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A detailed analysis of the noncanonical structure of the linearized Maxwell-Vlasov
equations is presented. The full Maxwell-Vlasov bracket is linearized about a
stable, homogeneous and isotropic equilibrium. Velocity space moments are taken
leading to a natural decomposition of the system into longitudinal and transverse
parts. This bracket together with the linearized energy is shown to give the usual
linearized moment equations. A family of integral transforms whose kernels are
closely related to singular eigenfunctions are introduced. It is shown that by
means of these transformations, both the bracket and energy can be brought into
diagonal form. The diagonalizing transformation is essentially a transformation
to linear action-angle variables for this infinite-dimensional Hamiltonian system.
The resulting energy expression, which depends on the Fourier transform of the

electric field, has physical meaning as the energy of the perturbations and in
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general is not equal to the usual expression for the wave energy in a dielectric.
Equilibria that support discrete modes are also studied. It is shown that the
eigenfunctions corresponding to the discrete modes enter as a natural result of
regularizing the (now singular) inverse transform. It is seen that in the case
of neutral modes, the transformed variables must be interpreted as generalized
functions. Lastly, quadrature rules for Cauchy integrals are discussed and an
efficient, high accuracy algorithm for computing Hilbert transforms is developed.
This algorithm is used to evaluate the exact solution of the longitudinal equations

for different initial conditions.
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1

Introduction

Classical mechanics is a fascinating subject with a long history. Canonical co-
ordinates and the symplectic structure of phase space are central figures in this
history. These concepts, which grew from the work of Hamilton, Jacobi and oth-
ers, opened the door to a geometrical understanding of systems whose dynamics is
described by Hamilton’s equations. Classical mechanics, in particular the Hamil-
tonian formulation of classical mechanics, is of great importance to many areas
of physics, indeed it can be justifiably claimed as the foundation of all modern
physics.

When considering a canonical Hamiltonian system, an alternative formulation
may be more convenient: certain symmetries may be averaged over; degrees of
freedom may be eliminated to simplify the system; one may wish to include
dissipative effects; and so on. This leaves one with three possibilities: the new
system may be canonically Hamiltonian; it may still be Hamiltonian but not
manifestly Hamiltonian or it may no longer be Hamiltonian at all. It is systems in
this second category, which are called noncanonical Hamiltonian systems, that are
of special interest to us. Noncanonical Hamiltonian dynamics is a generalization
of the ideas of canonical mechanics and is closely related to the remarkable work of
Lie. These systems possess a number of interesting features not found in canonical
systems. The geometry of phase space can be much more complicated than that
of canonical systems. There exists a special class of constants of motion, Casimir
invariants, that enjoy a status above all other constants of motion — they result

from the geometry of phase space as embodied in the Poisson bracket and as such
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their constancy is independent of the Hamiltonian.

Continuous systems (field theories) can be classified in much the same way.
There are field theories, most notably those of importance in quantum the-
ory, that possess canonically conjugate variables and are thus of the canonically
Hamiltonian type. In addition, there are field theories that possess a noncanon-
ical Hamiltonian structure. Most, if not all, Eulerian theories of matter are in
this category. For this reason, noncanonical field theories are the subject of much
study.

It is into this framework that the Maxwell-Vlasov model of a plasma finds
itself. This system is known to be of the noncanonical type which possess an in-
finity of Casimirs. The full Maxwell-Vlasov system is a rich (and correspondingly
complex) set of coupled, nonlinear integro-differential equations. There is little in
the way of mathematical understanding of the structure of this system — there
is no proof of existence of solutions and the structure of the phase space (which
is an infinite dimensional function space) is stunningly complicated. Fortunately,
a great deal can be learned in the study of perturbations about an equilibrium.
Moreover, in general, and for the above system in particular, noncanonical struc-
ture survives linearization.

In this work we consider the linearized Maxwell-Vlasov system. We begin
in Chapter 2 by linearizing about a homogeneous and isotropic equilibrium and
further simplifying the systems by taking velocity moments in two directions and
only allowing spatial variations in the third. The resulting system is a noncanon-
ical field theory containing both longitudinal and transverse degrees of freedom.
These linearized moment equations (both longitudinal and transverse) are sin-
gular integral equations. As such they possess a continuous spectrum and sin-

gular eigenfunctions. In Chapter 3 we develop the theory of a family of integral



transforms that is closely related to these singular eigenfunctions. Following this,
in Chapter 4 we show that certain members of this family can be used to solve the
linearized equations. In Chapter 5 we apply the same transform as in Chapter 4
as a coordinate change. In these new coordinates, the Hamiltonian and bracket
obtain canonical diagonal form. A further coordinate change yields action-angle
variables for this system. Thus we succeed in discovering canonical coordinates
for the linearized system. We extend the longitudinal formalism in Chapter 6 to
include neutral discrete modes and we see that they are a natural by-product of
regularizing a singularity. By similar methods, in Chapter 7 we make a further
extension to include the effects of unstable modes. We then move on in Chapter 8
to develop and implement the necessary numerical algorithms to allow numer-
ical evaluation of the integral transform solution of the longitudinal equations.
These results demonstrate the efficacy of singular eigenfunction expansions. We

summarize our results in Chapter 9.
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Noncanonical Hamiltonian Structure
of the
Maxwell-Vlasov Equations

The starting point of our analysis is the Vlasov—-Maxwell system

fa+v-Vfa+%(E+va).%fa=o,

[

E+cVxB =—47qua/d3'vv o
o

B+c¢cVXE=0,

V~E—-47qua/d3vfa =0,
[s3

V-B =0,

(1a)

(10)
(1)

(1d)

(le)

were f (r,v,t) is the phase space distribution function for species o having

mass m, and charge g,. It is well known'™ that these equations conmstitute

an infinite dimensional, noncanonical Hamiltonian system (i.e. a noncanonical

field theory). The Poisson bracket for this system is given by

_ 3p [g3p Jo | 6G
{F,G}—Za:/d'r/dvma [5fa’5fa]
OF 6G 6G(5F]

Oa
rar e [ [ (555 - Sy
a « « @
U P PP () ey (¢}
+47r;mg/dr/dvfaB [V"5faxv”6fa
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oF 6G  6G 6F
3 VX — - Y X —
+4"c/d " [6E B oE 53] ’ (2)

where F' and G are arbitrary functionals, [, ] is the ordinary Poisson bracket

[@,b]=Va-Vb—-Va-Vb, (3)

and 6F/6f, is the functional derivative. To satisfy the Jacobi identity, we re-
quire V - B = 0. With this bracket the Vlasov-Maxwell equations (1a)-(1c) are

now Hamilton’s equations:

fo=1fs H}, (4a)
E={E, H}, (4b)
B ={B,H}. (4c)

where the Hamiltonian, H, is the total energy

_1 3, (3 2 _1_/3 2 2
H_2§a:/dr/a:vmau fat 5= [dr (18] +|B|]. (5)

Note that equations (1d) and (le) are not obtained from Hamilton’s equa-
tions. The reason for this is simple: neither of these equations are dynamical in
nature — they are constraints on F and B. These equations may be viewed as
initial conditions; zero being a particular value. In the context of linear theory
it is possible, as we will see, to directly incorporate these constraints into the

dynamical equations.



I. Linear Theory

We begin with a two component plasma with dynamic electrons and a fixed neu-
tralizing ionic background and conmsider first order perturbations to f*, E®
and B® about a stable, monotonic, homogeneous and isotropic equilibrium
electron distribution f@(r,v;t) = f®(v). For such an equilibrium, E® = 0,
B® =0 and

v, /O =5 (6)

The linearized dynamics will involve only electrons and we take the charge to be e

and the mass to be m. Linearizing about this equilibrium the bracket becomes:

OF
47re ~ SF 6G 6G 6F
/d3 /dsvf(o)l ’ [6E‘1) 5 T SE® 5f(1)]

+47rc/d3r [‘;S_F.VX_E_E.VX_‘SF_]_ (7)

E(l) 5B(1) 5E(1) §B(l)

An expression for the energy of linear perturbations about monotonic equilibria

was obtained by Kruskal and Oberman:[®l

m f(1)2
H? = /d3 /d3vv (0),+——/d3 |BO? + B ] (8)

In the above, we can easily see the need for monotonicity of f© — clearly H® is
not well defined, for arbitrary £, if we allow f©’ to change sign. We will come
back to this when we discuss dynamic accessibility.

We introducing the perturbed vector potential, A, in place of the magnetic

field which both simplifies the bracket and identically satisfies ¥V - B® = 0. One



can easily show

lB(l)l — v2 ,A(l)’ A(l) v . A(l)) A(l)'V2A(1)+A(1)'VV'Am (g)
and
6F 6F
AT — V x SBD (10)
Thus

— 3 3,y £(0)
(Fi0p, = [or [0 |7 555
47re d3 d3 (0)1,\ 6F 6G 6G oF
f ’ SED 6f“)_6E(” 5f(1)

6F 6G 60G  6F
+47TC/d3T [6E(1) . 6A(1) - 6E(1) * 6A(1)] (11)

and

m2
H® = —ﬁ/d?’r /d3'vvf ;
2 I

+8i7r/d37‘ (IE“’I2+A“’-vv-A‘”—A‘”'VzA(”] - (12

For our spatial domain we assume a periodic box of (arbitrarily large) vol-
ume V and allow only spatial variation in the {fixed) direction defined by k.
Taking the Fourier amplitudes as our new dynamical variables the bracket be-

comes (see Appendix D-2 for details)

{F, G}L Z /d37' e1(k+k )k r{

Ic k!=—c0

OF ~ oG 0G ~ oF
3 .
/d v f© [ Zkﬁf(” V;(sf(})Jrzk'&f(})k-Vvéf’(cl)]




5F 8G  6G 6F
3 ~
" 4”/ o i [515,‘;) 519 6BY 6f‘”]

+ dwme [ OF  6G  6G  SF ] (13)
SE,) A} GE) SAY
The spatial integral can easily be evaluated having the result of setting &' = —k

in the sum, giving

F 6G ., 0G ~ 6F
{F,G}, = V Z {/d3 f© [—lkéf(l)k va,f(}) —Zkaf(_l}ck V“(Sf“)]

k=—00

+47re/d%f‘°"8- [ 6F 6G G SF J

6E](cl) 5f(1) 5E(1) 6f(1)

+4mc[5F. 5G_ 6G 6F]
SEP 5AT,  GET), 5AD

of® §F G
mV Z{ /d3 v 6fD 65

k=—0c0

6F G 6G 6F
3 ) ., —
- dme / ey [6E,<;> 50 6E%, 650 J

6F  6G 6G  6F
+ drme [ . - - — ] . (14)
SEY 6AY. SEY), 6AY }

In terms of these variables the linearized energy is given by

H(Z’—_—K 3 { /d%vlf’il)'

O
4, £

L (1P + 140 - k- A2) } - W



In the expression for H® we assume f,i” to be complex and make use of the
“reality condition” f{’* = f%). Likewise for E{” and A{".

One can easily obtain the linearized equations of motion from Hamilton’s

equations:
£ + ik vf + DB 51" =0, (16a)
~B + ol AP - chk- AP = dne [Pvos]) (160)
AP ek x EY =0. (16¢)

In these variables, Poisson’s equation reads

ik - B = 4me / d3v £V (16d)

II. Derivation of the Moment System

We now replace f,g” as our dynamical variable with selected velocity moments.
The moments that we will take do not involve integration over all velocity vari-
ables; thus our moment variables will have a continuum label and we will still be
dealing with a field theory. The moments that are of interest to us here involve
velocity integrations in plane perpendicular to the direction of k. To this end we

wish to decompose the velocity, v, into its component along k:
v,=k-v (17)
and its projection into the perpendicular plane:

v=v—Fk-v. (18)
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We will use this same notation for other vectors as necessary. For any func-

tion, f(v), we define two moments

f, = /dq f, (19a)
f,=[dyuvf. (190)

It is possible to decompose the bracket and, as we will see, the Hamilto-
nian (and thus the equations of motion) into longitudinal and transverse pieces
by restricting to functionals that depend only on these moments of f,(c” , L.e. to

functionals of the form

FfP] =F[fi £5] (20)
in which case
oF OF 6F
= . . 21
T T )

We could consider moments other than these but they prove to be of less
interest for several reasons. If one goes above second degree in v, then the bracket
of two such moments will always involve moments of f of greater degree. Thus,
for example, the bracket of a third and fifth degree moment will involve a sixth
degree moment of the equilibrium. This situation is unsatisfactory in that it
requires us to take higher moments of the equilibrium than of the perturbations.
This not withstanding, there are sets of higher degree moments that do yield
closed sets equations of motion, however none of these higher moments appear as
source terms in Maxwell’s equations. The same is true of the moments of degree
two and lower other than the above. In fact only the moment: defined above
will couple self-consistently to the fields. Thus the dynamics associated with

these other moments is in some sense trivial; it amounts to passive advection. In
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the end, our choice of moment variables was dictated by the manner in which
Maxwell’s equations couple to matter.

