and Kn are constants. Let 1 ≤ p ≤ +∞.

Proposition 1. (Local existence of approximate solution). Given the initial data
(ρ0n,u0n, ϕ0n, µ0n) constructed as above, there exist a time interval [0, T̃ ] with T̃ > 0

and (ρεn,u
ε
n, ϕ

ε
n, µ

ε
n) such that

ρεn ∈ C1(Ω̄× [0, T̃ ]), uε
n ∈ C1([0, T̃ ];Vn), ϕ

ε
n ∈ C1([0, T̃ ];Hn), µ

ε
n ∈ C([0, T̃ ];Hn),

(5.36)
∂tρ

ε
n + uε

n · ∇ρεn = 0 in Ω× (0, T̃ ), (5.37)

(ρεn∂tu
ε
n,v) + (ρεn(u

ε
n · ∇)uε

n,v) + (ν(ϕε
n)Duε

n,∇v) =(ρεnµ
ε
n∇ϕε

n,v)

− (ρεn∇(Fε(ϕ
ε
n)),v),

(5.38)

(ρεn∂tϕ
ε
n, ω) + (ρεnu

ε
n · ∇ϕε

n, ω) + (D(ϕε
n)∇µε

n,∇ω) = 0, (5.39)

(ρεnµ
ε
n, ω) = (Γζ(∇ϕε

n),∇ω) + (ρεnF
′
ε(ϕ

ε
n), ω), (5.40)

for all v ∈ Vn, ω ∈ Hn and for all t ∈ [0, T̃ ].

One of the key steps in proving this proposition is the use of Bihari’s inequality.
[Bihari, 1956, see page 90] .

Lemma 3. Let h : [0,+∞[→ [0,+∞[ be a non-decreasing continuous function such
that h > 0 on ]0,+∞[ and

∫ +∞
1

1
h(x)

dx < +∞. We denote the antiderivative of
−1/h, which cancels at +∞, as H. Let y be a continuous function that is nonnegative
on [0,+∞[, and let g be a nonnegative function in L1

loc([0,+∞[). We assume that
there exists a y0 > 0 such that for all t ≥ 0, we have the inequality

y(t) ≤ y0 +

∫ t

0

g(s) ds+

∫ t

0

h(y(s)) ds.
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Then, there exists a unique T ∗ that satisfies the equation

T ∗ = H

(
y0 +

∫ T ∗

0

g(s) ds

)
,

and for any T < T ∗, we have

sup
t≤T

y(t) ≤ H−1

(
H

(
y0 +

∫ T

0

g(s) ds

)
− T

)
.

Proof of the Proposition 1. Step 1: For any n ≥ 1, let fix (ũε
n, ϕ̃

ε
n) such that ũn ∈

C([0, T ];Vn) and ϕ̃ε
n ∈ C([0, T ];Hn). The density function corresponding to the

given velocity ũε
n is determined explicitly as

ρεn(x, t) = ρ0n(ỹ
ε
n(0, t, x)), ρεn ∈ C1(Ω̄× [0, T ]), (5.41)

where ỹεn is the unique solution of the following Cauchy problem

dỹεn
dτ

(τ, t, x) = ũε
n(ỹ

ε
n(τ, t, x), τ), ỹεn(t, t, x) = x. (5.42)

We have the following estimates

ρ∗ ≤ ρεn(x, t) ≤ ρ∗ for any (x, t) ∈ Ω̄× [0, T ], (5.43)

max
t∈[0,T ]

∥∇ρεn(t)∥L∞(Ω) ≤ K∥∇ρ0n∥L∞(Ω) exp

(∫ T

0

∥ũε
n(τ)∥W 1,∞(Ω)dτ

)
, (5.44)

where the constant K is independent of the integer n. Given a triplet (un, ϕn, µn)

such that

uε
n(x, t) =

n∑
i=1

αε
i (t)vi(x), ϕε

n(x, t) =
n∑

i=1

βε
i (t)ωi(x), µε

n(x, t) =
n∑

i=1

γεi (t)ωi(x),

which solves the following system

(ρεn∂tu
ε
n,vi) + (ρεn(ũ

ε
n · ∇)uε

n,vi) + (ν(ϕ̃ε
n)Duε

n,∇vi) =(ρεnµ
ε
n∇ϕ̃ε

n,vi)

− (ρεn∇(Fε(ϕ
ε
n)),vi), (5.45)

(ρεn∂tϕ
ε
n, ωi) + (ρεnu

ε
n · ∇ϕ̃ε

n, ωi) + (D(ϕ̃ε
n)∇µε

n,∇ωi) = 0, (5.46)
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(ρεnµ
ε
n, ωi) = (Γζ(∇ϕε

n),∇ωi) + (ρεnF
′
ε(ϕ

ε
n), ωi), (5.47)

for all i = 1, . . . , N .
We define the unknown multi-components quantities as follow An = (αε

1, . . . , α
ε
n),

Bn = (βε
1, . . . , β

ε
n) and Cn = (γε1, . . . , γ

ε
n). Hence, we get from the classical Cauchy-

Lipschitz theorem the existence and uniqueness of a maximal solution (An,Bn) ∈
C1 ([0, T0) ;Rn × Rn) ,Cn ∈ C ([0, T0) ;Rn).

Step 2: Let us multiply (5.45) by αε
i and summing over i, we find

d

dt

∫
Ω

1

2
ρεn|uε

n|2dx+
∫
Ω

ν(ϕ̃ε
n)|D(uε

n)|2dx =

∫
Ω

ρεnµ
ε
nu

ε
n · ∇ϕ̃ε

ndx

−
∫
Ω

ρεnun · ∇Fε(ϕ
ε
n)dx.

(5.48)

Here the density is the solution to the transport equation with velocity ũε
n. Now,

we multiply (5.46) by γεi and (5.47) by d
dt
βε
i , respectively, and summing over i, we

get

d

dt

∫
Ω

[
1

2
Γ2(∇ϕε

n) + ρεnFε(ϕ
ε
n)

]
dx+

∫
Ω

D(ϕ̃ε
n)|∇µε

n|2dx+
∫
Ω

ρεnu
ε
n · ∇ϕ̃ε

nµ
ε
ndx

=

∫
Ω

∂tρ
ε
nFε(ϕ

ε
n)dx

(5.49)
By summing the two previous equation (5.48) and (5.49), we obtain

d

dt
Eε(ρεn,u

ε
n, ϕ

ε
n) +

∫
Ω

ν(ϕ̃ε
n)|Duε

n|2 +D(ϕ̃ε
n)|∇µε

n|2 = Rε, (5.50)

where Eε and Rε are given by

Eε(ρεn,u
ε
n, ϕ

ε
n) =

∫
Ω

1

2
ρεn|uεn|2 +

1

2
Γ2(∇ϕε

n) + ρεnFε(ϕ
ε
n) dx, (5.51)

Rε =

∫
Ω

Fε(ϕ
ε
n)(u

ε
n − ũε

n) · ∇ρεn dx. (5.52)

We note that Rε will be zero at the fixed point. Using (5.35) we get

∥ũε
n∥C([0,T ];H2(Ω)) ≤ Kn∥ũε

n∥C([0,T ];L2(Ω)) ≤ KnK0. (5.53)
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According to (5.44) and the fact that H3(Ω) ↪−→ W 1,∞(Ω), we have

max
t∈[0,T ]

∥∇ρn(t)ε∥L∞(Ω) ≤ K∥∇ρ0n∥L∞(Ω) exp

(∫ T

0

K1∥ũε
n(τ)∥H3(Ω)dτ

)
≤ K∥∇ρ0n∥L∞(Ω) exp (K1KnK0T ) := Kρ.

(5.54)

Here, the last inequality comes from the regularity theory of the Stokes operator

∥ũn∥C([0,T ];H3(Ω)) ≤ C(n)∥ũn∥C([0,T ];L2(Ω)) ∀ ũn ∈ Vn.

Next, we have Fε(s) ≥ 0 for all s in R, then we control the quantity Rε as follows

|Rε| ≤ 1

ρ∗

(∫
Ω

ρεnFε(ϕ
ε
n)dx

)
∥ũε

n − uε
n∥L∞(Ω)∥∇ρεn∥L∞(Ω)

≤ KnKρ

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)∥ũε

n − uε
n∥L2(Ω)

≤ KnKρ

ρ∗
E(ρεn,u

ε
n, ϕ

ε
n)∥uε

n∥L2(Ω) +
KnKρK0

ρ∗
E(ρεn,u

ε
n, ϕ

ε
n)

≤ KnKρ

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)
∥∇uε

n∥L2(Ω)√
λs1

+
KnKρK0

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)

≤ KnKρ

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)

√
2
√
ν∗∥Duε

n∥L2(Ω)√
ν∗λs1

+
KnKρK0

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)

≤
∫
Ω

ν(ϕε
n)

2
|Duε

n|2dx+
K2

nK
2
ρ

ν∗ρ2∗λ
s
1

[Eε(ρεn,u
ε
n, ϕ

ε
n)]

2 +
KnKρK0

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n)

≤
∫
Ω

ν(ϕε
n)

2
|Duε

n|2dx+
2K2

nK
2
ρ

ν∗ρ2∗λ
s
1

[Eε(ρεn,u
ε
n, ϕ

ε
n)]

2 +
ν∗λ

s
1K

2
0

4
(5.55)

According to (5.50), we arrive at

d

dt
Eε(ρεn,u

ε
n, ϕ

ε
n) +

∫
Ω

ν(ϕε
n)

2
|Duε

n|2dx+
∫
Ω

D(ϕ̃ε
n)|∇µε

n|2dx ≤C1[E
ε(ρεn,u

ε
n, ϕ

ε
n)]

2

+ C2K
2
0 (5.56)

where C1 := 2K2
nK

2
ρ/ν∗ρ

2
∗λ

s
1 and C2 := ν∗λ

s
1/4. In particular, we have

d

dt
Eε(ρεn,u

ε
n, ϕ

ε
n) ≤ C1[E

ε(ρεn,u
ε
n, ϕ

ε
n)]

2 + C2K
2
0 . (5.57)
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Integrating over [0, t] for t < T0, we get

Eε(ρεn,u
ε
n, ϕ

ε
n)(t) ≤ Eε(ρ0n,u0n, ϕ0n) +

∫ t

0

C2K
2
0dτ + C1

∫ t

0

[Eε(ρεn,u
ε
n, ϕ

ε
n)(τ)]

2dτ,

(5.58)
where

Eε(ρ0n,u0n, ϕ0n) =

∫
Ω

1

2
ρ0n|u0n|2 +

1

2
Γ2(∇ϕ0n) + ρ0nFε(ϕ0n)dx. (5.59)

Now, we apply Bihari’s inequality 3, with the following choice

y(t) = Eε(ρεn,u
ε
n, ϕ

ε
n)(t), y0 = Eε(ρ0n,u0n, ϕ0n) := Eε

n(0), (5.60)

g(s) = C2K
2
0 , h(s) = C1s

2. (5.61)

The anti-derivative of − 1
h(s)

which cancels at +∞ is H(s) := 1
C1s

. Since H−1(s) =

H(s), the Bihari’s inequality in our case reads

sup
t≤T ′

Eε(ρεn,u
ε
n, ϕ

ε
n)(t) ≤

1

C1

(
1

C1(Eε
n(0)+C2K2

0T
′)
− T ′

) , for all T ′ < min(T0, T
∗),

(5.62)
where T ∗ = 1

C1(Eε
n(0)+C2T ∗)

. Let K0 be sufficiently large such that ∥u0n∥L2(Ω) +

∥ϕ0n∥H1(Ω) ≤ K2
0 . We aim to show that there exists a sufficiently small time T̃ =

T̃ (K0) (T̃ < min(T0, T
∗)) such that

∥un∥C([0,T̃ ];L2(Ω)) + ∥ϕn∥C([0,T̃ ];H1(Ω)) ≤ K2
0 . (5.63)

To this end, we use that

∥uε
n∥2L2(Ω) ≤

2

ρ∗
Eε(ρεn,u

ε
n, ϕ

ε
n), ∥∇ϕε

n∥2L2(Ω) ≤
2

r
Eε(ρεn,u

ε
n, ϕ

ε
n).