We are now in a position to evaluate the linearized bracket, (14) in terms of
the moment variables. Although we have introduced the vector potential, we have
yet to take advantage of the resulting gauge freedom. It will prove convenient
to choose our gauge such that k - A“’ 0 which ensures that E(” is entirely
electrostatic and, via the chain rule for functional derivatives (see Appendix D-1),
that

OoF

k- m_o. (22)

(This also applies to functional derivatives with respect to £}’ and EY, inde-

pendent of the gauge.)
Substituting (21) into the expression for the bracket and taking our gauge

condition into account gives

8f® §F 6G
F,G — /d3 1
{F.G}, = k__oo 57 5,
_ of© 6F 6G  8G 6F
3 .
+ Zk/d v 61)” ’U_L [6f"(11c) 6ff2 H(l)k f(l)]

) af© [ 6F 6G ]
—I—zk/d% UV | m o
BU” 7 6f.qfk) 6f.L(—3k ij
af® [ 6G ]
5 [d*v +Y
Ifk)‘/ v“ 6 umk 6f.L(—)k
afe® oF
30

6 F oG oG
4 a3 © e
AT SED SE} / vVt [§fu(2k o 552k ]
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060G OF OF
—drre —— . [ g3 o [ 22
we SE®, / vV, f [5 “(;C) A 5 (1)]

Mmc[ 5F G §G  6F ] (23)
SEW AV, SEV, 5AY

The next step is to separate the v_and v, integrations. Doing so, using

©0_ Y Sf®
me B Y 311" (24)
and rearranging terms gives
of® 6F G
F,G}, = — /d3
{ } k-—m{ 2)u 6fn(llc) 5f(1)
0F 6G 0G 6F af®

-Hk/dv [ : - 1]-/d2vJ_vL

"(k) 51.'( 5f() § 1) (9’0”

o Of©

+zk/d [ @ 6f( ] /d v, B, U

SF  6G of®
+ 4me / dv - — — = - / al2vl

" [ |§k) of u(—) 6E Ii'z 6 u(k)] 81)

O0F 6G 2 6f‘°’

e [ [w,f;: 57, 6E.:‘_>k oF ] Jé.
6G o ore” @
+47re/d” [6E"> 57, 6E‘” ,.(i)] /d LA 3
1 [ 6F &G f‘°’
¥ 47"3/ ey [wf}g 577, 5Ef> . 5 D ],] / i
OF 6G 0G OF

Fme [51333 5AD, T SED, 5Ay,g] } (25)
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To carry out the integration over v, we make use of the following results estab-

lished in Appendix E:

8O
Jn = e (510
af®
2 _
/d v o, =0, (573)
af© o
2
/d VYU = (% —k, kj> v, f. (580)
I

The above allows us to immediately evaluate all of the terms in (25) giving

OF 686G 6G
F,G —_— zk/ o —— —— zk/ o _____ -
{ }L n fu u(lc) “( )k u il 5f(1) 5f( )
O6F 606G 6G OF
+ 47re/dv fe [ - — — ]
[[Rd] |§k) 5f( )} SE |(yl—)k fu(l)
6F 6G 6G oF
— (] . —
47re/dv" £y [6E¢(lk) 50, B, 6f(’)]

6F 6G 6G oF
+ 4mmece [ T 1 ] . (26)
6B 6A‘” 2k 6E( D 6A“) }

ITI. Dynamic Accessibility

Having calculated the bracket in terms of the moment variables, we are in the
position of not having an explicit expression for the energy in these variables.[10)
Since our transformation to the moment variables is not invertible, we cannot
<" in terms of £} and £. This non-invertibility tells us that

in the moment projection some of the information contained in f,g” is eliminated.

necessarily express f
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Thus any functional that depends on this eliminated information will not have
an exact representation in terms of the moment variables. We need to determine
a general form for fi” which contains only information that contributes to f

and f}). It is the determination of this form that brings us to the issue of dynamic

accessibility.

An arbitrary perturbation will not, in general, preserve the equilibrium value
of the Casimirs.['01] The essence of dynamic accessibility is that the Casimirs
act as a constraint on the perturbations; only those perturbations that lie in
the constraint surface (in function space) defined by the equilibrium value of the
Casimirs are guaranteed to conserve those Casimirs. Leaving the equilibrium
value of the Casimirs unchanged is necessary for the linearized theory to be
consistent with the full nonlinear theory. One can make a convincing argument
that if dynamically inaccessible perturbations appear to be essential in describing
some phenomena, then there is likely to be some important physics missing from
the nonlinear model.[1%

To satisfy dynamic accessibility, we need a method of projecting an arbitrary
perturbation into this constraint surface. As we will see, this can be easily ac-
complished by making use of the nonlinear bracket. The dynamically accessible
variation in any functional F, 6F,, is that which arises from dynamically acces-
sible variations in f, E and A. To first order, we will denote such perturbations
by f1), ES) and A$) respectively.

By definition, the bracket of a Casimir and any other functional is identically
zero, hence variations generated using the bracket will be such that the Casimirs

are unchanged. That is, for any first order quantity G, if we define

6F,, = {F,G"V} (27)
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then the corresponding variations in f{), E{) and AU), will be such that the
Casimirs will be left unchanged. We can express 6F,, in terms of the various

functional derivatives of F, namely

(1) — /d3 /d3 5f /d3 6F (1) /d3 6F :)12‘ (28)

By comparing (27) and (28) we can use the chain rule to obtain expressions for

the dynamically accessible perturbations:

w=1{7,6"}, (29a)
EQ = {E,G"}, (29b)
Ap = {A,GM}. (29¢)

To proceed it is convenient express the nonlinear bracket in terms A and

consider only electrons. In this case, the bracket becomes
6F 6G
— 3 3
o= fir feul 1575
3¢ [y [iuwy. (120006 )
/d /d vVf SE 6f OE 6f

47r6/d3 /d3'vf v(SF 6G] -V)(A

of  of
0F 686G 6G 6F
3p | 2. 2 22X
+4’rc/‘” (55 54~ 5% 54) (30)
Taking
G’“’=/dBT/d3vgf+/d3rg"-E+/d3rgE-A, (31)
where g, g* and g© are first order quantities (29) gives
1 1 4re _dme
==l 1-—=Vf 9"~ =3 (Gfx V9] Vx4, (32)
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4
Ef;g =4rncg® + %/d% V. f%, (32b)

AS) = —4meg”. (32¢)

Evaluating the above on our equilibrium: f = f@(v), B = 0 and A® = 0 we

find
1
" = Evvf(‘” (Vg —dmeg”), (33a)
4 1
E = dmeg® + = / PV, fO, (33)
Al = —drcg”. (33¢)

Clearly ES) and A{) are arbitrary. This is what we expect since B and A"

are canonically conjugate variables. Now consider f{,. Define g to be the solution

of
V25 = V25— 4neV - gt (34)

As this is just Laplace’s equation, we can uniquely determine g for any g and
V§= Vg -dreg’, (35)
Thus the dynamically accessible form of f* is

l9, £, (36)

1
DA m

1
f(l) — 7_n_Vuf(0) -Vg =

where g is any function.
In terms of the Fourier transformed variables we have

8]0(0)

Tion = 9 En (37)
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while E{}, and A{), arestill arbitrary. Note that g, is the Fourier transform of a
gradient and as such, the ¥ = 0 contribution to f is not dynamically accessible.
From the expression for H®, we see that by restrictingito dynamically accessible
perturbations, any singularity associated with zeros of f©’ is removable and thus
we are no longer constrained to monotonic equilibria.

We now turn to the problem of projecting the constraint of dynamic ac-
cessibility onto the moment variables. The simplest approach seems to be to
start with f,(cll))A and take moments. As we argued above, we need only consider

generating functions g that contain only information that survives the taking of

moments. It is straightforward to show that the most general such function is
gk(v"’ .L) g”]g(vw'v)_*-'v gJ_,c(v"7 J_)' (38)

Using the results in Appendix E, we find

o 2 of
fuchA = /d v g||k(v[7 ;)_67—’ (39)
It
and
P f(O) 1 of®
® g2 2
o = /d VYUY G 8?)“ =39 /d v, *k”*a—q' (40)
Expanding ¢, and g ; in power series in u:
guk Zgﬁz) _Ln’ (41&)
n=0
9r= ngz) J.n’ (416)
where
my 1 0"
9ok =W 9 ,.quo, (42)
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and similarly for g( ) one can readily compute

[e o] 6 "
JﬁmZg.fZ)a o), (43)
and
Bon =5 .,ng;? (n+2)(LF°), (44)
where
() = [ s (45

Notice that f (kD A and Lko 4» 10 principle, contain arbitrarily high degree perpen-
dicular moments of f. As we have argued above, it seems inconsistent to retain
such moments of the equilibrium distribution but not of the perturbations. We

resolve this by considering only generating functions of the form
gk(vn"v ) guk( u) + vx'g;k(vu)' (46)
In which case, keeping only the n = 0 term on the above, we have

u(llc)DA = gnk( u) fu(w’ (47)

and

.SC)DA ’U“ 9.k (’U“) (0) (48)
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IV. Energy for the Moment System

Now that we have determined a general, dynamically accessible form for £, we
can use this to compute the particle contribution to the linearized energy, (15).
Recall that the requirement of dynamically accessibility has the side effect of en-
suring the expression for the Hamiltonian is well defined. Consider the linearized

particle energy:

_ mV f,ﬁ”
H;()'grticles = E / ds l (0)|’ ’ (49)

k=—o00

where we assume that f,‘cl) is dynamically accessible, i.e.
OF
1= [900) + 0. 9,40 S (50)
[}
Now

(0 2
Ifl(cl)|2 - (gf—i) [guk(vn) +7 - ¢k(vu)] [gl!—k(vu) T gl—k(v")] (51)

81)"

and
1., 10f®
ZfO = 2 (569)
v v, 81}"

giving

H® = oo ] ‘2
particles I 3 Ik

+ Y- (gllkg.l.'-k + gu—k gxk) + ng gJ.—k : v.'. UJ.}

Z /dvu { n'guk| £ = v g, fnm)}' (52)

k=—o0
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Since we are assuming dynamically accessible perturbations, we can use (47)

and (48). Making this substitution, we find

@ 3 <1) 2 l f“’
2 nk
Hparticles - /d f“(0) - f“(o)/ . (53)

k=—o00

Thus the complete expression for the linearized energy is

174 o0 Jfll) If(l)
H® = m dvu l (};) -7 I(0)/
B 5 fi

k=—o00

1 2
vm (121 + B2 + 47 a3 )}. &

It is interesting to note that had we allowed a more general v dependence
in g, then it would not have been possible to exactly express H* in terms of f”
and ff”. This helps to support the our argument for restricting the form of g,.
One can deduce the same expression for the energy by first obtaining the
equations of motion for the moment variables and then considering the energy

balance between the particles and fields. Doing so, one finds

dpw_d d

0= dt dt gpartlcles + dt gﬁelds (55)

V. Equations of Motion

Now that we have expressions for the bracket, (26), and energy, (54) in terms of
the moment variables we can directly obtain the equations of motion (which are

now Hamilton’s equations):

f(l) {f(l) H(2)}L , (56&)



-fil) — {ff” , H(2)}L’
ER={EyQ, H"},,
E={E} H?},,
Afl={AR, H®},.

L
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(56b)
(56¢)
(56d)
(56¢)

One can see from the form of the bracket and Hamiltonian that there will be no

coupling between the longitudinal and transverse degrees of freedom. Carrying

out this calculation yields
MY @ € p poy _
1k +zkv" Ik + m Euk o 0,
a(1) _ (1)
_Euk - 47re/dvu vufuk’
and

L

. e
a4 . W _ € my e _
ka-i-zk'u"fk mEJ.]C h =0,
(1) 2 A1) __ )
—-Ej +ck"A = 47re/dv" e
i) a _
AL +cEL=0.

Note that the longitudinal projection of Poisson’s equation,

ik Elf;c’ = 47re/dv” "(,10),

(57a)

(575)

(58a)

(58b)

(58¢)

(59)

is again not obtained by this method. It is possible, however, to incorporate this

constraint into the longitudinal dynamics. By means of the longitudinal Vlasov

equation, one can show that Ampere’s law, (57b), is equivalent to (in fact it is

the time derivative of) Poisson’s equation, (59). Thus we can replace a dynam-

ical equation (Ampere’s law) with a kinematic constraint (Poisson’s equation).
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Furthermore, we can use Poisson’s equation to eliminate E;}; as a dynamical
variable.'? That is, through Poisson’s equation, we can view a functional of ¥y

and E7) as a functional of £ alone, i.e.
F [fntllc)’E;}c)] =F| n(llc)] (60)

and R
§F  6F  6F OE[)

= + . (61)
)
6fl(1) 6 N(IIC §EI?}C) 6 ll(;;:)
From Poisson’s equation we see that
6EG  4re
Ilk - - , (62)
b "(,’c) ik
which gives us ~
6F 6F  4me 6F
= + — . (63)
m M
0 u(}c’ 6 ﬂ}c ik éSE'“}c
For the moment, consider only the longitudinal part of the bracket:
4 & §F  §G
{F.6}, = _V Z {zlc/d ) fu(o)l M 5
k=—o00 uk -k
6F 606G 6G 6F
+47re/dv fo! [ ] . (64)
t ﬁc) 6f n(l—) 5El(ll—)k 6 |1(llc)
Rearranging terms we get
4 ik §6F 6G
{F, G} ~mv Z _7;/ Y fl(O)l{ M 57O
k=—c0 uk n—k

+_[6F 5G_ §G 6F]
ki (8EY 6, 6EX, 6f%
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47re OF
mV Z Zk/d ' f[(O)I{ [ {(It:) ki 6E|f;c)]
!

k=—o00

{ 6G 4dme 6G _ 16n%? 6F G
6f0, ki 6ED k2 6B} SEO (65)
-k L i—k ik i1—k

The last term in the above depends on v, only through f®' and is therefore

proportional to a surface term which is assumed to vanish. Making use of (63)

we obtain

4 & §F G
{F’ G}u = 7_n7 Z Zk/dvn fu(ml 6f||(11c) P (1) ’ (66)
Dropping the ~’s, the complete bracket becomes

4 = 6F  6G oF  6G
— ; oYY oY o %Y
6k mvkgm{m/ RN Zk/ R RN

dme / dv, fO [(;SF §G_ 8G  6F ]

E(l) f:f 6E(1)k 5 (1)

+4m[ §F 5G_ 8G 6F] (67)
SEY 6AY . SEY, §AY

We now have a single longitudinal equation of motion:
FOQ + kv, £ + ;;g Jo=o, (68)

with the understanding that Elf}c) is be shorthand for the solution of Poisson’s

equation.
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Van Kampen Modes
and
Integral Transforms

Exact solutions of the linearized Maxwell-Vlasov equations have been known for
some time. The longitudinal equation was first solved by van Kampen!!3! for the
case of stable equilibria by means of a singular eigenfunction expansion. Later
Felderhof(!¥] applied these same methods to the transverse equations again for
stable equilibria. Casel!®16) and others['"!8! computed the eigenfunctions asso-
ciated with neutrally stable and unstable modes for longitudinal motion which
rounded out the treatment plasma. oscillations in Vlasov theory. The drawback
to the Case-van Kampen picture of plasma oscillations is the seemingly ad hoc
manner in which the discrete modes, especially the embedded neutral modes,
must be added to the continuum.