Since the function Fε is polynomial of degree two on the domain {s ∈ R ; |s| ≥
1− ε}, there exist cε > 0 and Mε > 0 such that

Fε(s) > Mεs
2 for all |s| > cε, (5.64)
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which implies that

∥ϕε
n∥2L2(Ω) =

∫
|ϕε

n|≤cε

|ϕε
n|2dx+

∫
|ϕε

n|≤cε

|ϕε
n|2dx ≤ c2ε|Ω|+

1

ρ∗Mε

∫
Ω

ρεnFε(ϕ
ε
n)dx

≤ c2ε|Ω|+
1

ρ∗Mε

Eε(ρεn,u
ε
n, ϕ

ε
n).

(5.65)

Thus,

∥uε
n∥C([0,T̃ ];L2(Ω)) + ∥ϕε

n∥C([0,T̃ ];H1(Ω)) ≤ θ sup
t≤T̃

E(ρεn,u
ε
n, ϕ

ε
n)(t) + c2ε|Ω|

≤ θ

(
En(0) + C2K

2
0 T̃

1− C1En(0)T̃ − C1C2K2
0 T̃

2

)
+ c2ε|Ω|

(5.66)
where θ := max

{
2
ρ∗
, 1
ρ∗Mε

, 2
r

}
. The following condition should be satisfied

θ

(
Eε

n(0) + C2K
2
0 T̃

1− C1Eε
n(0)T̃ − C1C2K2

0 T̃
2

)
+ c2ε|Ω| ≤ K2

0 , (5.67)

which can be written as

Eε
n(0)+C2K

2
0 T̃ ≤ 1

θ
(K2

0−c2ε|Ω|)−C1E
ε
n(0)

1

θ
(K2

0−c2ε|Ω|)T̃−C1C2K
2
0

1

θ
(K2

0−c2ε|Ω|)T̃ 2.

(5.68)
Since we can take T̃ ≤ 1 the condition holds if

Eε
n(0) +

(
C2K

2
0 + C1E

ε
n(0)

1

θ
(K2

0 − c2ε|Ω|) + C1C2
1

θ
K2

0(K
2
0 − c2ε|Ω|)

)
T̃

≤ 1

θ
(K2

0 − c2ε|Ω|). (5.69)

Thus, by taking Eε
n(0) <

1
θ
(K2

0 − c2ε|Ω|), there exists T̃ = T̃ (K0) sufficiently small
such that the inequality (5.69) holds. We conclude that

∥uε
n∥C([0,T̃ ];L2(Ω)) + ∥ϕε

n∥C([0,T̃ ];H1(Ω)) ≤ K2
0 . (5.70)

For any set of parameters (n, ε, ρ∗, ρ
∗, Eε

n(0), ν∗, ρ0n), let now introduce the set

Sn = {(uε
n, ϕ

ε
n) ∈ C([0, T̃ ];Vn ×Hn) : ∥uε

n∥C([0,T̃ ];L2(Ω)) + ∥ϕε
n∥C([0,T̃ ];H1(Ω)) ≤ K2

0}.
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Step 3: Next, we show that the derivatives of uε
n and ϕε

n with respect time are
also bounded on [0, T̃ ]. Multiplying (5.45) by d

dt
αε
i (t) and summing over i, we find

ρ∗∥∂tuε
n∥2L2(Ω) ≤Cρ∗∥ũε

n∥H2(Ω)∥∇uε
n∥L2(Ω)∥∂tuε

n∥L2(Ω) + ν∗∥∇uε
n∥L2(Ω)∥∇∂tuε

n∥L2(Ω)

+ Cρ∗∥µε
n∥L2(Ω)∥ϕ̃ε

n∥H2(Ω)∥∇∂tuε
n∥L2(Ω)

+ ρ∗C
(
1 + ∥ϕε

n∥4H2(Ω)

)
∥∂tuε

n∥L2(Ω).

.

We multiply (5.47) by γεi (t) and sum over i, we find

ρ∗∥µε
n∥2L2(Ω) ≤

(
ρ∗∥F ′

ε(ϕ
ε
n)∥L2(Ω) + ∥ div(Γζ(∇ϕε

n)∥L2(Ω)

)
∥µε

n∥L2(Ω)

≤
(
Cρ∗∥ϕε

n∥3H1(Ω) + C∥ϕε
n∥H2(Ω)

)
∥µε

n∥L2(Ω)

≤
(
Cρ∗∥ϕε

n∥3H1(Ω) + Cλn∥ϕε
n∥H1(Ω)

)
∥µε

n∥L2(Ω).

Thus,
∥µε

n∥L2(Ω) ≤ Cµ, (5.71)

where Cµ = Cµ(n, ε, ρ∗, ρ
∗, λn, K0). We deduce that there exist a constant K1 =

K1(n, ε, ρ∗, ρ
∗, ν∗, K0) such that

max
[0,T̃ ]

∥∂tuε
n(t)∥L2(Ω) ≤ K2

1 . (5.72)

In a similar way, multiplying (5.46) by d
dt
βε
i and summing over i, we get

ρ∗∥∂tϕε
n∥2L2(Ω) ≤

(
Cρ∗

√
λsn
√
λn∥uε

n∥L2(Ω)∥ϕ̃ε
n∥H1(Ω) +D∗λn∥µε

n∥L2(Ω)

)
∥∂tϕε

n∥L2(Ω).

Then, there exists K2 = K2 (n, ε, ρ∗, ρ
∗, K0) such that

max
[0,T̃ ]

∥∂tϕε
n(t)∥L2(Ω) ≤ K2

2 .

Let us set K̃2
0 = K2

1 +K2
2 . We consider the subset S̃n of Sn defined as

S̃n =
{
(vε

n, ψ
ε
n) ∈ C1

(
[0, T̃ ];Vn ×Hn

)
: max

[0,T̃ ]
∥vε

n(t)∥L2(Ω) +max
[0,T̃ ]

∥ψε
n(t)∥H1(Ω) ≤ K2

0 ,

max
[0,T̃ ]

∥∂tvε
n(t)∥L2(Ω) +max

[0,T̃ ]
∥∂tψε

n(t)∥H1(Ω) ≤ K̃2
0

}
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By the Ascoli-Arzelà theorem, the set S̃n is compact in Sn. We consider the map Λ

defined as
Λ : Sn 7−→ S̃n, (ũε

n, ϕ̃
ε
n) 7−→ Λ(ũε

n, ϕ̃
ε
n) := (uε

n, ϕ
ε
n).

We prove that Λ is a continuous map on Sn. Let (vε,m
n , ψε,m

n ) be a sequence of
Sn such that (vε,m

n , ψε,m
n )m → (vε

n, ψ
ε
n) on C1

(
[0, T̃ ];Vn ×Hn

)
as m → ∞. By the

formula (5.41) we find ρε,mn and ρεn in C1([0, T̃ ] × Ω̄) corresponding to vε,m
n and vε

n,
respectively. We consider δρεn = ρε,mn − ρεn which solves

∂tδρ
ε
n + vε,m

n · ∇δρεn + (vε,m
n − vε

n) · δρεn = 0

We multiply by |δρεn|r−1δρεn and integrating over Ω, we get∫
Ω

∂t(|δρεn|r)dx = −
∫
Ω

vε,m
n · ∇(|δρεn|r)dx−

∫
Ω

(vε,m
n − vε

n)|δρεn|r−2δρεn∇ρεndx.

= −
∫
Ω

(vε,m
n − vε

n)|δρεn|r−2δρεn∇ρεndx

≤ ||vε,m
n − vε

n||Lr(Ω)||(δρεn)r−1||
L

r
r−1 (Ω)

||∇ρεn||L∞(Ω).

≤ ||vε,m
n − vε

n||Lr(Ω)(||(δρεn)||Lr(Ω))
r−1||∇ρεn||L∞(Ω)

we get

(||(δρεn)||Lr(Ω))
1−r

∫
Ω

∂t(|δρεn|r)d ≤ ||vε,m
n − vε

n||Lr(Ω)||∇ρεn||L∞(Ω)

Since δρεn(., 0) = 0, we get

max
[0,T̃ ]

||δρεn||Lr(Ω) ≤ C

∫ T̃

0

||vε,m
n − vε

n||Lr(Ω)dt. (5.73)

Where C is a constant independent of m. Thus, for any r ≥ 2, ρε,mn → ρεn strongly
in C([0, T̃ ];Lr(Ω)).

We note (uε,m
n , ϕε,m

n ) and (uε
n, ϕ

ε
n) the images by the map Λ of (vε,m

n , ψε,m
n ) and

(vε
n, ψ

ε
n), respectively.

Λ(vε,m
n , ψε,m

n ) = (uε,m
n , ϕε,m

n ), Λ(vε
n, ψ

ε
n) = (uε

n, ϕ
ε
n)

At the same way as above, there exist two K1 and K̃2, depend on n, u0n, ϕ0n and
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ρ0n but independent of n such that the following estimates holds

max
[0,T̃ ]

||uε,m
n (t)||L2(Ω) +max

[0,T̃ ]
||ϕε,m

n (t)||H1(Ω) ≤ K2
1 , (5.74)

max
[0,T̃ ]

||∂tuε,m
n (t)||L2(Ω) +max

[0,T̃ ]
||∂tϕε,m

n (t)||H1(Ω) ≤ K̃2
1 . (5.75)

By Ascoli-Arzelà theorem there exist a subsequence (uε,mk
n , ϕε,mk

n ) and (U,Φ) such
that,

uε,mk
n → U strongly in C([0, T̃ ];Vn), ϕε,mk

n → Φ strongly in C([0, T̃ ];Hn)

∂tu
ε,mk
n → ∂tU weak-star in L∞([0, T̃ ];Vn), ∂tϕ

ε,mk
n → ∂tΦ weak-star in L∞([0, T̃ ];Hn)

µε,mk
n → Υ weakly in L2(0, T̃ ;Hn)

The equation Λ(vε,mk
n , ψε,mk

n ) = (uε,mk
n , ϕε,mk

n ) implies

(ρε,mk
n ∂tu

ε,mk
n ,vi) + (ρε,mk

n (vε,mk
n · ∇)uε,mk

n ,vi) + (ν(ψε,mk
n )Duε,mk

n ,∇vi)

= (ρε,mk
n µε,mk

n ∇ψε,mk
n ,vi)− (ρε,mk

n ∇(Fε(ϕ
ε,mk
n )),vi),

(ρε,mk
n ∂tϕ

ε,mk
n , ωi) + (ρε,mk

n uε,mk
n · ∇ψε,mk

n , ωi) + (D(ψε,mk
n )∇µε,mk

n ,∇ωi) = 0,

(ρε,mk
n µε,mk

n , ωi) = (Γξ(∇ϕε,mk
n ),∇ωi) + (ρε,mk

n F ′
ε(ϕ

ε,mk
n ), ωi).

For all i = 1, . . . , n. We pass to the limit mk → ∞ in D′(0, T̃ ), we get

(ρεn∂tU,vi) + (ρεn(v
ε
n · ∇)U,vi) + (ν(ψε

n)DU,∇vi)

= (ρεnΥ∇ψε
n,vi)− (ρεn∇(Fε(Φ)),vi),

(ρεn∂tΦ, ωi) + (ρεnU · ∇ψε
n, ωi) + (D(ψε

n)∇Υ,∇ωi) = 0,

(ρεnΥ, ωi) = (Γξ(∇Φ),∇ωi) + (ρεnF
′
ε(Φ), ωi).