We approach the solution of linearized equations from a different perspective
— that of integral transforms. Our ultimate goal is a coordinate transformation
that will simultaneously diagonalize the bracket and the Hamiltonian. The lan-
guage of integral transforms seems naturally suited to this line of investigation.
As we shall see in subsequent chapters, this approach has the added benefit of
giving rise, in a natural way, to the necessary discrete modes in the unstable and
marginally stable cases and to providing a clear prescription for computing the
relevant discrete eigenfunctions.

In this chapter we develop the theory of specific members of a large family

24
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of linear integral transforms, whose kernels are intimately related to van Kam-
pen modes, that will accomplish the above goal. Although the longitudinal and
transverse modes have much different transforms, they belong to the same general

family which we can represent as a linear functional, §[¢], defined by

5l](x) = / dy S(z,4) $(y) = a B + B9, (69)

where the overbar indicates the Hilbert transform. (See Appendix A for a review

of Hilbert transform theory.) Explicitly the kernel is,

1
y—x

S(z,9) = () - P—— + i(z)6(y ~ 7). (70)

where P denotes the Cauchy principal value. Notice that the inverse of G, if it
exists, is essentially a solution of the Riemann-Hilbert problem on the real axis,
i.e. solving 1 = G[¢] for ¢ amounts to solving the Riemann-Hilbert problem.[19:20]

Before embarking on a detailed study of the relevant members of this family,
we provide some insight into the connection between this transform and the

linearized Maxwell-Vlasov equations.

I. Motivation

To motivate the choice of this particular family, consider the following integro-

differential equation:

%g(x,t) +zg(z,t) + —71Fp(:c) /_ood:c' g(z',t) = 0. (71)

Clearly the longitudinal Vlasov equation is of this form.

Faced with a complicated ordinary or partial differential equation, one pos-

sible course of action is to seek an integral transform such that the differential
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operator acting on the transformed variable is more tractable.[?1:22] This tech-
nique is often referred to as Laplace’s method. As an example, let £ be a linear

differential operator in z and suppose we wish to solve
£, [u(z)] =0. (72)
Let A be a linear functional and consider the change of variables
u(e) = ABEN) = [ d Aea)ole). (73)
The differential equation now reads
0=2,[A[E)] = A [ pE)], (74)
where SDTE is the adjoint of the operator defined by
L. [A(L,2)] = M A, 2)]. (75)

Assuming that A has a trivial null space, the differential equation is equivalent

to
ol [u(€)] = 0. (76)

The strategy is to use the freedom in the choice of A and the contour of integra-
tion, C, to make SJTE as simple as possible.

We approach the solution of (71) with Laplace’s method in mind. It is the
presence of the integral term in (71) that greatly complicates finding the solution.
Having made this observation, it seems natural to wonder if there exists a linear

transformation,

o@,t) = Ala(e) = [ " de A(z,€)a(&,1), (77)
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such that (71) becomes
Al grote.d)+de)alen)| 0. (78)

We have chosen the contour C to be the real axis which we now take to be our

domain of integration. Thus we want our transform to have the property
1
s Alq] + 7 (@) [ Ald) (') = Aleq) (79)

Although one might think the existence of an A with this property unlikely,
we do have considerable freedom since c¢(§) can be chosen as needed. We are

considering a linear transformation, therefore it is reasonable to expect that we

can normalize A such that
[as 4la) = [ag ate'0), (30)

or equivalently

/ i Al €)= 1. (81)
Using this normalization, we can write the required property of A as
1
[t |24+ 200 - ) 2.0 ate = 0. (82)
Certainly one way to satisfy this equation is
1

—p(a) + [z — ()] Az, ) =0. (83)

We have not yet had to choose ¢(€); the simplest reasonable choice is ¢(§) = &.

With this choice, the equation for the kernel becomes

~ p(@) + (o~ ) A@.€) = 0, (84
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which has as its solution

A = 2P 4 x©)5e - ), (59)

where P denotes the Cauchy Principal value and A(€) is, in general, an arbitrary

function. The normalization that we have chosen for A fixes X:
1= [ A(a'€) = =7(O) + 2(0), (36)

implying
A=1+7p. (87)

Combining these results we find that the kernel of the our transformation is given

by

Ae) =2 25 4 e - ), (58)
and thus
Algl=p7+(1+7)qg. (89)

The kernel we have derived here is essentially the longitudinal van Kampen
mode. (See Appendix D of Morrison and Pfirsh.[?3!) Therefore, it seems reason-
able to expect that the appropriate transform for the transverse case will have as
its kernel the transverse van Kampen mode. Both the longitudinal and transverse

transforms are members of a larger family of transforms:

S[¢l = ad+ 694, (90)

where the relationship between « and ( is arbitrary. This family turns out to

have a very rich structure, especially in the case where 8 — @ is not a constant.
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This derivation of the transform overlooks many important issues such as
invertibility and the nature of the domain and range of §. These issues will
be discussed in some detail below, especially regarding their implications con-
cerning existence and completeness of solutions of the linearized Maxwell-Vlasov

equations expressed in terms of transforms.

Prior to a discussion of the properties of these we need to introduce certain
concepts from the theory of Hilbert transforms. (See Appendix A for a review
of the theory of Hilbert transforms.) Of the ways of formulating this theory
our purposes are best suited by casting it in the language of Hélder classes. A

function ¢ : R — R is said to satisfy the Holder condition of index pu if
lo(z) — d(y)| < Alz —yl*  Vz,y€R, (91)

where A > 0 and 0 < p < 1. We denote the class of functions satisfying the
Holder condition by H*. There is a sub-class of Holder functions that will be
of special interest to us. Namely those functions which, in addition to belonging
to 3(¥, possess a limit ¢*°, as |z| — oo and, for sufficiently large |z|, satisfy
AI
l¢(z) ~ 6] < —3 (92)

||’

where A’, @ > 0. We will denote this restricted class by H¥. the most important
property of this class of functions is that the Hilbert transform of any element

of H* us guaranteed to exist and will also belong to HY.
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II. The Longitudinal Transform

As we have seen the transform of interest for the longitudinal equations belongs

to a restricted form of the general transform where
g =a+p% (93)

and (°° is an arbitrary constant that determines the value of § as |z| — o0,

since

lim @(z) =0. (94)

|z|—o00
As we will see below, « is closely related to the equilibrium plasma distribution
function which, for compelling physical reasons, one expects to be “gaussian-like”
in character — e.g. some smooth (polynomial) function multiplying a gaussian.
In which case, it is reasonable to assume « € 3}, that all integrals involving
polynomials multiplying « will exist and further that o € L. Thus § € HINL>®
and = —a.

To consider the action of Gon ¢ € ﬂ{ff for some u <1 let
P(z) = [g](z) = a g+ B¢. (95)

Since ¢ € H¥ and, by assumption, o and 3 are both in H., the properties of
Holder functions, (476), tells us that 9 also belongs to K. Thus we see that G
maps HY into H for all p < 1.

The ultimate application of this transform requires that 9 € L. Define
DF = {¢:¢ € HENL}, (96)

Since « and g € L™, §[¢] € L* and thus § maps D¥ into D*.
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For this transform to be of use, we must have an expression for the inverse.

By means of the convolution theorem, (487), we can compute

b=0p+B
=ap+p+ B+ B0
=ag+fb—ad-ad
=pé—ad (97)
From the expressions for 9 and 9 we see that
B — o = (6% +a?) 6. (98)
So provided
ot + 5240 (99)
we can solve for ¢: _
_bY-ay (100)

¢— 042+,62 '

Therefore, subject to the restriction (99), the transform G has an inverse, §, given

by

Slvl = C¥ + xv, (101)
where
X = E—z——f-_m’ (1020,)

(102b)
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Notice that

X +i¢= ﬁﬁ (103)

From Hilbert’s theorem, (491), we know that § + i« is the limiting value to the
real axis of a function analytic in the upper half-plane. If (99) was extended to
apply in the upper half-plane in addition to on the real axis, then x + ¢ would

also be the limiting value of an analytic function and, due to Hilbert’s theorem
x=C+x>, (104)

where x*° = 1/4%. In this case G satisfies the same restriction on its coefficient
functions as does §. As we will see below, transforms satisfying these restrictions
form an infinite dimensional group.

Clearly (99) holding on the real axis is sufficient for G to be well defined,
however, one finds that (104) is required to guarantee that G maps D% onto DY.
More precisely, if (104) does not hold, then there will be elements of the range
of G that are in the null space of G. Since we are planning to use G to represent
the solutions of the linearized Vlasov equation and there appears to be no phys-
ical reasons to exclude as solutions some elements of D¥ but not others, we will
require G to be “onto” and thus we require (99) to hold in the upper half-plane.
It turns out that (99) is related to the stability of the equilibrium plasma distri-
bution. We relax this condition in Chapters 6 and 7 and find that failure of G to
be “onto” is not indicative of the exclusion of certain elements of D! from the set
of solutions of the Vlasov equation but rather of the inability of this transform

to represent all solutions.

Under the change of variables 1) = §[¢], the functional derivative with respect

to ¢ transforms according to the adjoint transformation, Gt. (See Appendix D
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for details.) The adjoint is defined by

/ dz 9G[p] = / dz o §'[Y). (105)

We can compute G' directly from this definition viz.

/dzﬂg[tp] =/dx (WBp+Vap) = [dt (o —Tayp)

=/dw(ﬂz9—m) z/dwgfw]. (106)
Since (106) must hold for all ¥ and ¢, we conclude that
S’ = —ad + B9 (107)

and similarly
§t9] = —C + x9. (108)

There are many identities involving § and § that can be proved. Below we
give two identities that will subsequently be required for the transformation to
diagonal form. Let ¢ and ¢ € D¥ with the necessary behaviour for large z such

that all integrals exist. We consider:
[ds 0Bl = - [as cous (109)

/d:c-— #18[W] = /d'c qbzlz———-/dx¢/dx¢ (110)

The general strategy for proving these and other identities is to alternately apply
the convolution theorem, (487), and the two forms of Parseval’s formula, (488a)

and (488b), all the while avoiding traveling in circles.
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We prove the first identity by substitution of the explicit expressions for Gf )
and Gt[y], viz.

/dx o561 5 ] /da:a %6 T8) (x - T9)
=/dxa(x2¢+_¢_1/) /dxax Coyp). (111)
First consider the term that contains two Hilbert transforms:

/dza_7= /dxaC?/)C(f)
:/dx(cﬁ(a(’tﬁ—a@—l—ﬂ)
= [doacey - [au(csti+uls), (1)

where we used Parseval’s formula on the last term. Using (112), the right-hand

side of (111) becomes
Jara(@+x)ov- [t 6T+t @c+a). (1)
From the definitions of y and ¢ we see that
ax=—p¢ (114)
whence, the second integral in (113) becomes
/dw (¢@+¢@)C(§—ﬂ)=—ﬂ°°/dfv (CpCd+ ¢y (g) =0. (115)
Therefore

[z a5t = /dz o (5 + ¢?) ¢ = —/dw cov,  (116)
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where the last step follows since

1

X+ =
To prove the second identity, we first consider
[da 258181 = [do (a3 +99) (2T + )
/dx_w+/dmw+/dzﬂ(a¢+¢a)
/dw_¢¢+ iz 03P
+/dxa W—?ﬁ)+/dzﬂ°°($¢+¢@)
/dm—¢x/z+/d apyY
/d:c—¢1/)+/dxa¢1/z. (118)

Using the definition of ¢, (102b), we find

/dx Sle) Sl¥] = /da: Corp. (119)
To obtain (110) we make the substitution ¢ — z¢ in (118). Using (490a), we
see that
o
Slod) = o5i01 + 2 [ds s, (120)
giving
/d:c— (6] %] /dx¢/dz9 /d:z;a:(qﬁd). (121)
Now

'] =g —a=p>. (122)
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Thus
/dxgs[cb]?;[w]:—ﬂ? dm/dw—/dz zCo0. (123)

As we alluded to above, the restricted family of transforms that we have been
studying form an infinite dimensional group. We now describe its group compo-

sition law, adopting a slightly different notation for convenience. We denote G
by
Slé;B,0] = ad + B . (124)

The composition of two such transforms can be written out explicitly as follows:

SIS[6: By, tsls By ty] = yy B+ By &+ By (0, 6 + By 6)
= ay (6,6 - 01 9) + B, (0, 6+ 6, 9)
= () By + By ) ¢+ (B, 8y — @y ay) b
= §l¢; B3, 5], (125)
where
By +iag= (B +ia;)(By +iay). (126)

The identity transformation can be expressed as §[¢;1,0]. Suppose that (4',a/)
are the parameters for the inverse of the transformation with parameters (3, «).

From the composition rule, we see immediately that
B +id = ——, (127)

which is exactly what we found above by directly solving for the inverse. The

condition (99) guarantees that o/ and G’ are well defined.
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III. Transverse Transform

The transform of interest for the transverse equations has a much richer structure

than the longitudinal transform. The transverse transform is defined by

2
where 7y is a constant. Thus
Slgl =ad+ag+ (m—?> ¢. (129)

One might justifiably be concerned about the behaviour of § at the origin and
at infinity. As it turns out, we will only be interested in the action of G on
functions ¢ such that §¢ is well behaved at both of these points. For the same
reasons as in the longitudinal case, we will assume that o € H!. In addition,
we also assume that za € ﬂ'fi Clearly B & H* for any p and moreover 8 does
not exist. It is this property of § that gives this transform the richer structure

mentioned above.

We begin the study of this transform by defining a subspace of H¥. Define

D7

{¢:¢,¢e}cﬁfnLl}. (130)

z
Let ¢ = G[¢] where ¢ € D for some p < 1. From the definition of D, we see
that @ = ¢/z belongs to H¥ N L. We can write ¥ as

b =§leyp] =aTP+ o

1
=azP+ ;a/dx’ oz +aze+22o -7

1
=x(a¢+5<p+$(p)—’ycp-l-;a/da;'go(w’). (131)
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By virtue of the properties of ¢ and our assumption about ¢, all of the terms in
the above are either in H¥ or H!. Thus we see that ¢ € H* and therefore G
maps DL into HY. At this point it is unclear whether this mapping is “onto”.
We will explore this question by computing the inverse of G.

We can use the convolution theorem, (487), to rewrite ¢ as

v=ag-a +(z—;)¢. (132)
To compute 7, we make use of (490a) and (490b) and the definition of 3, giving
1/;=,6¢——a¢+?A+B, (133)
where
a=1 / iz ? (134)
T z
and
1
B = ;/dxcﬁ. (135)

By taking an appropriate combination of (132) and (133) we can eliminate ¢ and

obtain an equation for ¢:
B — ay = (ﬁ2+a2)¢—;aA—aB. (136)
Thus we have an equation that can be solved for ¢ provided that
B2+a?#0 (137)

for all z. In this case we find

¢=zxP+z(P—vCA—z(B, (138)
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where

_ p . zf
X= TP oD~ @A+ @)’ (139)
a TQ
¢= Tz (82 + a?) _(zﬂ)E +(za)? (139b)

Note that x, ¢ and (/z are bounded as z — 0 and ¥, ¢, zx and z( are bounded

1

as £ — oo. Furthermore, since o, 7 € H. and [(z 8)? + (z@)?] 7! is essentially

bounded, we see that ¢, £¢ and (/z belong to H!NL! and thus ¢, z¢ are in DX.

One can readily see that
1

z(B+ia)’
Extending the condition (137) to the upper half-plane, x + :( is then boundary

X+i¢= (140)

value of an analytic function and Hilbert’s theorem, (491), tells us that
x = ¢+ x> (141)

From the explicit expression for y, we see that x*° = 0 and thus

x=¢ (142)
and x € H!. As in the longitudinal case, (137) is related to stability of the
equilibrium distribution and thus the requirement that (137) holds in the upper-
half plane is physically justified.

Note in our expression relating ¢ to % and %), there are two (seemingly)
arbitrary constants, A and B. Before we say more about the significance of these

constants, we need to establish some properties of (.

We start with the observation that

2

2 _ .2
6C+af=%=—<x—?—>c. (143)
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An immediate consequence of this, in view of Parseval’s formula, (488b), is that

/dxm(:’y?/dx%

Jda % =720 = 7x(0) = -,

Now

from which, through (144), we conclude

/dzz(z —T.

(144)

(145)

(146)

As we saw above, x + ¢ is the limiting value, as Im(z) — 0%, of an analytic

function which implies, in view of the behaviour of x+i ¢ for large z, that z(x+7()

is also the boundary value of an analytic function. Thus
cx =2z(+ (zx)>°.
From (139a), we see that (zx)* = 0 and so
zx=12(
and zx € H!. Furthermore,

/dm(zﬂx_C'(O)zxx = 0.

=0

Now

and z 8 — —v? as x — 0, giving

/dw(=0.

(147)

(148)

(149)

(150)

(151)
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Using this result, we see that
z(=1( (152)

which, when combined with (143) and (488b), gives

/dz (22 =43¢ = /dz (@z(+az()=0 (153)

implying .
/ dz z%¢ = 0. (154)

For completeness, we state one further relation that will be of use later:

z(@(-af)=1-(z"-7")(. (155)
We now return to the question of the meaning of the constants A and B in
p=zx%+ (P —7*¢A—z(B. (138)
To understand their réle, consider
l/d.b'd—) = l/dac (Z¢+CE—72£A—CB)
s T z
2
=-4L / iz &
T z
=A, (156)
where we have used (145) and (151). Further, consider

%/dm 6= %/dx («C9 + 2( — +°CA ~ 2(B)

=—Bl/dxa:§
T
= B.

(157)
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This is in complete agreement with the original definitions of A and B and so our
solution is seen to be self-consistent. Thus, when we solve ¢ = §[¢] for ¢, we find
that ¢ is only partially determined; the integrals given by (134) and (135) are
arbitrary. This tells us that the functions multiplying A and B in the equation
for ¢, (138), are null vectors of the transform G. Specifically, defining

n =, (158a)
My =2¢, (158b)

it is easy to verify that G[n,] = 0 and G[n,] = 0. For a function ¢ such that A =0
and B = 0, ¥ = G[¢] can be uniquely solved for ¢ and

¢=zx9+ (= Gy (159)

We are thus lead to seek a method of splitting the domain of G, D¥, into two
parts: those functions for which A = 0 and B = 0 — ¢.e. those functions that
can be represented by G — and those that cannot be so represented. This brings

us to the topic of projection operators.

A. PROJECTOR OPERATORS

As we have seen G has a non-trivial null space and thus the inverse transformation
is only well defined on the space of functions that have no projection into this
null space. Here we define two complimentary projection operators P and Q that
divide the domain of G into two spaces; the space of all functions which can be

represented by G and the null space of G. Let ¢ € D% and define P by

2
ﬂ)[¢]=¢+%xC/dx¢+z7r—(/dz§. (160)
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Since Q is complimentary to P,
1 7 ¢
ng]z——:v(/dxqﬁ——(/dz—. (161)
T T z

Using the various properties of ¢ derived above, it is easy to show that

/ dz Plg] =0 (162)
and
/dz @ =0, (163)

from which we can see that, as claimed, P is a projection operator:
1 2 P
o916l) = 2ig) + 2o¢ [ax' 0101+ T¢ far Tl =019, a9

and that P[¢] € DL. Since Q[g)] is a linear combination of the null vectors of G,
we see that P, being complimentary to Q, projects into the non-null space of G.

Thus if ¢ = P[¢], then ¥ = §[¢] can be uniquely solved for ¢. Hence defining

¢p = Plo], (165a)

o = Q] (1650)
we can write any element ¢ € DY as
¢=¢p+ g = Sl + o (166)

for some .

A functional of ¢ may also be thought of as a functional of ¢, and ¢y. Thus

§F = /d Lo = /d{ 86y + ‘; 5¢Q} (167)



There is a one-to-one relationship between 6¢ and 6¢, and §¢q:

6 = 6¢p + 0,
6pp = P[],

8 = Qlbg].

Since P? = P and Q% = Q,

6F=/da: {f5¢ (6] + 5¢ [5¢Q]}
= faa {ot| G5 o0r v 55 s0a}.

Comparing expressions for 6F', we see

=" |5
5oy " |56
S6F _ f[@]
5o~ " |50

To find P! we use the definition of the adjoint:

/dw VP[] = /dz ¢ P[y]

:/dx {¢¢+ Locw [ar o) + 4¢/d "/’(”’ }

/ dr’ (z {w(a: / dz" z" {(a") (")
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(168a)
(168b)

(168¢)

(169)

(170a)

(170b)

2
+ l,'—zr—/dx”C(x”)z/)(x")}. (171)

Therefore,

2
PHep] =¢+%/dx'x’(¢+%%/dx'§1//.

(172)
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Since Qf =1 — P,
o) = -2 [a' 'y~ 1T [t (173)
T z T )

There are two useful identities that are proved by direct calculation/?! using

the definitions of P and Pt:

1 1 1 2
/deT[¢]T[w]=/dx;E¢¢+;/d$¢ dm/)+7;/dw§ dr ¥, (174)

and
/ dz z2¢PT[p) Py = / dz 2%y
2
+%/dmx(¢/dazm2cw+%/dmmzqqﬁ/dngw. (175)

From the definition of §, we see that §[¢] is well defined for any 9 € H¥, in
particular it is well defined for ¢ = §[¢] for any ¢ € DL and

;Y — — 2
31518]] = zx (B + 89) +$C(ﬂ¢—a¢+%/dm%+%/dm¢)
2
=$$(0‘X+,3C)+$¢(ﬂx—ag)+%z{/dz%+% dz ¢

2
=¢+1xc/da:?+”—/dx¢
T T 0z
= Plg]. (176)
This is another way of stating that G can only represent functions without pro-

jections into the null space of G. Thus we see that § maps P[D] onto H% and [

maps HY onto P[DE].
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The adjoint transformation, ', and its inverse, §T, are of interest because
of the properties of functional derivatives. It is a straightforward calculation to

show

S'[g]=B¢— g (177)
and

5'[¢) =ox¢ - 5C4. (178)

There are three identities that will be of great use for diagonalizing the bracket
and Hamiltonian. Let ¢ and ¢ € D% with the necessary behaviour for large =

such that all integrals exist. Consider
[t2a8101510] = - [ao2* o

—%/dxm(qﬁ/dzxzcw—-%/dxxzé'fﬁ/dxﬂ”@/), (179)

/dxég[qﬁ]g[w] =—/dz%q’m/)—%/dxqb/dxw—’y;/dxg/dx%, (180)

and
Sla] = —(2% - ¥°)¢. (181)
We begin the proof (179) by first considering the related expression
JEXEICE (182)

which is the transverse counterpart of (109). Comparing the definitions x and ¢ in

the longitudinal and transverse cases, we see that by making the identification/2°]

X=zyx, (183a)
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Y =uz(, (183b)

then
1

T (184)

X+1Y =

By an identical calculation that led to (113), we find

/dx a G4 Gl [y] = /d:v a(Y24+X2) ¢y — /d:zc (Y9 + 97 ¢) @Y +aX).
(185)
Here @ — [ is not a constant so we must proceed in a different way than in the

longitudinal case. Writing (185) in terms of ¢ and ¢, we obtain
[aaS11615110] = - [dwacow— [4a (65CH+¥5CF) (e + as?). (156)
Now we make the substitution ¢ — c¢ in the above. Using
$'lod] = 231091 -  [douco (187
gives
/dm za§l[¢]§ty] = /dx 22ChY + 71—r/dx chxﬁ/dz a Gty
—/dz: (1:¢>W+ ¢%) (@2 +azl). (188)
Expanding §' and using (490a) and (488b), we can write the above as

[to2081@1510) = [doa’c0 - [do (263CF +245C9) (@a +aa)

+ %/dmqu&/da; (axfi/)-i-afﬂg"/))
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- %/dx (@z¢ + axf)z/)/dxxgqb
= /dm%;qw—/dw (z¢zlY + z9z(9). (189)
Now, we use (143) giving,
[dosaSi 10181 = [dos*ou— [do (265CF +2TH) (s~ 77) . (190)
The terms multiplying 42 cancel by virtue of Parseval’s theorem, leaving

[a2a31015101 = [os*cov - [dn (a2055C +5*45709)

:/dxz2C¢111—- dz (z2d)x2C¢+$2¢$2C¢>
~ %/d:z;:z,'?(cp/dxx(w— %/dxm%zp/dmw
=/dmz2C¢d)— %/dzx%qb/dzz@/}

- %/dxz“’(zp/dm@. (191)

The proof of (180) is a straightforward matter. We begin by substituting the
explicit expressions for G[¢] and G[¢]:

[ 256151 = [dn (aF+59) (o + 09)
=/dx%2¢¢+/dxa$@+/dzﬂ($w+W)
=/dx%2¢«/;+/dmw+/dm($@—ﬁ)

+ / dz (B -@) (v + ¢9), (192)
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where we used the convolution theorem in the last step. Using Parseval’s formula,

s 258 = [y s [ (6 -m G+ o7)

= —/d:cxl—cqﬁzﬁ%-/dx <x—%2> (@9 +09). (193)

Using (490a) and (490b) the left-hand side of (193) becomes
—/d —6v+ [ FBY+0o0) - - [dwo [iry
T e / : oY ﬂ_/ s / z
7N _ 2
o fas [(g)wgw} L fin? [
1 1 2
=—/dxm—c-¢z/)—;/dxd)/dxw—%/dx%/dzg, (194)

thus establishing (180).
The last identity, (181), follows directly from the definition of G and (143):

2

Gla] = zCa+zla= -z (a:—%)g=—(x2—72)g. (195)

IV. Connection with the Riemann-Hilbert
Problem

Above we mentioned that there was a connection between the inverse transform
and solutions of the Riemann-Hilbert problem on the real axis. By the Riemann-
Hilbert problem, we mean the following: Given functions a(z), b(z) and c¢(z)
on R, find the function f(2) = u(z,y) +¢v(z,y) analytic in the upper half-plane
such that

a(z)u(z) + b(z)v(z) = c(z), (196)
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where u(z) and v(z) are the limits as y — 0% of u(z,y) and v(z,y) respectively.

Due to Hilbert’s theorem, (491), we know that » = ¥ and we can write above as
a(z)v(z) + b(z)v(z) = c(x). (197)

In this form, the connection to G is evident. This problem has received thorough
treatment by several Soviet mathematicians.1920) In their formulation, the func-
tions a, b and c are all assumed to belong to H*. The Riemann-Hilbert problem
associated with the longitudinal transform fits into this formulation though one
could argue that the expression (101) is a substantially more compact form that
that of Gakhov et al.

In the case of the transverse transform, g is clearly net Holder and thus the
methods of Gakhov cannot be used to obtain a solution. There is a large class of
Riemann-Hilbert problems — those where b — @ is a rational function that can
be solved using the methods presented above but are excluded in the standard
treatment of this problem.

Furthermore, our expressions for the solution of the Riemann-Hilbert prob-
lem are well suited for direct numerical evaluation. Algorithms for numerical

evaluation of the G and G along with examples are presented in Chapter 8.
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Solution of the

Maxwell-Vlasov Equations
by
Integral Transform

Here we use the integral transforms introduced in Chapter 3 to directly solve
the linearized Maxwell-Vlasov equations. Recall that we linearized about a ho-
mogeneous equilibrium and thus there are no equilibrium electric or magnetic
fields. This is a crucial ingredient to our treatment; the presence of equilibrium
fields represents a significant complication that we will not address. These trans-
forms were designed to eliminate the integral term in the Vlasov equation. In the
longitudinal case, changing variables through the transform is a straightforward
procedure that has the expected result. In the transverse case, changing variables
is significantly more complicated because of the null space of the transform and
because the transverse Vlasov equation does not commute with the projection
operators P and Q. Further complications are due to the transverse field equa-
tions, though their presence is intimately connected to the dimensionally and

existence of the null space of the transform.
I. Solution of the Longitudinal Equation
Recall the longitudinal Vlasov equation:

. . [
v+ 2B =0, )

51
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where E(; is the solution of Poisson’s equation

: dre 1
Elfk) = —m/dvu n(k)' (59)
Let &, € DY be defined by
ik
& = =9l (198)

where § is defined by (95) and where « and [ are as yet unknown but assumed

to satisfy
o + 6% #£0. (99)

Hence the inverse, §, is well defined and

dre ~

&=~ 1A (199)

Given that we are representing solutions of (68) by means of G, we are implicitly
restricting to solutions belonging to DY. Since we expect (198) to hold for all
time, we are also restricting our initial conditions to the class D%. Physically
this is a reasonable restriction, however, one can make a case for considering
initial conditions, such as step functions, that are clearly outside of this class
but still physically reasonable. We will comment on this and other extensions
in Chapter 9.
Since G is linear,

oy _ Gk oo
= 29l (200)

and we can write the longitudinal Vlasov equation as

. 2
5[] +itbusle] + T £ [ause] =o. (201)
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Now

S =p-a=p> (202)
and
Slugy] = augy + pug;
= u(a§+ﬂ§k) + %a/du{;'k
1
=u§[§] + ;a/du & (203)
which enables us to write (201) as
. ; 2,2
g [ék + z‘ku&k] - % (a + ﬁ°°——4,7,2k62 fu‘°”> / du gy, =0. (204)

The purpose of the transform was to remove the integral term from the Vlasov

equation; thus we take

4m2e?
e (205)

and hence
4 2.2 (0)/
B =p>+a=p" (1 -— P/du' S| =, (206)

where € and € are the real and imaginary parts of the longitudinal dielectric
function (see Appendix B for details). Since §°° enters as an overall scale factor
we have complete freedom choosing its value; for simplicity, we take f° = 1.