In the last equation we use the fact that p 7−→ Γζ is linear continuous according to
(H3). In the other hand, we have the equation Λ(vε

n, ψ
ε
n) = (uε

n, ϕ
ε
n), which mean

(uε
n, ϕ

ε
n) solves

(ρεn∂tu
ε
n,vi) + (ρεn(v

ε
n · ∇)uε

n,vi) + (ν(ψε
n)Duε

n,∇vi)

= (ρεnµ
ε
n∇ψε

n,vi)− (ρεn∇(Fε(ϕ
ε
n)),vi),

(ρεn∂tϕ
ε
n, ωi) + (ρεnu

ε
n · ∇ψε

n, ωi) + (∇µε
n,∇ωi) = 0,

(ρεnµ
ε
n, ωi) = (Γξ(∇ϕε

n),∇ωi) + (ρεnF
′
ε(ϕ

ε
n), ωi).
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For all i = 1, . . . , n. By uniqueness, it follows that (U,Φ,Υ) = (uε
n, ϕ

ε
n, µ

ε
n). Thus,

every subsequence of Λ(vε,m
n , ψε,m

n ) possesses a subsequence whose limit coincide with
Λ(vε

n, ψ
ε
n), So that the sequence Λ(vε,m

n , ψε,m
n ) converge strongly in C1([0, T̃ ],Vn×Hn)

and its limit is exactly Λ(vε
n, ψ

ε
n). We deduce that the map Λ is continuous. By the

Schauder fixed point theorem, we conclude that, for any n ∈ N, the map Λ has a
fixed point (uε

n, ϕ
ε
n) on C1([0, T̃ ],Vn ×Hn), wish solves the system (5.37)-(5.40) on

[0, T̃ ].
Now we show that the solution is defined on the whole interval [0, T ] for any

T > 0 fixed, instead of T̃ .

Proposition 2. Given the initial data (ρ0n,u0n, ϕ0n, µ0n) and let (ρεn,uε
n, ϕ

ε
n, µ

ε
n) de-

note a solution of (5.37)-(5.40) defined in [0, T0). There is a constant K0, depending
on (ρ∗, ρ

∗, ∥u0∥L2(Ω), ∥ϕ0∥H1(Ω)), but independent of T0 , such that

∥uε
n∥C([0,T0];L2(Ω)) + ∥ϕε

n∥C([0,T0];H1(Ω)) ≤ K2
0 . (5.76)

Proof. Multiplying (5.38) by αε
i and summing over i we find

d

dt

∫
Ω

1

2
ρεn|uε

n|2dx+
∫
Ω

ν(ϕε
n)|D(uε

n)|2dx =

∫
Ω

ρεnµ
ε
nu

ε
n · ∇ϕε

ndx

−
∫
Ω

ρεnu
ε
n · ∇Fε(ϕ

ε
n)dx.

(5.77)

Now, we multiply (5.39) by γεi and (5.40) by d
dt
βε
i , respectively, and summing over

i, we get

d

dt

∫
Ω

[
1

2
Γ2(∇ϕε

n) + ρεnFε(ϕ
ε
n)

]
dx+

∫
Ω

ρεnu
ε
n · ∇ϕε

nµ
ε
ndx +

∫
Ω

D(ϕε
n)|∇µε

n|2dx

=

∫
Ω

∂tρ
ε
nFε(ϕ

ε
n)dx.

(5.78)
By summing the previous equation (5.77) and (5.78), we obtain

d

dt

∫
Ω

1

2
ρεn |uε

n|
2 +

1

2
Γ2 (∇ϕε

n) + ρεnFε (ϕ
ε
n) dx

+

∫
Ω

ν (ϕε
n) |Duε

n|
2 +D(ϕε

n) |∇µε
n|

2 dx = 0. (5.79)
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Integrating in time over [0, t] where 0 < t < T0, we deduce that∫
Ω

1

2
ρεn(t) |uε

n(t)|
2 +

1

2
Γ2 (∇ϕε

n(t)) + ρεn(t)Fε (ϕ
ε
n(t)) dx

+

∫ t

0

∫
Ω

ν (ϕε
n(τ)) |Duε

n(τ)|
2 dxdτ +

∫ t

0

∫
Ω

D(ϕε
n(τ)) |∇µε

n(τ)|
2 dxdτ

=

∫
Ω

1

2
ρ0n |u0n|2 +

1

2
Γ2 (∇ϕ0n) + ρ0nFε (ϕ0n) dx.

(5.80)

Using the properties of the projector operator P 1
n and P 2

n , we find∫
Ω

1

2
ρ0n |u0n|2 +

1

2
Γ2 (∇ϕ0n) + ρ0nFε (ϕ0n) dx

≤ ρ∗

2
∥u0∥2L2(Ω) +

R

2
∥ϕ0∥2H1(Ω) +K(ε)ρ∗

(
1 + ∥ϕ0∥4H1(Ω)

)
,

where the constant K(ε) is independent of n. Since Fε(s) ≥ 0, we obtain

ρ∗
2
∥uε

n(t)∥2L2(Ω) +
r

2
∥∇ϕε

n(t)∥2L2(Ω) ≤
ρ∗

2
∥u0∥2L2(Ω) +

R

2
∥ϕ0∥2H1(Ω)

+K(ε)ρ∗
(
1 + ∥ϕ0∥4H1(Ω)

)
.

Therefore, there exists a positive constant K0 = K0 (ε, ρ∗, ρ
∗,u0, ϕ0, r, R) such

that
sup
[0,T0]

∥uε
n(t)∥L2(Ω) + sup

[0,T0]

∥ϕε
n(t)∥H1(Ω) ≤ K2

0 .

The proposition 2 shows that if a solution exists on the time interval [0, T0),
then this solution cannot explode near T0. Consequently, we conclude that there
exists a global existence of the Galerkin approximate sequence that solves the system
(5.37)-(5.40).

5.6 PROOF OF THE GLOBAL EXISTENCE THEOREM 1

In this section we prove Theorem 1: the proof is split into two parts. Firstly,
we derive estimates on the solutions of the Galerkin approximate problem (5.37)-
(5.40), independently of n. Secondly, we pass to the limit as n → ∞ and recover
weak solutions of the regularized problem. Thirdly, with the same way we obtain
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estimates on solutions of the regularized problem (5.24)-(5.27) independently of ε.
We pass to the limit as ε→ 0+ and recover weak solutions of the problem (5.1)-(5.4).

Starting from (5.80) we obtain

Eε(ρεn(t),u
ε
n(t), ϕ

ε
n(t)) +

∫ t

0

∫
Ω

ν (ϕε
n(τ)) |Duε

n(τ)|
2+D(ϕε

n(τ)) |∇µε
n(τ)|

2 dxdτ

= Eε(ρ0n,u0n, ϕ0n).
(5.81)

From (5.31) it follows that Eε(ρ0n,u0n, ϕ0n) converge to Eε(ρ0,u0, ϕ0) as n → ∞.
where

Eε(ρ0,u0, ϕ0) =

∫
Ω

1

2
ρ0|u0|2 +

1

2
Γ2(∇ϕ0) + ρ0Fε(ϕ0)dx := Eε

0.

Since Fε ≥ 0, we have for n sufficiently large

∥uε
n(t)∥2L2(Ω) + ∥∇ϕε

n(t)∥2L2(Ω) ≤ max

{
2

r
,
2

ρ∗

}
Eε(ρ0,u0, ϕ0). (5.82)

Consequently, there exists a constant C = C(ε, ρ∗, ν∗, D∗, r) such that

∥uε
n∥L∞(0,T ;H) ≤ C

√
Eε

0, (5.83)

∥uε
n∥L2(0,T ;V) ≤ C

√
Eε

0, (5.84)

∥∇ϕε
n∥L∞(0,T ;L2(Ω)) ≤ C

√
Eε

0, (5.85)

∥∇µε
n∥(0,T ;L2(Ω)) ≤ C

√
Eε

0. (5.86)

Similar estimates to those in the isotropic case can be obtained [Giorgini and
Temam, 2020]

∥ρεn∥L∞(0,T ;H−1(Ω)) ≤ C, (5.87)

∥ϕε
n∥L∞(0,T ;H1(Ω)) ≤ C, (5.88)

∥µε
n∥L2(0,T ;H1(Ω)) ≤ C, (5.89)

∥ϕε
n∥

B
1
4∞,∞(0,T ;L2(Ω))

≤ C. (5.90)

For some positive constant C := C(ε, T ) independent of n.
To estimate ∥uε

n∥
B

1
4
2,∞(0,T ;H)

, let fix h such that 0 < h < T . For 0 ≤ t ≤ T − h

we test (5.38) at time τ by uε
n(t+ h)−uε

n(t) and (5.37) at time τ by uε
n(t) · (uε

n(t+
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h) − uε
n(t)). After integration with respect to τ from t to t + h and some obvious

manipulations we arrive at

∫
Ω

ρεn(t+ h) |uε
n(t+ h)− uε

n(t)|
2 dx =∫

Ω

− (ρεn(t+ h)− ρεn(t))u
ε
n(t) · (uε

n(t+ h)− uε
n(t)) dx︸ ︷︷ ︸

I1(t)

+

∫ t+h

t

∫
Ω

− div (ρεn(τ)u
ε
n(τ)⊗ uε

n(τ)) · (uε
n(t+ h)− uε

n(t)) dxdτ︸ ︷︷ ︸
I2(t)

+

∫ t+h

t

∫
Ω

−ν (ϕε
n(τ))Duε

n(τ) : ∇ (uε
n(t+ h)− uε

n(t)) dxdτ︸ ︷︷ ︸
I3(t)

+

∫ t+h

t

∫
Ω

ρεn(τ)µ
ε
n(τ)∇ϕε

n(τ) · (uε
n(t+ h)− uε

n(t)) dxdτ︸ ︷︷ ︸
I4(t)

+

∫ t+h

t

∫
Ω

−ρεn(τ)F ′
ε (ϕ

ε
n(τ))∇ϕε

n(τ) · (uε
n(t+ h)− uε

n(t)) dxdτ︸ ︷︷ ︸
I5(t)

.

(5.91)
In the isotropic case (Γ(∇ϕ) = |∇ϕ|), we can control ∥ϕn∥H2(Ω) independently of
n. However, in the anisotropic case, this argument is not applicable. Alternatively,
to estimate ∥un∥

B
1
4
2,∞(0,T ;H)

, it follows along the same lines of Giorgini and Temam

[2020] (page 210) that
∫ T−h

0
|Ik(t)|dt ≤ Ch

1
2 for k = 1, 2, 3 and 4, with C is a

constant independent of n. Thus, it is sufficient to control I5(t)

I5(t) =

∫ t+h

t

∫
Ω

−ρεn(τ)F ′
ε (ϕn(τ))∇ϕε

n(τ) · (uε
n(t+ h)− uε

n(t)) dxdτ.

|I5(t)| ≤ ρ∗
∫ t+h

t

∥F ′
ε (ϕ

ε
n(τ))∥L6(Ω) ∥∇ϕ

ε
n(τ)∥L2(Ω) dτ ∥u

ε
n(t+ h)− uε

n(t)∥L3(Ω)

≤ C

∫ t+h

t

∥F ′
ε (ϕ

ε
n(τ))∥L6(Ω) dτ

(
∥∇uε

n(t+ h)∥
1
2

L2(Ω) + ∥∇uε
n(t)∥

1
2

L2(Ω)

)
.
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Integrating from 0 to T − h, we find∫ T−h

0

|I5(t)| dt ≤ Ch
3
4

∫ T

0

∥F ′
ε (ϕ

ε
n(τ))∥L6(Ω) dτ.