The condition for the existence of the inverse transformation becomes

0#el+ie, =¢, (207)
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in the upper half-plane including the axis. This is nothing more that our original
requirement that the equilibrium be stable and not support neutral modes.

With these definitions of & and 3, (204) becomes
g [ék + iku§k] =0. (208)
Since G is well defined for all ¢ € D¥, this is equivalent to
ék +tku, = 0. (209)

Based on the arguments that led us to define G, this is just the result we ex-
pected: We have reduced an integro-differential equation into a simple ordinary
differential equation by means of a carefully constructed integral transform.

This equation is easily solved, giving
fk('uﬂt) = ék(u) e—ikUt7 (210)

where ¢, (u) = &,(u,0). We determine ¢, () from the initial value of the pertur-

bation by the inverse transform:
4dme ~
&(w) = == [F“k] ) (211)

where F;(u) = f{(t = 0). Using the expression for & (u,t) we can write f,;)(v,)
in terms of its initial value:
(1) 1) = ik 9 —itkut
f||k (U’ ) - 21—7—1'; §k(u)e
— ik dme & —ikut
" dme J [ ik I [F"k] ¢
= 5[5[F,] 7. (212)
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In Chapter 3 we saw that G maps D¥ onto D¥. By assumption F, € DY,
thus §[F“k] € DY. It is a simple matter to show that e~®% ¢ ! for all ¢
and therefore ’9”[F“ wJe#*ut € D for all t. Since § maps DY onto D¥, we see

that f{(v,t) € DY for all £, i.e. the Vlasov equation maps DY onto D.

We can now compute E[f}:(t) from our solution of the transformed Vlasov

equation:

ER () = /du £(u,t) = /du £(u) e thut, (213)

This immediately gives us a physical interpretation of £ (u) — it is the temporal
Fourier transform of the perturbed electric field corresponding to frequency w =
ku. Interestingly, we see that there is a one-to-one connection between the initial
perturbed particle distribution and the frequency spectrum of the perturbed field.
This is a direct consequence of Poisson’s equation — it is a sufficiently rigid
constraint on the dynamics that it ties the electric field unambiguously to the
particle motion. This is the fundamental difference between the longitudinal
and transverse motions. In the transverse system, we will see that the particle

distribution alone is not sufficient to determine the fields for all time.

Suppose that we have a dynamically accessible initial condition. Since the
dynamics are generated by the bracket, one certainly expects that f"(,lc) (t) will re-
main dynamically accessible for all time. That this is so can we readily confirmed.

Recall that the condition for the perturbation to be dynamically accessible is

w !

1kpa T guk(vu)fu(m : (47)
For our initial condition, this is equivalent to

Fp=g(v)a. (214)
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To see the implications of this form on f"(,lc), consider

=

§[ASlagl] = aSlag)+ BA (xag +Cay)

=a{§[a9] +6/\xg—></\a_g}, (215)

where the last step follows from 8¢ = —ax. Thus we see that given a dynam-
ically accessible initial condition, the solution of the Vlasov equation remains

dynamically accessible for all time.

II. Solution of the Transverse Equations

We now consider the transverse Maxwell-Vlasov equations:

0+ ik, £ - ~ BRSO =0, (580)
—EY + ck?ALY) = dre / dv, £, (58b)
A%+ B =0. (58¢)

Following in the spirit of the longitudinal case, we propose the change of variables
w_ k. _ ik
f;k  dre S [sk] ~ drre g l:&?k] ) (216)
where § is defined by (129) with @ and § unspecified but satisfying
2+ 62 #0 (137)

in the upper half-plane and §, € DE. Given that this transformation only re-
lates f') and &, one might be tempted to pick &, such that £;, = 0. Un-
fortunately such a choice is does not result in any simplification of the Vlasov

equation. Thus we must find another way to determine &,



57

Consider the first two terms in the Vlasov equation. Since G is linear

ik T
F%= 1rs S 0] (217)
Furthermore
/ duty, =0, (218)
giving
G [uégpy] = uG[€pyl (219)

and we can write the Vlasov equation as

4rre?
mk

S [é?k + ikuS?k] + i f© EY) =0. (220)

We also need to express the right-hand side of Ampere’s law, (58¢), in terms

of &,. From the definition of the transform, (129), we find
/dv” 9= % du [a@,ﬁ- aly; + (u - %) sg,k]
=4—i7% du (“‘%)&Pk
= f;%/du uEqpy, (221)
and Ampere’s law becomes
~E% + ck? AR = ik / duup,. (222)

Obviously we would prefer (220) to be in the form

S[el&l] =0, (223)
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where £ is some operator in ¢ and «. In Chapter 3 we saw that

§lo] = —(u? - 4%)¢, (181)
which tells us that
5[ -7%)(] = —a. (224)
Thus we take
4m%e? |
= f"‘ )= uel, (225)

where €. is the imaginary part of the transverse dielectric function (see Ap-

pendix B for details). The Vlasov equation now reads
: : ik 9 9y ;o)
S |&pp +ikugpy — — (u” = 77)CE| = 0. (226)

We can compute 3:

_ c
f=a+u ”
47(262 "(0) ,YQ
T mk? P/dv“ (R tu- w
2,2 O) 2
_ul1p i1, / i 7
mk? u "y, —u U
4
= uer(u) — o (227)

where €f is the real part of the transverse dielectric function. The condition on «

and [ becomes
2

ﬂ+ia=u[eg+ie;—%§] £0, (228)

which is equivalent to
2
7
&\ # L (229)
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in the upper half-plane. On the other hand, the condition that the equilibrium

be stable is

2

& o, (280)

in the upper half-plane. In the longitudinal case we had a direct connection
between the condition for the existence of the inverse and the equilibrium stability.
Having a physical interpretation for the invertibility condition is clearly very
attractive. With this in mind, the natural choice is vy = c.

Since G has a non-trivial null space, §[¢] = 0 does not imply ¢ = 0 but rather
that ¢ = Q[4)] or, equivalently, P[¢] = 0. Hence the transformed Vlasov equation
reads

. ik
P [e% + ihudp, - = (u? - CQ)CE&)J =0. (231)

We can readily evaluate each term in the above:

i [é?k] = éyk? (232)

2
P ubpy] = ubpy + %u{ duubyy, + %C/duﬁg,k

=up, + %ug/duuéyk; (233)
and
c? c
P [(u2 — cz)(] = w2 -c)C+ -;C/du <u— 1—2) ¢
= (u® - )¢ (234)
obtaining

é?k+iku£?k+%u(/duuﬁyk—%(uz—@)glﬂfz=0. (235)
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On the surface (235), appears to be more unpleasant than our original equation.
Fortunately, the integral term in (235) is precisely that appearing on the right-

hand side of Ampere’s law. Using Ampere’s law to eliminate this term leaves

Epp + thubpy + = uC (ck2 Al - Ef,;) - -2-7?(11,2 —c®)CEY=0.  (236)

We can express £, in terms of §, using the definition of P:

ﬁyk—€k+'7];’u€./du€k —C/d'lla—

1 c?
= £k+ ;UCSUC-*- ;C&gka (237)
where we have introduced
£1k = /du gks (238a)
&= /du §£ (238b)
2k "
We can then write
. - 1 . cz .
'i{pk =£k+;UC€1k+;C€%- (239)

Using Faraday’s law, (58c¢), and rearranging terms, the transformed Vlasov equa-

tion takes the suggestive form:

sty cliat3] a2

+= C [ézzc - —A‘”} - 357 ug [ﬁ% - —kA‘”} =0. (240)

We are free to choose £, and &, (and thereby determining &,,) as we wish.

Taking

¢, = BY, (241a)
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ik
Eor = Z—Af/g’ (2410)

the Vlasov equation reduces to the remarkably compact expression: (6!
£, +ikug, = 0. (242)
We can solve this equation readily,
£ (u,t) = & (u)e™ ™, (243)

where &, (u) = §,(u,t = 0) is determined by the initial perturbation through the

inverse transform:
4e ~
gk(u) = _Z? S [Fm] + EQk(uat = 0), (244)

where F, (v) = £} (v,t = 0). Now

farlurt = 0) = T uC BY(0) - e a8(0), (245)

giving

_ 47re

€x(u) = - SI[F, ]—— CES(0) - = ¢A%(0). (246)

We can use the transform to determine f)(v,t) in terms of the initial conditions:

(1)( t) k 9 [Ek(u) e—ikut]

=5 [{81m - 2ucmyo - Ecago el @
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Additionally

BO () = £,,(t) = / du g, (u,?)

—f,f du {9[Fk] ——uCEi}J(O) Ai‘,z(O)} emtut, (247h)

(t) — g, () = _ic /d Ek(u t)

= —%/du {'g’ [F,] - %ugEf}g(o) =2cal (0)}

—zkzut

. (247¢)

There are several interesting aspects to this solution. Initially, specifying the
particle distribution alone is not sufficient, we also need the initial values of the
fields. Compare this with the longitudinal case where the initial particle distri-
bution alone completely determine the future behaviour of the field. Further,
suppose the fields where initially zero (§q,(u) = 0), they would not necessar-
ily remain so since Q[¢(t)] is a function of both &,(u) and &y(u). As we see
from (247), there appears to be no simple way to separate out the contributions
to E'})(t) and AY)(t) that are due to the initial fields from those due to the initial
particle distributions.

In Chapter 3 we saw that G maps H* onto P[DE]. Thus from the initial
condition F , € H! and the initial value of the fields, E(0) and A%)(0), one
can construct £, (u) € D4. Since e~*F4t € H! for all ¢, we have that &, (u,t) € DX
for all t. Since § maps DX onto H¥, we see that £ (v,t) € HY for all ¢. Thus

the transverse Vlasov equation maps H¥ into H*'.

As in the longitudinal case, we can obtain a physical interpretation for &, (u).
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From the expression for E'})(t):

B = [dugywt) = [dugy e, (248)
we see that &, (u) is the temporal Fourier transform of E}) corresponding to

frequency w = ku. This is exactly what we found in the longitudinal case.

As in the longitudinal case, it is of interest to consider the fate of a dynami-
cally accessible initial condition. Recall that for a perturbation to be dynamically

accessible, it must be of the form
fJ.(}C)DA = ’U” g_:_k(vn) f"(O)' (48)
For out initial condition, this reads

F,=v90)a. (249)

L

To see the effect of this form on f}(¢), consider

§[AGlagl| = «rGlag) + Flxarg + (g}

= a{AGlagl+BxAg ~x a7}
and

SA¢ =aX(+BX¢

-——a{;\_g—)\x}.

Together, these results tell us that ff}c) will be proportional to « for all time; i.e.

that f)(¢) will be dynamically accessible for all time if it is so initially.
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For both the longitudinal and transverse motions, through the use of the
appropriate integral transform, we were able to reduce the velocity dependence
in the equations of motion to the level of a parametric dependence yielding first
order ordinary differential equations in time that were readily solved. The re-
sulting solutions have the same time dependence that was was assumed by van

Kampen3] and Felderhof.[4]



5

Canonization
of the
Hamiltonian and Bracket

We now make use of the integral transforms studied in the previous chapter to

transform the Hamiltonian and bracket to diagonal form by means of a linear

coordinate change. As we will see, these new coordinates are essentially action-

angle variables. Since neither the Hamiltonian nor the bracket couple longitudinal

and transverse degrees of freedom, we can consider the longitudinal and transverse

motions separately.

I. Longitudinal Motion

Consider the longitudinal contribution to the energy

H(2) _ Vv i m d l II(;C) E(I)E(l)
T Y U Y f(O)' nk ==k (2

k=-00

and the longitudinal part of the bracket

4 °° ik 6F 6G
{F’ G}u = /d il fu(O), (1) 5f(
_ nk =

We apply the same coordinate change introduced in Section 4-I:

(250)

(251)

(252a)
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with

4
7T e fu(o)l (2526)

I
L

f=1l+a=e. (252c)

In the expression for H”, E{. represents the solution of Poisson’s equation:

47re
5;:) - /d I u(;c)‘ (253)

Substituting this explicit expression for E“) into the longitudinal energy gives

(1)
2 ‘We 1 1
Hu( ' = { /d I n ffl(fl)/ + 87 kg /d 1 ||(k) /dvll f( ‘ } (254)

In terms of the £, coordinates this becomes

H® = 32 Z { /du_g[gkjgg_ /du.fk /du{ } (255)

Recall from Section 3-II the identity

iz 25151 =~ [as Zov -2 [azg [asv. (110)

Using the above, we can write the Hamiltonian in the diagonal form:

g =V i /duEIrS k (256)
1 32k=_oo C kl -

Recalling the definition of ¢, (102b), we see

~

C——- (4] _—fL
- a2+ﬂ2_ |E|2

(257)

L
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and thus the Hamiltonian is given by[23:27]

HY = o Z /duu : (258)

k=—00

Notice that H,f"’) is quite different from the expression for the energy stored

in a dielectric:

o= o= 29 o, (259)
where F(k,w) is the Fourier transform in space and time of the electric field
and k¥ and w are related by the dispersion function through ef(k,w/k) =
The discrepancy between these two expressions stems from the fact that, unlike
true dielectrics, plasmas possesses resonant particles. That resonant particles are

responsible for this difference will be made clear in Chapter 6 when we expand

our assumptions to allow the equilibrium to support neutral modes.

Under the coordinate change (252),

6F _ dme
7w Y ) (260

and the bracket can be written as

el

-y 3 i T[‘SG]
zk/duag [&J g 5 (261)

L———oo

4
{F.G}, =3 ) ik
k=~o00

Recall from Section 3-II a further identity

/ dz «§'[4) §1[y] / dz (. (109)
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Using (109) we obtain

(r,6}, =3 Z b e (262)

Expressing ¢ in terms of ¢, gives

& 6F §G
{F,G}, = /du P (263)

k*—oo

The equation of motion for &, is now Hamilton’s equation:
fk = {fk ) H(Z) = —ikugy, (264)
which is the same result obtained by directly transforming the Vlasov equation.

ITI. Transverse Motion

We now move on to the transverse contribution to the energy,

ey
HP = 2 Z{ /”u |j}<0> e (lEJ(.lk)I + k| Af) ]L (265)
J

and the transverse part of the bracket,

ik 6G
{F.G}, v Z{ / %Y o Tem

W I 5f(1) 6fJ.—k
_dme © oG 0G oF
1 |8y 557, aEL D

oF oG 6G OF
+ 4we [ . - ] . (266)
SEY) §AT, T SED, 5AT) }




We apply the coordinate change introduced in Section 4-II:

w _ W
1k 47T6 g [Ek] 471'6 [ngk]
E&) = /du &>
A0 zc/ E_k
N p du "
with
4yr2e?
~ mk? ;7 = ueg,
2
c
B =uer(u) - ot

Substituting the expression for £} into the transverse energy gives

69

(267a)

(267b)

(267c)

(267d)

(267¢)

HP = 32 _Z {/ S[€pe] G [€p—s] +% (IEf}c),2+k2 ’Aillgl2] } (268)

From Section 3-III we have the identity

/m— 6] S[¥] /&-—¢¢——[m¢fmw iﬁm%ﬁm%.uw)

Taking into account that

the above identity becomes

1 1
/d”n 59 [€51] Sép_i] = ‘/du RS% oy

(269a)

(2695)

(270)
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Recall from Section 3-III the identity

/dufz?[d)]?[w]=/du;lgqﬁzﬁnL%/duqS/dqurl;—/dugfdu%, (174)

which allows us to write the energy as
(2) _ K c- et 1) 21 4™
HY =+ > du |€k| +t - [IELLI + k| kl]
k=—00

2 2 2
_%I/dugk ir/du% } (271)

Using (267b) and (267c) the last four terms in H® cancel leaving the compact

diagonal expression

w_ _V w/ e
H® = 32:2_:00 duuglﬁkl . (272)

From the definition of ¢, (139b), we see

o €,
= - . 273
012-}-,32 UIGT—CZ/U2|2 ( )

ul = —

Writing the energy in terms of ¢ yields

2
e, — ¢ / u I
H® = 2
3 Z du € €y (274)
k=—
Again this is quite different from the expression for electromagnetic wave energy
in a dielectric media:

4 lawe
7 391w

Z|E(kw)?, (275)
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where E(k,w) is the Fourier transform in space and time of the electric field
and k and w are related by the dispersion function through €,.(k,k/w) = k%c?/w?.
Again this difference can be ascribed to the presence of resonant particles. When
one computes the energy of transverse neutral modes with super-luminal phase

velocities, for which f(® = 0, one obtains the dielectric energy.[28]

From the transformation (267) we have

sowle]l
and
o =~ uCEY — LAY, (277)
which implies
88, = —%ugan}g k 2 csAw. (278)

Consider the variation in a functional of £, due to variations of £y, only. Since

there is a one-to-one correspondence between variations of &4, and those of E(}

a)
and A}, we have

OF
5 = 5 | 0P8 + g AL

= Z/du 5ng
=_Z[ /duu{————éE(” ke /d (o Af,g]. (279)

Comparing these expressions we find

du C (280a)
6E‘” / 559 B
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6F ike / 6F
— =—— [du (—. (280b)
6AY) T 6€q;
Recall that
OF OF
—— =0l [—] 281
o L5, (281
and that
Q[¢]=¢, (2824)
Qful] = u(¢. (282b)
These can be combined to yield
6F 1
5E(” /d Qésk , (283a)
OF zkc/
= du ¢ OF (283b)
6A% 5£k

Using this and the definition of o in the expression for the transverse bracket we

find
_ 18 ; ,t[ G ]
el Vk=_°ozk{/duua9 [55%} ) 6&p_i
_1 ot %G 1 t 56']
; faued [wsyJ Je Cas_ ; Jawat [65% / du <5£_
_/duug'éék /d gég_ /d e /ducég_k}. (284)
Now

/duag’f [&%] /d fP 5€k
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= —/dufP[(UQ ~ )] 25—2
__ 2_ 2 8F
= /du (u )C‘Sék (285)

and the bracket becomes

_ 18 o~ t f[ 6GJ
6L =y “k{/duuag [‘%?J S5

k=—o0

1 2 6G 1 9 6G
/du(u —C)€E /d {m—%- /d (v — )C‘S'ﬁk du C&s -

—/duugﬁgk /d Cée_ /du C‘SEk /d w (o } (286)

The terms involving ¢? cancel, leaving

.0, -8 5 o fet [ ] 9]

k=—o0

+%/duu2CE Jan 455_ + 2 [auaes i e [due— } (287)

In Section 3-III we saw

/dxm§f[¢] Sily) = —/dxm%qsw
—%/dxm(qﬁ/dzxzcw—}r/dfcxz@/dﬂ?ﬂ?(?/)- (179)

When ¢ = PH[®] and 9 = PI[¥] this identity can be simplified:

/ duua Gt [:Pf[cb]] gt [:PT[\II]] = - / du w2 ¢PH®] PT[T]
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- %/du ?[u(]@/du Plu2(]T — 1/du P ]o /du Plu ]
- / du 2 CPH®] PO, (288)

since P[u¢] = 0. We can use this to simplify the first term of the bracket,

obtaining:
F,G ik /du 2
¢ b= { C‘SE% ‘5§3’ k

1 /d el il foni2 fuucE .

We need to use one final identity from Section 3-III:
[daa*cPig191u = [das*cou
2
-I-%/da: qub/da: 220 + %/dw x2¢¢/dx z(y (175)

to obtain a remarkably simple expression for the transverse part of the bracket:

G
F,G} == ik / du u? . 290
Writing ¢ in terms of the dielectric function, we find
I
{F,G}, =—-= zk/du @ O 06 (291)
v .= e, — c2/u?|” 0& 6&_;

We now have the necessary ingredients to compute Hamilton’s equation giving

the equation of motion for §,:

€ = {& HP}, = —ikug, (292)
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which is the same equation as we obtained from directly transforming the trans-

verse Maxwell-Vlasov equations.

ITI. Action-Angle Variables for the Linearized
Maxwell-Vlasov System

Above we found diagonal forms for the Hamiltonian,

— 202
no- 2 3 funllalog 52T 6] o

T

and the bracket,

el 6F 6G el 6F 6G
PG = ,k/ G 070 & 0 9T (g
ri0r == 5% fou {1 e () o

Since €, and ¢, are even functions of £ and the ¥ = 0 mode is not dynamically
accessible, we can rearrange these expressions so that we only need to sum over

positive values of k:

R g €, 2 N —c2/u2

’I‘

16" (8P G _5G oF
G =y 2 / {16| [65,;65;: 6§k6§;]

¢! OF 6G 6G OF
+—2———[—-—*——-—*] . (296
o~ (3, 56 %, o€ } (286)

Having this diagonal form, it is of interest to compare with the corresponding

expressions for a finite degree of freedom system written in action-angle form.23]
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Defining
wy = |ku| sgn (uey), (297a)
w, = |kul sgn (ez), (297)
1 *
T = mfk S (297¢)
| b
1 *
where
I
Au(k’u’) = _13_]‘7 IELIQ ) (298a)
\ Vel
16k |e’ |
A (k) =, | = =, 208b
.L( ) \ V |€T —02/U2|2 ( )
we can then write
H® = Z/d“ {wuk g+t L{g,k}- (299)

Combining all of our discrete labels into a single subscript v this becomes

H? =3 / duw,J,. (300)

Introducing the phase angles §,; and 6, n We can write, for k > 0,

& =4, \/ ik g, (301a)

()p = A, /T €0k, (301b)

L
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where

€, = sgn(e;), (302a)
¢ =sgn(el). (3020)

Our restriction to stable equilibria and dynamically accessible perturbations en-

sure that these relationships are well defined. Using the chain rule to we find

. 1
|r9u )
66, = Ay /J, €0 [mé‘]||k+zeL69||k] , (303a)
I

(6619)71 = A_J- /']J_n,k elel Qn,k [——-—2J ] 6J,1.n,k + ZE_L 69_‘_”’]:] y (303b)
il

and hence

6F ¢ "0"'
E = Au Juke26 * [

SF\ _ « e[ 1 6F . 6F
(6€k)n - A-L Jln’ke 2Juk 5‘];71,19 " " 66_1.71—,16 . (304b)

Substituting these expressions into the bracket, a straightforward calculation

1 6F . 6F], (304a)

+ €
2J|]k 6‘]uk ' 501119

shows
OF 6G  6G OF
{F,G}—;/du {@ZE_@E}' (305)
In these variables, Hamilton’s equations yield the expected result:
J,={J, H} =0, (306a)

6,=1{6,,H} =w,. (306b)

Thus, through a series of coordinate transformations, we have arrived at canoni-

cally conjugate coordinates for the linearized Maxwell-Vlasov system.
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Neutral Modes

We now extend our analysis to include equilibria that support neutral modes i.e.
equilibria such that the dispersion equation has a discrete, purely real root. As we
will see, the modifications that are necessary to treat this case arise as a natural
extensions to our transform formalism. In the next chapter, we will consider
unstable equilibria. It might seem more logical to consider unstable equilibria
first, hoping to recover the neutral mode case as some limit. It is true that the
formalism needed for neutral modes is considerably more complicated than that
associated with unstable modes, however the neutral mode problem provides a
clear path to the handling of the unstable case; the converse is not the case. We
proceed as above, beginning with an abstract analysis of the properties of the
appropriate transform and then applying this transform to the Vlasov equation,
and finally introducing a canonizing coordinate change. In the remaining chapters
we will consider only the longitudinal motion purely for reasons of simplicity —

the results here are equally applicable to the transverse case.

I. Integral Transforms and Neutral Modes

We now wish to examine the effect of a root of f + ¢a. To this end, let «
and (B have a simple root at £ = z;,. The key point here is that the longitudinal

transform

Slgl(z) = ag+ B¢ (95)

is still well defined. Moreover, it still performs the required task of converting the

78
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Vlasov equation into a simple differential equation. The problem associated with

the neutral mode, however, become clear when we examine the inverse transform:

Slw] = P+ x . (101)

Recall that
X = ag—f_ﬂ_é': (102a)
¢ = ____a2_°*‘_ﬂ2, (102b)

Evidently, problem is that a root of § + i« translates into a pole in x + i{. As
a result we may no longer appeal to Hilbert’s theorem to provided a connection
between x and (. Thus even if we restricted the domain of § to functions that
vanished at z;, we still would be unable to compute § ['9'] Furthermore, as we
have seen, if ¥ # x* + C we expect § to have a non-trivial null space. This
suspicion is borne out by the following calculation. Since a(z;) = 0, a/(z — z;)

is a well behaved function which has a well defined Hilbert transform wviz.

H[a]za_ll/dxa
T — 1z, T—T, TIT—I, T — I,

__ B
o (307)
and
§[ z }=X°‘+ﬂc=0, (308)

since xa + ¢ =0.
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To proceed further, we will need a method to compute Hilbert transforms of
certain singular functions. The most straightforward approach appears to be by
means of generalized functions. It turns out that there are only two generalized

functions that arise. We begin by computing

1 6(z' —z 1 1
H[é(m—z‘&]:;/ T’ (m’—z0)=_7_r:z:—x0' (309)

This also implies that

H [;] =mé(z — x4), (310)

(z —zp)
under the assumption that H [H [¢]] = —¢ holds in the sense of generalized

functions. We can, however, verify (310) directly:

/MHL—%J - Jin 22

= —rH [¢] (xo)
= m(zp)
—’/T/d.’l,‘ PY(z)b(z ~ z). (311)
Thus, in the sense of generalized functions, we have
H[ 1 } = 76(z — zy). (312)

T — 1z,
The obstacle to computing ¢ is the pole in ¢ ai #y- The only real tool we
have at our disposal is Hilbert’s theorem, (491), which only applies to functions

analytic in the upper half-plane. It is, nonetheless a extremely powerful tool.

Consider the function
E(2) = B(z) +ia(z). (313)
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This is analytic in the upper half-plane having § + i« for its boundary value on

the real axis. Notice that

E(z) = E(z) - =/ (z,), (314)

Z—.’L‘O

is non-zero in the upper half-plane as well as on the real axis. Hence =1 is also

an analytic function. Define

~ . 2 1 1 1
+i( = — — - . 315
X+ B+ia z—x,0(zy) +ic/(z,) (315)
Notice that ¥ + i ¢ is the boundary value of =-1. Thus
X=%°+¢ (316)

and ? is unambiguously defined. Splitting (315) into real and imaginary parts we

obtaln
R=x-—=—x" (3170
and
Cm(m g (3170)
- r — xo ’
where
X"+ = lim (@ - o) (x+ ()] (318)

That is, x™* + ¢¢~" is the coefficient of pole in the Laurent series expansion
of x + i¢ about z,. We may view (315) as a means of of determining ¢ through

the formula ¥ = X¥*° + ? namely

X=X®°+(—7¢"6(x - z,)
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X (319)

implying

X—_-Xoo—l-z—i—x_xox_l—ﬂ'c-lé(m—wo), (320)

where we have used ¥ = x*°. We can interpret (320) as the analogue of
Hilbert’s theorem for the case where the function is analytic in the upper half-
plane but has a pole on the axis. The remainder of our analysis will center around
determining what effect this different relationship between ¢ and x has on the <
transform. When studying the transverse motion, we saw that when the functions
defining the transform (in that case o and () are related in a more general way
than are boundary values of an analytic function, the associated transform has a
non-trivial null space.