We have

∥F ′
ε (ϕ

ε
n(τ))∥

6
L6(Ω) =

∫
|ϕε

n|≤1−ε

|F ′
ε (ϕ

ε
n(τ)) |6dx+

∫
|ϕε

n|≥1−ε

|F ′
ε (ϕ

ε
n(τ)) |6dx

≤
(
λ2(1− ε) +

λ1
2
log(1 + ε/2) + | log(ε/2)|

)6

|Ω|+
∫
|ϕε

n|≥1−ε

|F ′
ε (ϕ

ε
n(τ)) |6dx

On the domain {s ∈ R ; |s| ≥ 1 − ε}, the function F ′
ε is polynomial of degree

one. Since ∥ϕε
n∥H1(Ω) ≤ C(ε) and the fact that H1(Ω) ↪−→ L6(Ω) (for d = 2, 3) , we

get ∫ T−h

0

|I5(t)| dt ≤ C(ε)h
3
4 .

Then, we deduce that
∥uε

n∥
B

1
4
2,∞(0,T ;H)

≤ C(ε, T ). (5.92)

With the uniform estimates in hand (5.87)-(5.90)-(5.92), we can use a compact-
ness argument to prove that a subsequence of the approximate sequence tends to
some function (ρε,uε, ϕε, µε) which satisfies the system (5.24)-(5.27) in the sense of
distribution. Since the proof is very similar to Giorgini and Temam [2020], here, we
omit the details for brevity. The only difference with Giorgini and Temam [2020], is
taking the limit of the quantity Γζ(∇ϕε

n)⊗∇ϕε
n. However, according to assumption

(H2), the map p 7→ Γζ(p) is linear, and thus continuous. On the other hand, one
can show that ϕε

n → ϕε strongly in L4(0, T ;H1(Ω)), which implies that

Γζ(∇ϕε
n)⊗∇ϕε

n → Γζ(∇ϕε)⊗∇ϕε strongly in L2(0, T ;L2(Ω)). (5.93)

Furthermore, the equation (5.27) holds almost everywhere in (0, T )× Ω.

Proposition 3. There exists a constant C(T ) > 0 such that, for all ε ∈ (0, 1 −√
1− λ2/λ1), it holds

∥ρε∥L∞(0,T ;H−1(Ω)) ≤ C(T ), (5.94)

∥ϕε∥L∞(0,T ;H1(Ω)) ≤ C(T ), (5.95)

∥µε∥L2(0,T ;H1(Ω)) ≤ C(T ), (5.96)
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∥ϕε∥
B

1
4∞,∞(0,T ;L2(Ω))

≤ C(T ), (5.97)

∥uε∥
B

1
4
2,∞(0,T ;H)

≤ C(T ). (5.98)

Proof. First of all, we have the density bounds

ρ∗ ≤ ρε(x, t) ≤ ρ∗ a.e. in Ω× (0, T ). (5.99)

Using similar lines of the proof 5.5 to the regularized problem 5.24–5.27 we find

∫
Ω

1

2
ρε(t) |uε(t)|2 + 1

2
Γ2 (∇ϕε(t)) + ρε(t)Fε (ϕ

ε(t)) dx

+

∫ t

0

∫
Ω

ν (ϕε(τ)) |Duε(τ)|2 dxdτ +
∫ t

0

∫
Ω

D(ϕε(τ)) |∇µε(τ)|2 dxdτ

=

∫
Ω

1

2
ρ0 |u0|2 +

1

2
Γ2 (∇ϕ0) + ρ0Fε (ϕ0) dx := Eε

0.

(5.100)

Since ∥ϕ0∥L∞ ≤ 1, and according to (5.23), we have

Eε
0 ≤

∫
Ω

1

2
ρ0|u0|2 +

1

2
Γ2(∇ϕ0) + ρ0F (ϕ0)dx := E0, (5.101)

and the inequalities (5.94)–(5.97) follows easily. For the last inequality (5.98), we
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proceed as in (5.91), we have∫
Ω

ρε(t+ h) |uε(t+ h)− uε(t)|2 dx =∫
Ω

− (ρε(t+ h)− ρε(t))uε(t) · (uε(t+ h)− uε(t)) dx︸ ︷︷ ︸
J1(t)

+

∫ t+h

t

∫
Ω

− div (ρε(τ)uε(τ)⊗ uε(τ)) · (uε(t+ h)− uε(t)) dxdτ︸ ︷︷ ︸
J2(t)

+

∫ t+h

t

∫
Ω

−ν (ϕε(τ))Duε(τ) : ∇ (uε(t+ h)− uε(t)) dxdτ︸ ︷︷ ︸
J3(t)

+

∫ t+h

t

∫
Ω

ρε(τ)µε(τ)∇ϕε(τ) · (uε(t+ h)− uε(t)) dxdτ︸ ︷︷ ︸
J4(t)

+

∫ t+h

t

∫
Ω

−ρε(τ)F ′
ε (ϕ

ε(τ))∇ϕε(τ) · (uε(t+ h)− uε(t)) dxdτ︸ ︷︷ ︸
J5(t)

.

(5.102)
Same here,

∫ T−h

0
|Jk(t)|dt ≤ Ch

1
2 for k = 1, 2, 3 and 4, with C is a constant inde-

pendent of ε. Thus, it is sufficient to control J5(t) by bounding ∥F ′
ε (ϕ

ε)∥L2(0,T ;L6(Ω))

independently of ε. To do, let show that

∥G′
ε (ϕ

ε)∥L2(0,T ;L6(Ω)) ≤ C.

where C is a constant independent of ε. The argument is inspired from Abels [2009],
we define for all k > 1

ϕϵ
k = hk ◦ ϕε, hk(s) =


1− 1

k
s > 1− 1

k
,

s −1 + 1
k
≤ s ≤ 1− 1

k
,

−1 + 1
k

s < −1 + 1
k
.

The chain rule holds ∇ϕε
k = ∇ϕεχ[−1+ 1

k
,1− 1

k ]
(ϕε).
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Now, multiplying (5.27) by |G′
ε (ϕ

ε
k)|

4G′
ε (ϕ

ε
k) and integrating over Ω, we find∫

Ω

|G′
ε (ϕ

ε
k)|

4
G′′

ε (ϕ
ε
k) Γζ(∇ϕε) · ∇ϕε

kdx+

∫
Ω

ρε |G′
ε (ϕ

ε
k)|

4
G′

ε (ϕ
ε
k)G

′
ε(ϕ

ε)dx

=

∫
Ω

(ρεµε + λ1ρ
εϕε) |G′

ε (ϕ
ε
k)|

4
G′

ε (ϕ
ε
k) dx.

According to the assumption H3 and the fact that Gε is strictly convex, the
first term on the left-hand side is non-negative. We also have that G′

ε (ϕ
ε
k)

2 ≤
G′

ε(ϕ
ε)G′

ε (ϕ
ε
k) almost everywhere. Thus, by Young’s inequality, we obtain

∥G′
ε (ϕ

ε
k)∥

6
L6(Ω) ≤ C ∥ρεµε + λ1ρ

εϕε∥6L6(Ω) ,

From (5.99), (5.95) and (5.96), we get ρεµε + λ1ρ
εϕε ∈ L2(0, T ;L6(Ω)). Then, there

exist a constant C := C(ρ∗, ρ
∗, E0, λ1) independent of ε and k such that

∥G′
ε (ϕ

ε
k)∥L2(0,T ;L6(Ω)) ≤ C

By applying Fatou’s lemma, we have

∥G′
ε (ϕ

ε)∥L2(0,T ;L6(Ω)) ≤ C

Since F ′(ϕε) = −λ1ϕε +G′
ε(ϕ

ε), we deduce that ∥F ′
ε (ϕ

ε)∥L2(0,T ;L6(Ω)) bounded inde-
pendently of ε, i.e

∥F ′
ε (ϕ

ε)∥L2(0,T ;L6(Ω)) ≤ C.

By recalling the proposition 3, the compact embedding, and same as (5.93), we
have

Γζ(∇ϕε)⊗∇ϕε → Γζ(∇ϕ)⊗∇ϕ strongly in L2(0, T ;L2(Ω)) ,

we can infer that there exist some functions (ρ,u, ϕ, µ) with

ρ ∈ C([0, T ];L2(Ω)) ∩ L∞(Ω× (0, T )) ∩W 1,∞ (0, T ;H−1(Ω)
)
, (5.103)

u ∈ L2 (0, T ;V) ∩B
1
4
2,∞ (0, T ;H) , (5.104)

ϕ ∈ L2
(
0, T ;H1(Ω)

)
∩B

1
4∞,∞

(
0, T ;L2(Ω)

)
, (5.105)

µ ∈ L2
(
0, T ;H1(Ω)

)
. (5.106)

And we thus complete the proof of Theorem 1.
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5.7 CONCLUSION AND PERSPECTIVE

In this chapter, we established the global existence of weak solutions for the in-
compressible anisotropic Cahn–Hilliard–Navier–Stokes (CHNS) system in both two
and three spatial dimensions. By incorporating anisotropic surface energy—which
extends the standard isotropic energy by using a general function Γ(∇ϕ)—we ad-
vanced beyond prior CHNS models that primarily assumed isotropy. Our proof uses
a Galerkin approximation scheme, supplemented by novel applications of Bihari’s
inequality and a fixed-point argument, ensuring global-in-time control of the approx-
imate solutions and allowing passage to the limit . This approach overcomes key
challenges in managing the higher-order nonlinearities introduced by anisotropy.
The result broadens the mathematical foundations for modeling two-phase flows
with complex interfacial energies, offering a rigorous existence theory for anisotropic
CHNS models that better reflect physical scenarios with directional-dependent in-
terfacial effects.

This work opens several interesting directions for future research. One of the
principal challenges is the analysis of uniqueness and the potential existence of strong
solutions in the anisotropic setting. The complexity introduced by anisotropic sur-
face energies remains a rich area for further mathematical investigation.

In the present study, we considered the free energy functional to be of the form∫
Ω

1
2
Γ2(∇ϕ), which corresponds to the case a = 0 (see Equation (3.162) in Sec-

tion 3.4.3). As discussed in Section 3.4, this formulation follows the model proposed
by Anderson et al. [2000]. An alternative approach, inspired by the formulation of
Guo and Lin [2015], is to take the free energy functional as

∫
Ω

1
2
ρΓ2(∇ϕ), which

corresponds to the case a = 1 (see Equation (3.154) in Section 3.4.3). Investigating
this variant would provide insight into the interplay between density and interface
energy, and it could lead to different mathematical behaviors and analytical chal-
lenges. These perspectives underline the versatility of the CHNS framework and
encourage further exploration of its thermodynamically consistent generalizations.
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CHAPTER

TWO VELOCITY MODEL
PROBLEM 6

6.1 INTRODUCTION

An ideal multi-fluid is a mixture of two or more phases of matter with dissipative
effects taken to be zero, and with negligible dynamic and thermodynamic effects
between the phases. Thus, dissipative, frictional and drag and virtual mass forces
are not taken into account. The dynamics of the mixture is called a multi-phase flow,
and this dynamics depends on the nature of the phases present and their interfacial
structure. The most common class of multi-phase flows are the two-phase flows, and
these include gas-liquid flow, gas-solid flow, liquid-liquid flow and liquid-solid flow.
Our study is focused on the first three: we will present some models that describe
dispersed flows, i.e., bubbles in liquid, sprays, ... etc. We note, that one type of
model that describes flows of these type of mixtures are called Euler-Euler models
[Ishii and Hibiki, 2010].

Let us briefly recall the so-called Lagrangian variable or material description
[Morrison, 1998a, Morrison et al., 2020, Morrison, 2006, Drui et al., 2019]. In this
description, we follow the trajectories of mixture “particles", i.e. infinitesimal ele-
ments or parcels, of each constituent, labeled by their initial position a. For a two
phase mixture we have two possible trajectories: qk(a, t) ∈ Ω for k = 1, 2, which give
the position of particle “k" labeled by a ∈ Ω at time t ∈ R. Here Ω ⊂ R3 denotes
the physical domain occupied by the mixture. Thus, the configuration space is the
space of diffeomorphisms, smooth coordinated changes a 7→ qk, of the space Ω×Ω.
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Its cotangent space then has the two momenta πk, and the cotangent bundle with
coordinates (q1,q2,π1,π2) is the phase space of the mixture.