The existence of a non-trivial null vector of G leads us to expect that G [?3'[1/;]}
will be a projection operator into the space of functions which can be represented

by G[¢]. An arbitrary function 9 will be representable as

= (321)

% =G[¢]+ A

T — 1z,
where A is a constant. To find A we need to evaluate G [§[¢]] To this end, let
=Sl =xv+(P. (322)

Using the above result, we can now compute ¢. Starting with the definition of ¢

we can write

¢=xv+CP

=x°Y+(P+C(Y+x! —78(z — 25)¢ () - (323)
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Taking the Hilbert transform gives

1
z — T,

b=xCY—(P+{Y+ ¢ p(zg)
L -1 By

-
1’—1‘0 .’L‘—.’EO

+x! [’/T §(x — zy)Y(zy)

-1

=B B+ K g 8o - )] - Gk = ) v(ao)
0
1 o= ¢?
X 1/)(%)"‘27—_—;;1/1(%)

IE—SL'O

1
T — T,

=x¥—(P+ [C_l Y(zy) — X7 E(xo)]

+m6(z — 3) [T () + X7 (2)] - (324)
Using this we can compute G[4]:

Sl¢l =ad+B¢
07
:II—(L'O

+ma(zg) 8(z — 7o) [ P(zp) + ()] . (325)

=9 (Bx — al) + ¥ (ax+ B¢ + (¢ () — X7 ()]

Using a(zy) =0, ax + B¢ =0 and Bx — a( = 1 we can simplify the above to

obtain

-~ (67

§[Stw] = v+ ;= [ 0la) - x Flao)]

= Py, (326)

where P is the projection operator into the non-null space of G. That is, §[CP[1/J]] =

Gl4]. We see that the constant A is given by

A= x"(m) — (). (327)
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Since we claim that P is a projection operator, then P? = P should hold. This is

straightforward computation:

PP = PlY]+ [ (o) — X7 P(20)] P [:1: _a:zOJ (328)
and
7 L ftxo] B —axo [1+ ¢ e () = x7"B'(20)] = 0 (329)
leaving
PPN = Py, (330)

verifying our claim that P is a projection operator. Thus we we see that any

function % can be written as

¥ = §l¢] + ¢0 o> (331)
where
1 « ,
T(2) = ———— = (332)
and
¢ =7 [T (z0) — x 7 ()] - (333)

The result of the real root of 47« is a single discrete contribution to the original

transform.

II. Solution of the Vlasov Equation by Integral
Transform

We now assume that our equilibrium supports a single neutral mode with phase

velocity u,. Since there are no unstable modes and we are assuming that V' is

arbitrarily large, this must be an inflection point mode.[2]
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Let k; be determined by €?(k,,u,) = 0. Since ¢, is an even function of &,
there are two solutions of this equation, giving two neutral modes. Using what

we found above, we introduce the change of variables

u(llc) = ?4'% {9 [ék] + 770(”) [5kko§NM(k0) + 6k—ko§NM(_k0)] } (334)

Since we require /' to be real, we demand that f3* = f, and thus the two

neutral mode amplitudes are related by
Enne(—ho) = &ype (ko)™ (335)

For clarity we now drop the argument k,. The inverse transformation is given by

£, (ut) = %é [F9,1)], (3364)

4 1/ 1 R/ 1
Evu(t) =~ m €4/ (ug) 72 gy 0) + €' (ug) F P (o) (3368)

As in the case without neutral modes we take

2,2
a=-T =, (337a)
f=1+a=c¢. (337b)
Now
dre

(1) __ 1)

Eu;c T ik dv" nllc
= /du é.k + 6kko€NM + 6k—ko§;M’ (338)

where the last step tollows since

/ duny(u) = ~a(ug) = f° = 1. (339)
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The longitudinal Vlasov equation can now be written as
SlE,) + iku§lg,] + %rlia [ / du &+ By €y + 5k_k0€7mJ
[0 (Euae + HuE0,) + Oy, (5 + ik, ) | () = 0. (340)

As we saw before
u§[Y] = Gluy] - %/du v, (341)

which we can use along with the definition of 7, to simplify (340), leaving

SIE, + ikug,] + 7, [(Sk N (éNM + iku, gNM) + 64k, (éjw ¥ z'kuog;;M)] . (342)

Since 7, is not in the range of G, (342) is equivalent to

€, +ikug, =0, (3430)
£, +ikuyE,, =0, (343b)
Ex — thugEh, = 0. (343¢)
Thus
&, (u,t) = & (u)e™™*¥, (344a)
Enn (1) = €,y (0) 7%, (344b)

where £, (u) and £, (0) are determined from the initial perturbation through

£, (u) = %é (£ =0)], (3450)
4re T

(1) A\-I I W E-SAY
§vn(0) = T )P [52'(%) ik (u0:0) + € (ug) £y (g, 0) | - (3450)
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Notice that for a simple real root of the dispersion relation, we obtain only
one discrete mode and yet have a complete solution. This mode is the same as
originally proposed by Case.l!5] The difficulty several authors had with Case’s
original solution is that the prescription given for computing the amplitudes is
not entirely correct. In Case’s treatment (which followed a considerably different
path than ours) his (implicit) regularization of the expression for the inverse
transform was incompatible with the definition of the discrete eigenfunction. The
additional “discrete” eigenmodes proposed by later authors!!6718] were needed to
correct this but these modes are not truly discrete as they have a continuum
label. Note that our discrete mode oscillates with a frequency, ku, determined
by the phase velocity of the neutral mode while Case’s second mode (the so-called
Siewert solution), due to the nature of its continuum label, does not oscillate with

a single, well defined frequency.

III. Canonizing the Hamiltonian and Bracket
Making the same substitution as in the previous section, we can write the longi-
tudinal contribution to the Hamiltonian as

7 o0}

H? = 32 2 {/d” g [9 [€6] + () (8 yne + 6k-ko€;M)J

X {9 [€_e] +m0(w) (6_ppobus + 5-k-ko§*v,w)]
1 *
+ ; [/du §k + 6kk0§NM + 6k —kogNM:I

X [/d“ €k T O ppobane + Oy, _k(,f;MJ } (346)

In simplifying this expression, there are two new integrals that we need to eval-
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uate. The first is

==+ %ﬁ'(uo). (347)

Recall that the neutral mode phase velocity corresponds to an inflection point
of the equilibrium distribution and thus o’(u,) = 0. Consequently, the above
integrals exist in the usual sense and are mot interpreted as Cauchy principal

values. The second integral of interest is

/du 7o () —_—/du
:_%/dusw]wo/d“u—l
:——/du7,0+u0/du¢9f{u UJ

_%/dud)'i"“o/duw{ufuo—H[“—a%”

L fauy. (348)

9[¢]

- i

We can now simplify the energy expression to obtain

- £ {fossasicas o foc)

Vo
167r { NM /du é-—lco + fNM /du Eko} (U’O'B (“0 |£NMI
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1% N Vv 2
+ E {ENM /du‘ E—lco + §NM du 6ko} + ﬁ |§NM|

V 14 )
- 327 Z /du % I§k|2 + 167 ’Moﬁ (’LLO) |€NMI2’ (349)
k=—o00

where we have used (110) to combine the first two terms. Defining w, = ku, and

expressing « and £ in terms of the dielectric function gives

R S L AR LN e
k=—o0
We see that the neutral mode contribution to the energy is equal to the dielectric
energy. It is only for inflection point neutral modes that the energy of the pertur-
bation is given by the dielectric energy.[??! Heuristically, the difference between a
neutral mode and the continuum modes is that the discrete eigenfunctions lack
the delta function term — i.e. there is no interaction between the electric field
and resonant particles.3% Thus it is the presence of resonant particles that makes

the continuum contribution to the energy different from the dielectric energy.

This first step in computing the bracket in terms of the new variables £
and ¢, is to use the chain rule to relate functional derivatives with respect

to £ to those with respect to £, and ,,,. Now

OF = Z /dv" 5 (1) u(lls:)

k=—o00

e 6F OF
= du — 66, + ——

had OF 6¢ OF 6¢ OF ©6¢& .
=2 /d[ TRy "(ff]éf,f,:- (351)
k=—00

8F
ARTW

6§k 6 nk 85 ||k GE;M 6 nk
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As before,
66,  dmey
SFO T ik & (352)
ik
From the definition of £, ,
_ dme [ _ <oy Z121)
Sy =T ;k— [X iko (uO) =< ko (uo):'
4re
::—7{'———-/d f“(]t:ll: —I;u—u —C"é(u—uo)}, (353)
we find
6., = 4me L1 1 . ]
S = T ek [ e~ B ) (354)
and
€., 4mre 11 ]
=4 -1= _ -1 _ )
50 T Obko X7 -0 % ¢ o(u '“0)_ (355)

Since we are considering an inflection point neutral mode, o/(u;) = 0 and conse-

quently ¢~* = 0 in which case the above simplifies to become

66y, dme L, 1
6 "(,IC) ik 6kk°x U — U (356)
and
665, _ 4me o 1
(5f"(,lc) T Tk Ok X T Uy (357)

Using this in the expression for 6F, we see that

_ N dme [ G [0F ] s _ dme OF —1/
e / dug[éfk} e = T, &fNMX .

47re oF
e s / du—2— 67, (358)

1 (1)
— U, 6fulco
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Comparing our expressions for §F, we find

= f -1
o) ik {9 [ﬁélj X ua {6’”00 0, Ok ae, ]} (359)

Upon substitution of the above, the longitudinal part of the bracket becomes

{F,c} = -2 i ’“{/d“‘g' [&sk] HG}

k*-—oo

[ OF
+7 5““0_—65 + 0, _ k“@{ J /duvyo(u)f;‘L [55 }

L NM —k

[ oG
TP krpg, T Ok k"@fw} [ [m}
_als OF OG L6 OF 8G}

x (x ) duuﬂoz(z;—)}. (360)

0

Consider
Jaun@3ti = [auv3 ] =0, (361)
which follows since 7, is a null vector of G. Furthermore,
—1\2 770(“) —1\2—/ 1 a
duy —+— = — =—— 62
0 fau 5 = — P ) = = (362)

where the last step follows from the definition of ' and the fact that o/(uy) = 0.
Carrying out the sum and using the above and (109), we find

16 °° §F 6G
6y, = /d 3
k k

_16i ©k, [ OF 8G _ 9F &G
vV IB,(U,O) afNM aé.;M agl”\(’M 851”’

} . (363)
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Writing the bracket in terms of the dielectric function gives

167 ¢ 6F 6G
F,G} = —— § k'/du L
ehm Y 2 e % 8.,

160 7k, [BF 96 OF G
|14 6?/(’&0) 6€NM a‘g;\;M 8€;M a£NM

(364)

This is very much like our result of Chapter 5 except for the addition new term
involving the neutral mode amplitudes. Further, up to a simple scaling, the

neutral mode amplitudes £,,, and £}, are canonical conjugate variables.

Hamilton’s equations give the expected results:

€= {6, HP} = —ikugy, (3650)

éNM = {éNM ’ Hlfz) I = —ikouofNM’ (365b)

which is identical to the equations of motion found in the previous section.
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Unstable Modes

We now move on to consider equilibria that support unstable modes. The treat-

ment of unstable modes, while algebraically more complex that of neutral modes,

is more straightforward as it does not involve generalized functions but otherwise

will closely parallel the neutral mode case.

I. Integral Transforms and Unstable Modes

We now counsider the case where the equilibrium supports an unstable mode; that

is, the dispersion relation has a root in the upper half-plane. Let § + ¢a have a

simple root at z, = x4+ iy,. As before we wish to study the transformation

and its inverse

where

Let

G4l = ag + B
S[Y] = ¢P+xv,
C__az_o:_ﬂz'

(95)

(101)

(102a)

(1025)

(366)
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As z approaches the real axis Z has a well defined limit:

lim E(z) = f*ic. (367)

Imz—0%
Since aft) is real for real ¢, £*(z) = Z(z*) and we see that E(z; — iy,) = 0 in

addition to E(zy 4+ %y,) = 0. Since E has a zero in the upper half-plane

x+i¢ = (368)

[1}] +=s

will have a pole at z,+14y,. Thus even though x and ¢ are well defined functions
on the real axis and ¢ is well defined, x # x* + i(; were this true then Hilbert’s
theorem would tell us that x +4( is the boundary value of a function analytic in
the upper half-plane. As we have just seen, this is not so.

One might think that this is entirely different from the neutral mode case
since x and ( are non-singular on the real axis and there is no difficulty in
computing §[¢] for any ¢. In the neutral mode case the singularity in G was not
the real difficulty, it was a manifestation of the true problem: namely that y #
x® + . Viewed in this light, we see that all cases of discrete modes (roots
of B + i) are closely related.

As a means to determine the relationship between x and (, define

A_{_Z.’C\_ 1 1 1
X B+ia z—z5—iyy E(zy+iy,)
. —1+,’: -1
—xtig— 2 (369)
T — Ty — 1Y,

where X' +i(" = &/(z,+iy,) ! Separating (369) into real an imaginary parts

we obtain explicit expression for X and (:

(z = 2o)x™" = yo¢™?
= - PR y‘é , (370q)

X=x-
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_ o (2= m) (T yex
=¢ G-ty (3700)

)

Notice that ¥ + 7 ¢ is the boundary value of

B(2) — —— = (z) - (371)
(=0 - 252

which is analytic in the upper half-plane and therefore ¥ = x*° + E From this,
we will find the relationship between x and C.