In the Hamiltonian framework of the Lagrangian description of fluids, we attach
attributes to a fluid element – here we will refer to fluid elements as particles while
keeping in mind that we are considering a continuum theory. For example, in single-
phase fluid we would attach a density ρ0(a) to a fluid element akin to identifying
a mass mi to the ith particle in a genuine particle description; here the continuum
label a is akin to the index i. However, for a multi-phase flow, the situation is
more complicated. For particles of each phase we attach a mass density ρ̂k(a, t),
an entropy density σ̂k(a, t), and a momentum density M̂k(a, t). In the following
we will use hat notations for Lagrangian quantities, with the exception of qk and
its derivatives, to distinguish Lagrangian from Eulerian quantities (defined below).
Also, we use

qk(a, t) = (q1k, q
2
k, q

3
k) and qk(a, 0) = a = (a1, a2, a3) , (6.1)

where in index notation we have qik and aik, for i = 1, 2, 3, and we have decided to
label the particles of each phase by their initial positions in Ω.

The Lagrangian (and Eulerian) description of two-phase flows has some similarity
to that of the two fluid description of plasmas [D’Avignon et al., 2016], which uses one
fluid for electrons and a second for ions. However, there is an important difference:
both electrons and ions in the plasma description are assumed to completely fill
infinitesimal volumes, while in two-phase flow the constituents of the individual
phases can each partially fill an infinitesimal volume. To account for this the volume
fraction α̂k(t, a) is introduced – it accounts for the amount of each phase contained
in an infinitesimal volume element.

Instead of following particle trajectories, in the Eulerian description we examine
the flow at an observation point r = (r1, r2, r3) ∈ Ω at any time t. For a single phase
fluid, we would have the Eulerian velocity field u(r, t), the mass density ρ(r, t) and
the specific entropy s(r, t), which might be governed by the Navier-Stokes equations.
For a two-phase flow, we have in general two of each, i.e., uk(r, t), ρk(r, t), and
sk(r, t), for k = 1, 2, and we have the Eulerian volume fraction αk(r, t). Because an
infinitesimal volume is assumed to be filled, by a mixture of both phases, we have

α1(r, t) + α2(r, t) = 1 . (6.2)
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Thus, the total mass density is

ρ = α1ρ1 + α2ρ2 =: ρ̃1 + ρ̃2 , (6.3)

and ρ̃k is the actual density of phase k per the volume it occupies.
The Eulerian description observes attributes and velocities of particles that are

located at r at time t. Thus, the Lagrange-Euler map follows from qk(a, t) = r,
where it is assumed that the trajectory maps a 7→ qk(a, t) are not only smooth but
invertible. For an arbitrary function we use the notation

f̂k(a, t) = fk(r, t) , (6.4)

where the Lagrangian quantity f̂k on the left is defined upon inserting r = qk(a, t)

into fk on the right, or the Eulerian quantity on the right is defined upon inserting
the inverse a = q−1

k (r, t) into f̂k on the left. We will further refine the Lagrangian
and Eulerian descriptions in subsequent sections.

Until this point we have been very general, but now some simplifications that
exist in the literature are made. In particular, the following dichotomy is considered:
either q1(a, t) ̸= q2(a, t), where the two phases move on different trajectories, or
q1(a, t) = q2(a, t), where they are “stuck" and move together. These define two
classes of two-phase flows: A first class where q1 ̸= q2, implying the respective
velocity fields have u1 ̸= u2. These models are called Two Velocity models (TVMs)
[Ishii and Hibiki, 2010]. The second class of models assumes the particles of phases
“1" and “2", initialized t = 0 at a same position a, move on the same path. Thus
they move with the same velocity field, say u. These models are called One Velocity
models [Ishii and Hibiki, 2010] or, as we will call them, Zero Drift Flux Models
(zDFMs) after Bansal et al. [2021].

In Table 6.1 we summarize some common notation for flows with two phases:

Symbol Description 1, 2 Symbol Description 1, 2

α1,2 : Volume fraction η1,2 : Mass fraction

ρ1,2 : Density v1,2 : Specific volume
(
= 1

ρ1,2

)
c1,2 : Adiabatic speed of sound e1,2 : Specific internal energy
s1,2 : Specific entropy E1,2 : Specific total energy
p1,2 : Pressure H1,2 : Specific total enthalpy
u1,2 : Velocity T1,2 : Temperature
µ1,2 : Viscosity h1,2 : Specific enthalpy
Γ1,2 : Grüneisen parameter Kn1,2 : Knudsen numbers
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6.2 TWO-VELOCITY MODEL (TVM)

Consider now in detail both the Lagrangian and Eulerian descriptions of the TVM.
At the Eulerian observation position r ∈ Ω at time t, there exists a mixture, a portion
of which can be viewed as comprised of a particles of phase “1" and a portion of
which is comprised of a particle of phase “2". Note, because q1 ̸= q2, the particles
arriving at r at time t come from different initial positions, say a1, a2. Thus we have

r = q1(a1, t) = q2(a2, t) (6.5)

where a1 ̸= a2. This complication was previously explored in the plasma mag-
netofluid context in [D’Avignon et al., 2016], although as noted above, volume frac-
tions do not appear in the plasma theory. Here, we have the “total volume" formula

α̂1(a1, t) + α̂2(a2, t) = 1 , (6.6)

and because a2 = q−1
2 (q1(t, a1), t), we can rewrite (6.6) as

α̂1(a1, t) + α̂2(q
−1
2 (q1(a1, t), t)) = 1 .

Since a1 is arbitrary we can drop the subscript, and write for any a ∈ Ω

α̂1(a, t) + α̂2(q
−1
2 (q1(a, t), t)) = 1 . (6.7)

We will see that the function t 7→ q−1
2 ◦q1(a, t) plays a significant role in the following

calculations [D’Avignon et al., 2016]. Let d3a denote the elementary volume of the
mixture at the position a, with d3r being its corresponding fraction at the position
r. As the mass of each phase is preserved in the course of the motion, we can write
the following for k = 1, 2:

αk(r, t)ρk(r, t) d3r = αk(a, 0)ρk(a, 0) d3a . (6.8)

Recalling (6.3) for mixture mass density in Eulerian form,

ρ(r, t) = α1(r, t)ρ1(r, t) + α2(r, t)ρ2(r, t) =: ρ̃1(r, t) + ρ̃2(r, t) . (6.9)
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we can use the Dirac delta-function artifice given in [Morrison, 1998a, Morrison
et al., 2020] to obtain the Lagrange to Euler map for ρ̃k = αkρk as follows:

ρ̃k(r, t) = αk(r, t)ρk(r, t) =

∫
Ω

δr=qk(a,t) αk(a, 0)ρk(a, 0) d3a. (6.10)

Here δr=qk(a,t) := δ(r−qk(a, t)) is the delta-function, which upon employing standard
manipulations [e.g. Lighthill, 1959] gives

αk(r, t)ρk(r, t) =
αk(a, 0)ρk(a, 0)

Jk

∣∣∣∣
a=q−1

k (r,t)

(6.11)

where Jk = det (∂qik/∂a
j). Hence, the mass of fluid k is conserved along the trajec-

tory t→ qk(a, t):

d

dt
(α̂kρ̂k) = ∂t(αkρk) +∇ · (αkρkuk) = 0. (6.12)

where d(α̂kρ̂k)/dt = 0, the vanishing derivative at fixed a, follows upon using (6.4)
and Jk = 1 at t = 0 and the Eulerian mass conservation follows as with the ordinary
fluid with αk(a, 0)ρk(a, 0) replacing ρ0(a) [cf. Morrison, 1998a]. We will use ∂t to
denote the Eulerian partial derivative at fixed r.

Similarly, if sk(a, 0) is the entropy per unit of mass at time t = 0, and we
eliminate the thermodynamic interactions between the two phases, the entropy is
conserved. We write,

sk(r, t) = sk(a, 0)|a=q−1
k (r,t) ,

or upon introducing the entropy density σk = αkρksk. We have,

σk(r, t) =

∫
Ω0

δr=qk(a,t) σk(a, 0) d3a

and upon integrating

σk(r, t) =
σk(a, 0)

Jk

∣∣∣∣
a=q−1

k (r,t)

, (6.13)

yielding conservation of σk or advection of sk; viz.,

∂tσk +∇ · (uk σk) = 0 or ∂tsk + uk · ∇sk = 0. (6.14)
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6.2.1 HAMILTONIAN AND ACTION PRINCIPLE
FORMULATION FOR TVM

We now proceed to the Hamiltonian formulation of the TVM, which we obtain by
first constructing its action principle in terms of Lagrangian variables.

First, we assume that the mixture is in local thermodynamic equilibrium with
independent specific internal energy functions Uk = Uk(ρk, sk). The temperatures
and pressures of each phase are given by the usual formulas,

Tk =
∂Uk(ρk, sk)

∂sk
and pk = ρ2k

∂Uk(ρk, sk)

∂ρk
. (6.15)

Equation (6.15) uses Eulerian variables, with the idea that each Eulerian point r

represents a thermdynamic system. We suppose that the mixture system is bi-
variant [Benjelloun and Boukharfane, 2021]; this means the mixture energy can be
expressed as a function of a single mixture mass density ρ and a mixture specific
entropy s, where ρ = α1ρ1+α2ρ2 and s = η1s1+ η2s2 with the ηk denoting the mass
fractions. Because η1 + η2 = 1 we write s = ηs1 + (1− η)s2, where to avoid clutter
we set η = η1.

To find the Hamiltonian formulation, we first obtain the Lagrangian density of
the mixture, Lmix, and then Legendre transform. Thus, we identify the potential
and kinetic energies. In the case of fluids, the potential energy is the internal energy,
which stores energy in the form of pressure and temperature. We do not consider
gravitational or other interactions. Using the internal energies per unit mass, the
total potential energy of the mixture is given by the following formula:

ρU = α1ρ1U1(ρ1, s1) + α2ρ2U2(ρ2, s2) , (6.16)

or alternatively in terms of the mass fraction as

U = ηU1(ρ1, s1) + (1− η)U2(ρ2, s2) . (6.17)

When construction the Lagrangian density, these must re-expressed in terms of the
appropriate Lagrangian variables. Thus, the potential energy for the Lagrangian
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density is given by

V
(
q1,

∂q1

∂a
,q2,

∂q2

∂a
, α̂1

)
= ρ0U = α0

1ρ
0
1U1

(
α0
1ρ

0
1

α̂1J1

, s01

)
+ α0

2ρ
0
2U2

(
α0
2ρ

0
2

α̂2J2

, s02

)
,

(6.18)
where we use the shorthand notations α0

k := αk(a, 0), s0k := sk(a, 0), and ρ0k :=

ρ(a, 0). Evidently, the kinetic energy density is given by

K(q1, q̇1q2, q̇2) = K1 +K2 =
1

2
α0
1ρ

0
1 |q̇1|2 +

1

2
α0
2 ρ

0
2|q̇2|2 . (6.19)

Using(6.18) and (6.19), we conclude that the Lagrangian density of the mixture is
given by the following:

Lmix

(
q1,q2, q̇1, q̇2,

∂q1

∂a
,
∂q1

∂a
, α̂1

)
= K − V

= L1 (q̇1,J1, α̂1) + L2 (q̇2,J2, α̂2) , (6.20)

where
Lk(q̇k,Jk, α̂k) =

1

2
α0
kρ

0
k |q̇k|2 − α0

kρ
0
k Uk

(
α0
kρ

0
k

α̂kJk

, s0k

)
. (6.21)

Thus, the Lagrangian is given by

L =

∫
Ω

Lmix d3a = L1 + L2. (6.22)

and Hamilton’s principle amounts to extremizing the action
∫
Ω
Ldt, yielding the

Lagrangian equations of motion.
We proceed directly to the Legendre transform, where the momentum densities

are given by

πk(a, t) =
δLk

δq̇k

=
∂Lk

∂q̇k

= α0
kρ

0
kq̇k (6.23)

and the Hamiltonian density is given by

H
(
q1,q2, q̇1, q̇2,

∂q1

∂a
,
∂q1

∂a
, α̂1

)
= H1 +H2 , (6.24)

with
Hk = πk · q̇k − Lk =

1

2
α0
kρ

0
k |q̇|2 + α0

kρ
0
kUk

(
α0
kρ

0
k

α̂kJk

, s0k

)
. (6.25)
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Thus the Hamiltonian functional is given by

H =

∫
Ω

H d3a = H1 +H2 . (6.26)

Given the above forms of L and H, we arrive at the following:

Theorem 1. With the boundary conditions δqk = 0 or δqk · n = 0, for
k = 1, 2, on the spatial domain ∂Ω, where n is a unit normal vector, the
Lagrangian and Hamiltonian functionals, L and H respectively, depend on the
volume fraction if and only if the pressures satisfy p̂1 ̸= p̂2|a=q−1

2 ◦ q1
, which in

the Eulerian framework means p1 ̸= p2. Conversely,

δL

δα̂1

=
δH

δα̂1

= 0 if and only if p̂1 = p̂2
∣∣
a=q−1

2 ◦ q1
.

where the subscript a = q−1
2 ◦ q1 means evaluate the label at the transformed

label, i.e.,

p̂1(a, t) = p̂2(a
′, t)
∣∣
a′=q−1

2 ◦ q1(a,t)
= p̂2(q

−1
2 ◦ q1(a, t), t) . (6.27)

Proof. To simplify matters we use δuf = δf [u, δu] for the first variation in u of a
functional or a function and here drop the hat on α1, keeping in mind that it is a
Lagrangian variable quantity, i.e., α1(a, t). [See, e.g., Morrison, 1998a, for review of
functional derivatives and variational calculus]. We have

δα̂1L1 =

∫
Ω

∂L1

∂α̂1

(
q̇1,J1, α̂1, a

)
δα1 d3a ,

but δα1L2 is more complicated because in the integrand of L2 [q̇2,J2, α̂2] one must
substitute a = q−1

2 ◦ q1(a
′, t) to align the labels according to (6.5). Thus

L2 [q̇2,J2, α̂2] =

∫
Ω

L2(q̇2(a, t),J2(a, t), 1− α̂1(a
′, t), a)|a=q−1

2 ◦ q1(a′,t)J21(a
′, t) d3a′ ,

where

J21(a
′, t) := det

(
∂(q−1

2 ◦ q1)

∂a

)
(a′, t) .
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We obtain

δα̂1L2 = −
∫
Ω

∂L2

∂α2

(
q̇2(a, t),J2(a, t), α̂2(a, t), a

)∣∣
a=q−1

2 ◦ q1(a′,t)
J21(a

′, t)δα̂1 d3a′

and thus

δα̂1L =

∫
Ω

[
∂L1

∂α1

(
q̇1(a

′, t),J1(a
′, t), α̂1(a

′, t), a′)
− ∂L2

∂α2

(
q̇2(a, t),J2(a, t), α̂2(a, t), a

)∣∣
a=q−1

2 ◦ q1(a′,t)
J21(a

′, t)

]
δα̂1 d3a′ .

Using
∂L1

∂α̂1

= −∂U1

∂α̂1

= p̂1J1 and
∂L2

∂α̂2

= −∂U2

∂α̂2

= p̂2J2 ,

we get for all a′ in Ω

∂L2

∂α2

(
q̇2(a, t),J2(a, t), α̂2(a, t), a

)∣∣
a=q−1

2 ◦ q1(a′,t)
J21(a

′, t)

= p̂2(a, t)
∣∣
a=q−1

2 ◦ q1(a′,t)
J2(a, t)

∣∣
a=q−1

2 ◦q1(a′,t)
J21(a

′, t) = p̂2(a, t)
∣∣
a=q−1

2 ◦ q1(a′,t)
J1(a

′, t) .

(6.28)
where in the last equality we used

J2(a, t)
∣∣
a=q−1

2 ◦ q1(a′,t)
J21(a

′, t) = p̂2(a, t)
∣∣
a=q−1

2 ◦ q1
J1(a

′, t) .

Thus we have a cancellation and can deduce that

δL

δα̂1

= 0 if and only if p̂1(a
′, t)J1(a

′, t) = p̂2(a, t)
∣∣
a=q−1

2 ◦q1(a′,t)
J1(a

′, t) ,

i.e. p̂1 = p̂2
∣∣
a=q−1

2 ◦ q1
.

(6.29)

This theorem will be instrumental in the development below and in re-interpreting
some results in the literature. Now we proceed to obtain the equations of motion
for the TVM using the Hamiltonian form. Let

π :=

(
π1

π2

)
and q :=

(
q1

q2

)
(6.30)
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where, πk(a, t) = δL/δq̇k = α0
kρ

0
kq̇k. If we take the matrix A =

(
∂qi
∂aj

)
i,j

, we have:

A−1 =
1

det(A)
tCom(A) =

1

J
tCom(A) = (∆j

i )i,j.

We present a list of useful formulas to complete the proof:

∂

∂qi
=

1

J
∆j

i

∂

∂aj
. (6.31)

∆j
i =

∂J
∂ (∂qi/∂aj)

(6.32)

δJ = ∆k
i

∂δqi
∂ak

Or J̇ = ∆k
i

∂q̇i
∂ak

(6.33)

The Hamiltonian functional is given by (6.26), with densities (6.24) and (6.25).
With the boundary conditions defined in Theorem 1 we get

δH1

δqi1
=
∂H1

∂qi1
− ∂

∂aj

∂H1

∂(∂qi1/∂a
j)
. (6.34)

The first term of (6.34) is zero, while the second we apply the result of (6.31)-(6.32)
we get:

∂

∂aj
∂H1

∂(∂qi1/∂a
j)

=
∂

∂aj
∂(α0

1ρ
0
1U1(

ρ̃01
α̂1J , s

0
1))

∂(∂qi1/∂a
j)

= ∆j
i

∂

∂aj
∂(α0

1ρ
0
1U1(

ρ̃01
α̂1J , s

0
1))

∂J
,

= −∆j
i

∂

∂aj

(
1

J 2

α0
1ρ

0
1ρ̃

0
1

α̂1

∂U1

∂ρ1
(ρ̂1, s

0
1)

)
= −J1

∂

∂qi1
(α̂1ρ

2
1

∂U1

∂ρ1
)

where recall ρ̃01 = α0
1ρ

0
1 and here the co-factor matrix is ∆j

i =
1
2
ϵikl ϵ

jmn ∂qk

∂am
∂ql

∂an
, with

the Levi-Civita permutation symbol given as usual by

ϵijk =


1 if (i j k) is a cyclic permutation

−1 if (i j k) is an anti-cyclic permutation

0 if i = j = k

.

Since α̂2 depends on q1, by the formula α̂1 + α̂2|a=q−1
2 ◦ q1

= 1. So we must
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calculate the quantity δH2/δq
i
1 which is not expected to vanish, i.e.,

δq1H2 =

∫
Ω

δq1H2

(
q2,

∂q2

∂a
, α̂2

)
d3a =

∫
Ω

∂

∂α̂2

H2

(
q2,

∂q2

∂a
, α̂2

)
δq1α̂2 d

3a

But writing that,
α̂2(a, t) = 1− α̂1

(
q−1
1 (q2(a, t)) , t

)
,

we obtain

δq1α̂2(a, t) = −∂α̂1

∂a

(
q−1
1 ◦ q2(a, t), t

)
δq1 (q1)

−1 (q2(a, t), t) .

We get then

δq1α̂2

(
q−1
2 ◦ q1(a, t), t

)
=
∂α̂1

∂a
(a, t)

(
∂q1

∂a

)−1

(a, t)δq1(a, t). (6.35)

We may then write that,

δq1H2 =

∫
Ω

∂H2

∂α̂2

(q̇2,J2, α̂2, a) δq1α̂2 d
3a

=

∫
Ω

[
∂H2

∂α̂2

(q̇2,J2, α̂2, a) δq1α2

]
a=q−1

2 ◦ q1

det

(
∂(q−1

2 ◦ q1)

∂a

)
d3a

=

∫
Ω

{[
∂H2

∂α̂2

(q̇2,J2, α̂2, a)

]
a=q−1

2 ◦ q1

∂α̂1

∂a

(
∂q1

∂a

)−1

J21

}
δq1 d

3a .

Hence,
δH2

δq1

=
∂H2

∂α̂2

∣∣∣∣
a=q−1

2 ◦ q1

∂α̂1

∂a

(
∂q1

∂a

)−1

J21.

On the other side, we have

∂H2

∂α̂2

= −∂L2

∂α̂2

=
∂U2

∂α̂2

= −p̂2J2.

We develop our calculations,

δH2

δq1

=
∂H2

∂α̂2

∣∣∣∣
a=q−1

2 ◦ q1

∂α̂1

∂a

(
∂q1

∂a

)−1

J21 = −p̂2|a=q−1
2 ◦ q1

J2|a=q−1
2 ◦ q1

J21
∂α̂1

∂a

(
∂q1

∂a

)−1

= −p̂2|a=q−1
2 ◦ q1

J1
∂α̂1

∂a

(
∂q1
∂a

)−1

.
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Hamilton’s equations imply,

α0
1ρ

0
1 q̈1i = p̂2|a=q−1

2 ◦ q1
J1
∂α̂1

∂qi1
− J1

∂

∂qi1

(
α̂1ρ

2
1

∂U1

∂ρ1

)
(6.36)

and in a symmetrical way we also find

α0
2ρ

0
2 q̈2i = p̂1|a=q−1

1 ◦ q2
J2
∂α̂2

∂qi2
− J2

∂

∂qi2

(
α̂2ρ

2
2

∂U2

∂ρ2

)
. (6.37)

It is difficult to treat the equation in its Lagrangian form and, in any event,
the Eulerian framework is required. We appeal to the Theorem (1). We suppose
firstly that the Hamiltonian does not depend of parameter α. Then we assume that
p̂1 = p̂2|q−1

2 ◦ q1
. Hence the equations of motion for become:

α0
kρ

0
k q̈2i = −Jkα̂k

∂

∂qik

(
α̂kρ

2
k

∂Uk

∂ρk

)
. (6.38)

The obtained equations (6.12), (6.14), (6.36), and (6.38)) can be transformed
into Eulerian form [Morrison, 1998a]

∂t(αkρk) = −∇ · (αkρkuk) , (6.39)

∂t(αkρkuk) = −∇ · (αkρkuk ⊗ uk)− αk∇p , (6.40)

∂tsk = −uk · ∇sk , (6.41)

with p1 = p2 = p and α2 = 1− α1.
Upon transforming (6.39), (6.40), and (6.41) from the variables (α1, ρ1, ρ2,u1,u2, s1, s2)

to the variables (α1, p,u1,u2, s1, s2) we obtain following form:

e ∂tα1 = −α1α2(u1 − u2) · ∇p− α1α2c
2
1ρ1∇ · u1 (6.42)

+ α1α2c
2
2ρ2∇ · u2 −

[
α2ρ1u1c

2
1 + α1ρ2u2c

2
2

]
· ∇α1 ,

e ∂tp = −(α1ρ2c
2
2u1 + α2ρ1c

2
1u2) · ∇p (6.43)

− α1ρ1ρ2c
2
2c

2
1∇ · u1 − α2ρ1ρ2c

2
1c

2
2∇ · u2

−
[
ρ1ρ2c

2
2c

2
1u1 − ρ1ρ2c

2
1c

2
2u2

]
· ∇α1 ,

∂tuk = −uk · ∇uk −
1

ρk
∇p , (6.44)

∂tsk = −uk · ∇sk , (6.45)

where e := α1c
2
2ρ2 + α2c

2
1ρ1 is an energy-like quantity and ck is the sound speed of
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the phase k, i.e., c2k = ∂pk/∂ρk|sk .

6.2.2 STABILITY AND HYPERBOLICITY OF THE TVM
SYSTEM

In this section, we address the stability and hyperbolicity of the TVM System. Upon
linearizing around constant values of (α1, p, u1, u2, s1, s2), the TVM system in one
dimension becomes

∂tU + A∂xU = 0 , (6.46)

where U = (α̃1, p̃, ũ1, ũ2, s̃1, s̃2) is the deviation for the equilibrium state and

A =
1

e



α1c
2
2ρ2u2 + α2c

2
1ρ1u1 α1α2(u1 − u2) α1α2c

2
1ρ1 −α1α2c

2
2ρ2 0 0

c21c
2
2ρ1ρ2 (u1 − u2) α1c

2
2ρ2u1 + α2c

2
1ρ1u2 α1c

2
1c

2
2ρ1ρ2 α2c

2
1c

2
2ρ1ρ2 0 0

0 e/ρ1 eu1 0 0 0

0 e/ρ2 0 eu2 0 0

0 0 0 0 eu1 0

0 0 0 0 0 eu2


where recall e := α1c

2
2ρ2 + α2c

2
1ρ1.

Lemma 4. The matrix A has six real distinct eigenvalues if and only if,

(u1 − u2)
2 ≥ c21c

2
2

α2ρ1c21 + α1ρ2c22

[
(ρ1α2)

1/3 + (ρ2α1)
1/3
]3
. (6.47)

The condition (6.47) is given to ensure the hyperbolicity of the linear TVM Sys-
tem [Stewart and Wendroff, 1984]. We can prove that the hyperbolicity is equivalent
to the stability in the sense of von Neumann [Hicks, 1981, Ransom and Hicks, 1984,
1988]. Moreover, using the theorems presented in [Kreiss and Lorenz, 2004, see page
102], we can prove that this condition implies the strong solution existence of the
Linear TVM system with a given initial data.

Remark 1. We recovered in the above development the well-known TVM for two-
phase flows. However, in Theorem 1 we have shown that the single pressure hy-
pothesis, p̂1(a, t) = p̂2|q−1

2 ◦ q1
(a, t) (i.e p1(r, t) = p2(r, t)), is necessary to derive this

model. This limitation is not always respected in the literature [Drui et al., 2019,
Holm and Kupershmidt, 1986, Hicks, 1981, Stewart and Wendroff, 1984]. Many
models assume different phase pressures yet present equations of the form of the
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TVM here. If we suppose in this model that u1 = u2 = u, then the momentum
conservation equations become

ut = −u · ∇u− 1

ρ1
∇p , (6.48)

ut = −u · ∇u− 1

ρ2
∇p . (6.49)

By identification, we get that ρ1 = ρ2. So a mixture of two different phases (ρ1 ̸= ρ2)
with one pressure cannot flow with the same velocities.

If we take into account the viscosity, we must add to the momentum conservation
and entropy equations terms depending on the viscosities µk as follows:

∂t(αkρk) = −∇ · (αkρkuk) , (6.50)

∂t(αkρkuk) = −∇ · (αkρkuk ⊗ uk)− αk∇p+∇ · (αkµk∇uk) , (6.51)

∂tsk = −uk · ∇sk +
µk

ρkTk
∇uk : ∇uk , (6.52)

We call the above system with viscosities the real Two-Velocity Model (rTVM).

6.2.3 WAVE BEHAVIOR IN RTVM

Now consider linear sound waves in the rTVM (6.50)-(6.52). We add the effect due
to viscosity of each fluid (µ1, µ2) and we simplify the model [see Benjelloun and
Zaidni, 2021, Stewart and Wendroff, 1984]. The system of equation with viscosity
can be summarized as follows:

e ∂tα1 = −α1α2(u1 − u2) · ∇p− α1α2c
2
1ρ1∇ · u1 (6.53)

+ α1α2c
2
2ρ2∇ · u2 −

(
α2ρ1u1c

2
1 + α1ρ2u2c

2
2

)
· ∇α1

+ α1α2Γ1µ1∇u1 : ∇u1 − α1α2Γ2µ2∇u2 : ∇u2 ,

e ∂tp = −(α1ρ2c
2
2u1 + α2ρ1c

2
1u2) · ∇p− α1ρ1ρ2c

2
2c

2
1∇ · u1 (6.54)

− α2ρ1ρ2c
2
1c

2
2∇ · u2 −

(
ρ1ρ2c

2
2c

2
1u1 − ρ1ρ2c

2
1c

2
2u2

)
· ∇α1

+ α1ρ2c
2
2Γ1µ1∇u1 : ∇u1 + α2ρ1c

2
1Γ2µ2∇u2 : ∇u2 ,

∂tuk = −uk · ∇uk +
1

ρk
∇p+ µk

αkρk
∇αk · ∇uk +

µk

ρk
∆uk , (6.55)

∂tsk = −uk · ∇sk +
µk

ρkTk
∇uk : ∇uk . (6.56)
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After the linearization of the system (6.53)-(6.56) in one-dimensional around a
constant solution
(α1, p, u1 ≈ 0, u2 ≈ 0, s1, s2). We look for non-zero harmonic plane-wave solutions
for U = (α1, p, u1, u1, s1, s2) of the form

U = U0 exp(iωt+ kx) = U0 exp(kRx) exp (i(ωt+ kIx)) , (6.57)

where ω is the sound frequency and k = kR + ikI is a complex wavelength, that
contains the wavelength kI and the attenuation kR. Thus we are led to the following:

(ωI − ikA+ ik2B) · U = 0 , (6.58)

where I is the identity matrix and

A =
1

e



0 0 α1α2c
2
1ρ1 −α1α2c

2
2ρ2 0 0

0 0 α1c
2
1c

2
2ρ1ρ2 α2c

2
1c

2
2ρ1ρ2 0 0

0 e/ρ1 0 0 0 0

0 e/ρ2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(6.59)

and

B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 µ1/ρ1 0 0 0

0 0 0 µ2/ρ2 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (6.60)

Hence, upon setting the determinant det(ωI − ikA + ik2B) to zero, we get the
dispersion relation

1 + E

(
k

ω

)2

+ F

(
k

ω

)4

= 0 , (6.61)
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where

F = c4∞

[
i
α1µ2 + α2µ1

α1ρ2 + α2ρ1

ω

c2∞
− µ1µ2ω

2

ρ1ρ2c4∞

]
, (6.62)

E = c2∞

[
1 + i

(
α1µ1ρ2
ρ1 c21

+
α2µ2ρ1
ρ2 c22

)
ω

α1ρ2 + α2ρ1
(6.63)

+ i

(
α1µ2

c21
+
α2µ1

c22

)
ω

α1ρ2 + α2ρ1

]
,

c∞ =
ω

k
=

√
α2ρ1c21c

2
2 + α1ρ2c21c

2
2

α1ρ2c22 + α2ρ1c21
. (6.64)

The velocity c∞ represents the speed of propagation of the wave (when µ1 = µ2 = 0).
Using the following definitions:

ρ̄ = α1ρ2 + α2ρ1, µ̄ = α1µ2 + α1µ1, β1 =
α1ρ2
ρ̄

.

β2 =
α2ρ1
ρ̄

, β1 + β2 = 1 , (6.65)

and the Knudsen numbers

K1 =
µ1ω

ρ1c21
, K2 =

µ2ω

ρ2c22
, Kn =

µ̄ω

ρ̄c2∞
,

K1,2 =

(
α1µ2

c21
+
α2µ1

c22

)
ω

ρ̄
, Km =

ω

c2∞

√
µ1µ2

ρ1ρ2
, (6.66)

the dispersion relation becomes a bi-quadratic polynomial

1 +
[
1 + iβ1K1 + iβ2K2 + iK1,2

](kc∞
ω

)2

+ (iKn −K2
m)

(
kc∞
ω

)4

= 0 . (6.67)

Next, assuming that K1, K2, K1,2, Kn, Km ≪ 1, we obtain to second order that the
discriminant of the bi-quadratic polynomial is given by

√
∆ = ±

[
1 + i(β1K1 + β2K2 +K1,2)− 2(iKn −K2

m)
2
]
,

with the complex wavelengths solutions given by

k± =
1

λ±
= ± iω

c∞

[
1 +

1

8
(β1K1 + β2K2 +K1,2)

2 +
1

2
K2

n +
i

2
(β1K1 + β2K2 +K1,2)

]
.

Then, the expressions for dispersion and attenuation at order 2 in the Knudsen
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numbers are

vs(ω) =
ω

Im(k)
≈ c∞

(
1 +

1

8
(β1K1 + β2K2 +K1,2)

2 +
1

2
K2

n

)
, (6.68)

α(ω) = Re(k) ≈ − ω

2c∞
(β1K1 + β2K2 +K1,2) . (6.69)

In the following subsection, we present some hypothesis that allow us to close
our system by expressing an equation between the pressures of each phase. This is
obligatory because the phases are not fully independent and, because of our Remark
1, the pressures p̂2|q−1

2 ◦q1
and p̂1 should not be equal.

6.2.4 SURFACE TENSION: LAPLACE’S LAW

Laplace’s Law is an equation that describes the capillary pressure difference sus-
tained across the interface between two phases, such as water and air, due to the
phenomenon of surface tension or wall tension. For example, In the case of dispersed
flows, we have either the gas bubbles in the liquid, or liquid droplets in gas. Both
cases assume we have in the mixture spheres of radius R. The pressures of the
phases is related to the radius and the surface tension σ by the formula

p2 − p1 =
2σ

R
= ϵ , (6.70)

where p1 is the pressure inside of a sphere of the phase “1" and p2 is the pressure
outside. First, we assume that the balls have the same radius (R =constant, mono-
dispersed flow). From our previous explanations (1), we must note that necessarily
σ ̸= 0.

In this case as ∂tp1 = ∂tp2, and ∇p1 = ∇p2. In one-dimensional, the equations
(6.12), (6.14), (6.36), and (6.37)) take the following Eulerian form:

∂tU + A∂xU = 0 , (6.71)
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where

A = 1
e



α1c
2
2ρ2u2 + α2c

2
1ρ1u1 α1α2(u1 − u2) α1α2c

2
1ρ1 −α1α2c

2
2ρ2 0 0

c21c
2
2ρ1ρ2 (u1 − u2) α1c

2
2ρ2u1 + α2c

2
1ρ1u2 α1c

2
1c

2
2ρ1ρ2 α2c

2
1c

2
2ρ1ρ2 0 0

−ϵe/(α1ρ1) e/ρ1 eu1 0 0 0

ϵe/(α2ρ2) e/ρ2 0 eu2 0 0

0 0 0 0 eu1 0

0 0 0 0 0 eu2


.

The above matrix has the following characteristic polynomial:

PA = (x− u1)(x− u2)XA , (6.72)

where
XA = (ϕ− δ)2(ϕ+ δ)2 − eM1(ϕ− δ)2 − eM2(ϕ+ δ)2 + eM3,

with ϕ = x− 1
2
(u1 + u2), δ = (u1 − u2)/2 and

M1 = ϵα1c
2
2 + c21c

2
2α2ρ1 , M2 = −ϵα2c

2
1 + c21c

2
2α1ρ2 , M3 = c21c

2
2ϵ(α1 − α2) .

Now, if (u1 ≈ u2 ≈ 0), the characteristic polynomial of the matrix A is bi-
quadratic,

PA = x2
(
x4 +

ϵc̄2 − c21c
2
2ρ̄

e
x2 − ϵc21c

2
2

e

)
. (6.73)

where c̄2 = α1c
2
2 + α2c

2
1. Thus the matrix has 4 non-zero eigenvalues,

λ1,2,3,4 = ±

√
c21c

2
2ρ̄− ϵc̄2

2e
±

√
∆

2
, (6.74)

where ∆ is the discriminant of the bi-quadratic polynomial XA. The two eigenvalues

λ1,2 = ±

√√√√(c21c22ρ̄− ϵc̄2

2e
+

√
∆

2

)

are real and represent the sound speed c∞ϵ . The others

λ3,4 = ±

√√√√(c21c22ρ̄− ϵc̄2

2e
−

√
∆

2

)

are pure imaginary complex numbers. We have that, |λ1,2|(α1 → 0) = c2 and
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|λ1,2|(α2 → 0) = c1. A common example of use is finding the pressure inside an air
bubble in pure water, where σ = 72mN/m at 25 ◦C (298K). The extra pressure
inside the bubble is given here for three bubble sizes:

Bubble diameter (2r)(µm) ∆P ( Pa) ∆P ( atm)

1000 288 0.00284

3.0 96000 0.947

0.3 960000 9.474

If we take into account the viscosity, the same method as before gives dispersion
and attenuation formulas to order 2 at Knudsen numbers:

vs(ω) ≈ c∞ϵ

(
1 +

1

8
k2ϵ +

1

2
K2

n,ϵ

)
, α(ω) ≈ − ω

2c∞ϵ
Kϵ ,

where

C̃∞ =

√
c21c

2
2ρ̄− ϵc̄2

α1c22ρ2 + α2c21ρ1
, G =

ϵc21c
2
2

C̃4
∞e

,

Kϵ =
ω√

1 + 4G

(
α1c

2
2µ1ρ

2
2 + α2c

2
1µ2ρ

2
1

C̃2
∞eρ1ρ2

+
α1c

2
2µ2 + α2c

2
1µ1

C̃2
∞e

)
,

Kn,ϵ =
ω

1 + 4G+
√
1 + 4G

(
µ̄c21c

2
2

C̃4
∞e

− ϵ(α1c
2
2µ1ρ2 + α2c

2
1µ2ρ1)

C̃4
∞eρ1ρ2

)
. (6.75)

Remark 2. The characteristic polynomial (6.72) has complex roots and the system
is non-hyperbolic.

6.3 ONE VELOCITY MODEL (ZDFM)

In this section we treat a special case of the previous model and where q1 = q2. The
particles of each constituent are in the initial position a ∈ Ω, and then at the time
t they a re located at r = q(a, t) = q1(a, t) = q2(a, t). In the case of one velocity
models/flows, we have one common velocity field noted u(r, t) = q̇1(a, t)|a=q−1

1 (r,t) =

q̇2(a, t)|a=q−1
2 (r,t) and also one Jacobian matrix J1 = J2 = J .

In the Eulerian picture, equation of motion reads,

∂t(ρu) +∇ · (ρu⊗ u) = (p2 − p1)∇α1 −∇(α1p1 + α2p2). (6.76)
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We suppose that p2 = p1, we fall into the case of a simple fluid of density
ρ = α1ρ1 + α2ρ2. Just the equations of state that change. In this case we have the
conservation of the mass fraction,

∂tη + u · ∇η = 0. (6.77)

which did not appear in the TVM model. The equation of state for the pressure is
written as p = P (ρ, η, s1, s2), with p = p1 = p2, We have then,

dp = c2w dρ+ α dη + β1 ds1 + β2 ds2, (6.78)

cw is the Wood speed of sound defined from the following derivative of the state law
of the mixture p = P (ρ, η, s1, s1) :

c2w =
∂P

∂ρ

)
s1,s2,η

, (6.79)

1

ρ2c2w
=

η

(ρ1)2(c1)2
+

1− η

(ρ2)2(c2)2
. (6.80)

To study waves behaviors we do not need to specify the expressions of the co-
efficients α, β1 and β2. Adding viscosity effect, The linearized rzDFM system in
one-dimensional around a constant solution (ρ0, u, η0, s

0
1, s

0
2) is given by

∂tρ = −u0∂xρ− ρ∂xu , (6.81)

∂tu = −u0 ∂xu−
c2w
ρ0
∂xρ−

α

ρ0
∂xη −

β1
ρ0
∂xs1 −

β2
ρ0
∂xs2 (6.82)

+
α1µ1 + α2µ2

ρ0
∂2xxu ,

∂tη = −u0 ∂xη , (6.83)

∂tsk = −u0 ∂xsk . (6.84)

We seek a plane wave solution of the form U0 exp (iω t+ kx). We get then[
iωI + kA− k2B

]
U = F. (6.85)
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where

A =


0 0

α1c21c
2
2ρ1ρ2+α2c21c

2
2ρ1ρ2

α1c22ρ2+α2c21ρ1

0 0
α1α2c21ρ1−α1α2c22ρ2

α1c22ρ2+α2c21ρ1
1
ρ

0 0

 , B =

 0 0 0

0 0 0

0 0 α1µ1+α2µ2

ρ


To simplify we take u0 = 0 which means that the mixture is stagnant. Then

non-zero solutions exists if the frequency ω and the complex wavelength verify the
following bi-quadratic polynomial on k :

c2wk
2ρ+ ik2µω + ω2ρ = 0,

Where µ = α1µ1 + α2µ2. For a wave of frequency ω such as Kn = µω
ρ c2w

≪ 1, And
thus the dispersion relations and the attenuation coefficient is given by the following
formulas [Benjelloun and Zaidni, 2021]:

d(ω) ≈ cw

(
1 +

3µ2ω2

8ρ2c4w

)
, a(ω) ≈ − µω2

2ρ c3w
.

Remark 3. In the case of zDFM, the Wood speed (6.80) is equal to the speed of
propagation (6.64) c∞ = ω

k
(µ1 = µ2 = 0) = cw. Which is not the case in TVM.

So considering signl-pressure (p1 = p2) and suppose that the particles of the mixture
have different orbits (q1 ̸= q2) imply that cw ̸= c∞. Let’s compare the speeds,

c2w
c2∞

=
1

(α1ρ2 + α2ρ1)
(

α1

ρ2
+ α2

ρ1

) (6.86)

Lemma 5. Generalized mean inequality [Bullen, 2013]
Let p and q two non-zero real numbers, such that p < q, and λ1, . . . , λn ∈ R+

0

with, λ1 + . . .+ λn = 1 , then for all strictly positive real a1, . . . , an, we have:(
n∑

i=1

λia
p
i

)1/p

≤

(
n∑

i=1

λia
q
i

)1/q

(6.87)

The equality occurs if and only if a1 = a2 = . . . = an.

Using the lemma 5 with taking n = 2, p = −1 , q = 1 , λ1 = α1 , λ2 = α2 ,
a1 = ρ2, and a2 = ρ1, we get:

1(
α1

ρ2
+ α2

ρ1

) ≤ α1ρ2 + α2ρ1
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Then we deduce that the Wood speed is lower than the speed of propagation (Phase
Velocity),

cw ≤ c∞ (6.88)

The equality occurs (c∞ = cw) if and only if the phases have the same densities
ρ1 = ρ2.

A wave study of the linear mixed hyperbolic-parabolic system of (6.81), (6.82),
(6.83), and (6.84), gives the following:

∂tU + A∂xU = B∂xxU , (6.89)

where U = (u, ρ, η, s1, s2) and the constant matrices A and B given by

A =


u c2w/ρ α/ρ β1/ρ β2/ρ

ρ u 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u

 and B =


(α1µ1 + α2µ2)/ρ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 .

The system (6.89) with a given initial data, admits a strong solution. This result
is a direct application of the fundamental theorems presented in [Kreiss and Lorenz,
2004, see page 166]. In fact writing

B =

[
B1 0

0 0

]
and A =

[
A11 A12

A21 A22

]
,

where

B1 =

(
α1µ1 + α2µ2

ρ

)
, A11 = u, A12 =

[
c2w
ρ

α
ρ

β
ρ

]
, A22 =

 u 0 0

0 u 0

0 0 u


the following conditions are satisfied:

B1 +B∗
1 = 2

α1µ1 + α2µ2

ρ
> 0 and A22 = A∗

22.

This shows that in the one-dimensional case, the strong solution of the RzDFM
exists. Also for the zDFM (B = 0), The system (6.89) becomes strictly hyperbolic

132



and has the symmetrizer:

H =


1 0 0 0 0

0 h 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,

where, h = c2w/ρ
2, and HA = A∗H. Thus, the existence of strong solution of

nonlinear PDE system of Ideal Drift Flux Model in one-dimensional is proven [Kreiss
and Lorenz, 2004, see page 114].

6.4 CONCLUSION

It has been shown in this chapter that the speed of sound propagation under a
single pressure assumption depends on the chosen model. The zDFM yields the
classical Wood speed, while the TVM produces a different speed, c∞ ̸= cwood, with
both speeds coinciding only when the two phases have equal densities. A similar
paradox is discussed in remark 1. This indicates that the ill-posedness of the model
not only leads to mathematical challenges—such as issues with the existence of solu-
tions, stability, or numerical simulation—but also results in physically questionable
outcomes.
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CHAPTER

APPENDIX: FUNCTIONAL
CALCULUS A

A functional is a map that takes functions into real numbers. To describe a functional
properly, we need to define the set of functions it can act on (called a function space)
and the rule used to compute the result.

B −→ R

Just like regular functions, functionals can be continuous, differentiable, and
follow rules like the chain rule.

Example: Kinetic Energy of a Fluid

Consider a one-dimensional fluid of constant density. The kinetic energy is given
by:

T [u] =
1

2

∫ x1

x0

ρ0u
2(x) dx

Here, u(x) is the fluid velocity, and ρ0 is constant. Given any function u(x),
evaluating the integral gives a number.

First Variation and Functional Derivative

If we change u(x) slightly to u(x)+ ϵδu(x), the first variation of a general functional
K[u] is:

134



δK[u; δu] =
d

dϵ
K[u+ ϵδu]

∣∣∣∣
ϵ=0

If this derivative exists, we can write:

δK[u; δu] =

∫ x1

x0

δu(x)
δK

δu(x)
dx =

〈
δK

δu
, δu

〉
The term δK

δu(x)
is called the functional derivative of K. The variation is linear

in δu, but not necessarily in u. For the kinetic energy functional

T [u] =
1

2

∫ x1

x0

ρ0u
2(x) dx,

the first variation is
δT [u; δu] =

∫ x1

x0

ρ0u(x)δu(x) dx,

and thus the functional derivative is:

δT

δu
= ρ0u.

This is similar to the gradient of a multivariable function:

df(x; dx) =
n∑

i=1

∂f

∂xi
dxi = ∇f · dx.

General Functional with Derivatives

Let
F [u] =

∫ x1

x0

F (x, u, ux, uxx, . . . ) dx.

Then
δF [u; δu] =

∫ x1

x0

(
∂F

∂u
δu+

∂F

∂ux
δux +

∂F

∂uxx
δuxx + · · ·

)
dx.

Integrating by parts and dropping boundary terms:

δF [u; δu] =

∫ x1

x0

δu(x)

(
∂F

∂u
− d

dx

∂F

∂ux
+

d2

dx2
∂F

∂uxx
− · · ·

)
dx.
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Thus, the functional derivative is:

δF

δu
=
∂F

∂u
− d

dx

∂F

∂ux
+

d2

dx2
∂F

∂uxx
− · · · .

Dirac Delta Identity

A useful identity in functional calculus is:

u(y) =

∫
δ(x− y)u(x) dx, so that

δu(y)

δu(x)
= δ(x− y).
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