Before proceeding we pause to compute a Hilbert transform that we will need

frequently. Consider, for g, > 0,

1
H [___1__} 1 /dx' R N— (372)
T — Ty — 1Y, T -z 3 -z, —iy,

While is is possible to evaluate this integral directly in ierms of elementary func-

tions, it is considerably simpler to compute this by contour integration. Let the

contour I' be as shown in Figure 1 then

1 j[dz ! L Y S (373)

T z-—zz-zy—iyy T —Tp— iy,

since the only pole enclosed by the contour is at z = 1, +%y,. The integral over

the large arc tends to zero as its radius becomes large. Thus we have

—2i L. [.[” 1
——— = —lim{7 { df 5 -
T—Ty—1Yy Te0[ Jp €ev + T —xy — 1Y,

Tr—€ o0 1 1
: +</ -I-/ dz' — - -
—oo  Jzte -z —zy—iy,

1 1 1
—————.——f—l/dx’ ; - ! — (374)
TLT—Ty—1Y, ™ T~z 1~z — iy,
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Ty + 1Yy

€
7\ S~
-

+
z

S~
P

Figure 1: The contour I' used to evaluate the integral

in (373)
implying
) .
H[ : ]= L 9y >0 (375)
T—Ty—1Y, T—Ty— 1Yy
and
1 i
H[ .]: E—) (376)
T —Zg+ 1Y, T —Zy+ 1Y

since H is a real operator. Furthermore, since

z -z, 1 1 1 ]
-z , : 377
(z — z4)? + 8 Q[x—xo—zy0+x—xo+zyo (377)
and
1
ﬁz-r7=;[ — - = 1_‘ } (378)
0 Y5 T[T Ty Yy T—ZTg—1Y,
we have
[ z—zy ] Yo
\CEra ] R FEr (379)
and
[ Y ] T—z
H| —% | =-_——— 0 _ 380
\CEENEa | R cRrn Ey: (350
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We can now compute C in terms of Z:

-1

Y% = (@ zp)x
(x—zy)? + 48 (381)

i=¢

Since ¥ = x*° + Z we have

(z— 330))(-1 +yp ¢!

X=X+
(z—zp)x™' + 9y

-1 s =1 -1 __ =1
S L S Sk S (382)
T—Ty—1Yy T—Tpt1iY,

=x*+(+2

It is interesting to compare the above with the corresponding result for the neutral
mode case, (320), as well as to Hilbert’s theorem, (491). It is important to realize
that we cannot obtain (320) from the above by taking the limit y, — 0*. In this
limit, the root of #+ i« is not simple, as we assumed in the neutral mode case,
but will have multiplicity two. We will say more about the significance of this
below. We see that (382) is the extension of Hilbert’s theorem to the instance of
a function analytic but for a simple pole in the upper half-plane.

As we have already seen, when the functions parameterizing the transforma-
tion are not related in the standard way, the transformation will have a non-trivial
null space. Thus (382) implies that S will have a non-trivial null space. This null
space is of concern since only functions lying in its complement can be represented

by G[#]. To determine the null space, we need to evaluate § [§[¢]] Let

¢ =S[Y] = xv+(P

-1 s ) -1 __ g /-1
XTI ) XTI (383)
T —Ty— 1Y T —Zg+ 1Yy

=x®°Y+C P+ (P +
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To compute ¢, we need to evaluate

H /dl U(x/)
9:-—zco—zy0 ¥ —z1 —xy—iy,

SR S FUHVN S S
T—Ty—iyy T -z T’ — x5 -1y,

REET RN [P(z) = (o +iny)] - (384)
Similarly we find
H [ L } = 1 [9(z) = P(zy — iyp)] (385)
-y +iyy] T zH+iy, 0™t

Using these results, we can now compute ¢:

_1+Z -1 ~1_ g1
¢ L X ¢

G=XTY+ Y+ —Zy — 1Y, T—2Zy+1Y,
X' +i¢! X it - ;
—C¢—x—T—¢(xo+zy0) md’(mo—zyg)
_ L XTI iy = XTI
= xP - (¢ _mo_zyo'w(xo‘{'l%) x_mo_{_iyo"f)(zo Z?!o)- (386)

It is a simple matter to calculate G[¢]. Doing so we find

G[Gl] = b+ mn, (¢ + 6 Bag + i) + 70 (" = ¢ Bl — iyg)

= P[y], (387)

where

1 o
ni—_;a:—xo-f—-iyO. (388)

Thus for an arbitrary function 9 only P[¢] can be represented by G[4)].
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We verify that P, defined by (387), is in fact a projection operator by com-

puting P2:

PPN =Pl + 7 +i¢T) % (zg +iyp) P[]

+r(x = i)Y (g, — iyo) P [n_] . (389)

To compute P[r, ] consider

Tyt 1Y) / ——-——-
7] ( 0 J() (t—%?%yo)
_li/dtﬂ

T dz t—=z

1, .
=—=Z= +
- (wo Zyo)

z =1zt 1y,

11
=~ = (390)

and

. 1 a(t)
7, (¢ =—— [dit
7 (70 F i) 7r/ (t—x0¢z‘y0)(t—x0:l:z'y0)
- Jaety 1
2y0 t—xoq:zyo t—:cO:i:iyO

[E(mo iyy) — E(zy F Zyo)]
Yo

= 0. (391)

These results can be combined to show

Pn,) =m,+mn, (7 + ¢ (2o +dyg) + (X~ i¢) T (2 — )

=, [1- (x££ (zy £ iy,)]
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=0 (392)

and thus P[P[Y]] = P[¢], confirming that P is a projection operator. Thus we

see that any function % can be written as
v=S§[gl+¢,n +o_n, (393)

where

b, = -7 (X" £iC)P (g % iyp). (394)

II. Solution of the Vlasov Equation by Integral
Transform

We consider the solution of the longitudinal Vlasov equation when the equilibrium
is such that ¢, has a simple root at uy + iy,. Let k; > 0 be the solution

of €, (uy & i7y,kg) = 0. To solve

. e
Fid + ko, fif + — B =0, (395)
we make the change of variables

ik
flfllc) = 4Z—7Te{9 [gk] + §kk0 (£+ . + 5— 77—) + 5k—ko (éf Ny + 5: 77—) }’ (396>

where the discrete amplitudes, £, are evaluated at the (positive) wavenumber k.
Since 7} = 1_, this representation of f;’ satisfies our “reality condition” f* =
f{24. The dielectric function is even in of k, thus there are also two roots of ¢,

corresponding to —k, for a total of four discrete modes. However, the amplitudes
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corresponding to negative wavenumbers are determined by the complex conjugate

of the positive wavenumber amplitudes:
€. (k)" =& (—Ky)- (397)

The inverse transformation is given by

(1) = 2T (w0, (3980)
(t) = 2]{,‘0 W Ilko ('U:O + l’)’o,t), (398b)
£.(t) = T T (g — g, 0). (398¢)

zko e,/ (49— 17)
We see that
By =5 [dv, 53
=p= /d“ & + (6, 6ro + €85 k) /d“ M, + (€, O + €76k —ky) /du n.
= g {/du €t €, b+ E 0 TE B +§;5k_k0}, (399)
where the last step follows from Z(u, & i+y,) = 0 which implies

/du n, = —(uy £ iy,) = 4. (400)

Applying this transformation to the Vlasov equation with o = €}, # = €7, and
using

ulgy = Sfugy) - 2 [dugy, (401)
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we get
0 = G[E, +iku&,] + m{%m [é+ + z'kouEJ + 8 ke [é’j + z'kougj]}
+ 77_{5kk0 {5_ + ikouf_] + 0 i [f: - Z'kouf:‘-]}
+ 6,:,90%01 (6, +&)+ 6,3_,%?%04 (& +¢).  (402)
Using the definition of 7, , this is equivalent to

0 = G[§, + ikug,]
+ 77+{5kko [é+ + ko (iug — 70)‘5+] + 0k, [ét = ko (iug — ’Yo)fj }

+ n_{akko [+ kolig + 10)6] + 64y, [€ = Kolig +20)E] } (403)

which implies

ék + kug, =0, (404a)
€, +ikg(ug +ivp)€, =0, (404b)
€, +ikg(ug —ivp) €. = 0. (404c)
Thus
£ (tu) = Ek(u)e"ik“t, (405a)
£,(t) = £,(0)ekolroiwlt, (405b)

£ (t) = £_(0)e~kolrotino)t (405¢)
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where &, (u), £, (0) and £_(0) are determined by the initial perturbation through

dre = 1
&(w) = == 5 [fQ=0)], (4060)
_ _47re T TN ) _
£.(0)= _z'ko ——GL'(% i) ko (g T 79,8 =0), (406b)

dre T - ‘
dme m o
iy & (ug —i7y) Ja(t0 70,8 =0) (406¢)

£.(0) =

III. Canonizing the Hamiltonian and Bracket

Under the change of variables of the previous section, the Hamiltonian becomes

H® = %kgm{ / du [9[£k] By (0,6, + 1) + 6y, (n, € + 162 ]
x [9[€_k] 6 gy (M6, 1 E) + g (0,6 +0.8]) ]

+ % [/dugk + By (6, +E) + 8y (€5 +§f)]
x [/duf_k 6 gy (€L +HE) + 64y, (€5 +§i‘)] } (407)

There are several integrals that must be evaluated to simplify this expression.

First consider

/dugnig[tﬁ] = -%/du Slel — ”032”0 /du - S[8](uy £ i)

u—uy F i

:—%/dugﬁ—@/dud)g‘ [—1—] (408)

U— Uy F i,
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but
=) e )
u—uy F 1y, u—uy F iy, U —uyF i
. p-w 1 1/ y @
u—uyFiYy U—UyFivy T u' —uy F iy,
_ B-a+a(uy £iv)
U — ug F iy,
=0, (409)
which follows from @(ug % i7,) = —#° and an obvious generalization of (4900).
Hence
JauZn, i) =3 [ (410)
o oo )

Now consider

/du SN0 = —;/dun_ + ——7?——77_(?10—!—270)
1

__1 411
g (411)
where the last step follows from (391). Lastly consider
U 1 Uyt iy, .
/duan?t:—;/duni— Q - Oni(uo:{:z'yo)
__ 1 LT uwtey (412)

T owx ki’

where we have used (390). Using these results and (110) the expression for the

energy simplifies to become:

O = V & U 2
o 3_2 Z /du Z |§k|
k=-00
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|4 . .
_16—71'{(§+ +§_)/dU£ko + (§+ +§_) /du f-‘ko}
Ve e[ tin

167 {54'5— [X—l + 4 1}

rleP el re e )|

+1_16/%{(§++§—)/du5_k0+(€:+§f)/du£ko+’§++€__|2}
Z /du |§,v

lc——oo
167 | x~' 43¢ 7 ZC 1 )

Writing this in terms of the dielectric function, we obtain

H(:) /d ule I '§|

k——oo

|4 . , *
* T6r (g + i7p)€, (ug + i79) €, &7

Vv
+F( o_iVO)ei(uo_iVO)f:f_- (414)

We begin the the task of transforming the bracket from the variables £} to
the variables &, £, and {_ by using the chain rule to discover the behaviour of

the functional derivatives under this change of variables. Now

OF = Z /dvu 5f(1) n(llc)

k=-—o00

OF  OF , OF .
- 3 [fougg o 06 0 L e

k=—o00




e 6F 6,
= Z /d {56165"(113)

k=—00

5F 6€,
8¢, 57

6F 6§ 6F 65*

TaE oy e ey

From the inverse transformation,

47re
& = 9[ el
_ A4re - iC! .
fﬂ; - —%W( ?'C )f|ko(u’0:{:270)7
we see that
08, _ 4meg
) ;Q gk
661 @ x ki
6f"(,lc) " kko ik u—ugtiv’
6 dme xtFic
6 "(,lc’ T Tk—ko gk uw—uyFiyy
Thus we find

OF _ dme 9’r[ ]_
5f”(;c) ik 8¢,

X' +i¢! OF
u— Uy — 17,

Y T OF
e+

_u—u0+i'yo

Ok koA 3, + 0k ko 5~

_ --} }. (417)
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. (415)

(416a)

(416b)

(416¢)

(416d)

(416¢)

Using this expression for the functional derivative, the longitudinal part of the

bracket becomes

x

{F,G}, = -1& > k/ﬁua{

k=—0c0
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§[F] - gotice [y o, oF
; [6§J u—“o—i"l’o 6kkoa§+ +6k—k°3§f

 x—ig [6 OF  , OF
u_uo_l_i,yo kkan k— koaé*
o] xtric [, 6G, 4G
{9 [55_} u—ug— i |-Hho g, T Ok g

Lot [8e 66
ey [5_“0 56+ 0koko 5 (- (418)

Now
— = Gt - t
/duu—uO:Fz’Yog Ch w/dunig 2
=—7r/du ¢S [n,] =0, (419)

since 7, are the null vectors of G. Using this, (109), (390) and (391), the expres-

sion for the longitudinal bracket can be simplified considerably to become

o0
(F,G}, = 162 k/d CcSF oG

166 1o [9F 06 OF oG
7 TR (X7 +i¢ )[6_§+3€t 9 a@]
167

Writing this in terms of the dielectric function gives

{F,G}, =

lﬁz > e 6F 6G
k/d L —
le, |2 66, 6_,

lc——oo
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V elug +im) |2, 06 6 G,
_l@_”o_[ﬁaﬁ_a_F?EJ (421)
Vo€ (ug—ivy) L0 0&r 0Ly OE_ |

16 kg [aF 8G OF aG]

Again we note that the neutral mode result cannot be obtained from the
above by considering the coalescence of the stable and unstable roots, i.e. by
taking the limit 7, — 0%. The inflection point neutral mode studied in the
previous chapter required root of €, have multiplicity two and the root of €} to
have multiplicity one. The coalescence of a pair of complex roots will result in
the same multiplicities for (real) roots of €, and €? and thus such a limit cannot
yield an inflection point neutral mode of this kind. The question of what occurs
in the limit 4, — 0% is quite interesting and deserves further investigation.

Computing Hamilton’s equations yields

é:k = {fk ’ Hﬁz)}" = —ikuﬁk, (422(1)
£, =1{¢ B | = —iko (g + %) &, (422b)
£ ={¢ B , = ~tko (uo = i10) €. (422¢)

which are just the equations of motion we obtained in the previous section.
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Computations Using Singular Eigenfunctions

In this chapter we discuss the numerical evaluation of the integral transform
solution of the Vlasov equation (212). Although we only consider the longitudinal
motion, these techniques are equally well suited to the transverse case. To use the
transform solution, we need a numerical implementation of§ and G. It may occur
that there is a closed form expression for the transform of the initial condition, in
which case it is only necessary to evaluate § numerically. In general this will not
be the case and we will have to compute G in addition to G. As we shall see this
will not be a limitation. Central to computing G is the evaluation of the Hilbert
transform, 7.e. numerically computing a Cauchy integral.

A Cauchy integral can be viewed as the sum of two improper integrals (one
on each side of the singularity). Neither integral is guaranteed to exist alone;
the singularities cancel as the limit is taken. It is this behaviour that makes
numerical evaluation somewhat delicate. The usual advice for computing an
improper integral is to make use of an “open” quadrature rule, in effect taking the
limit numerically. Clearly we will need something more sophisticated. While the
singularity in a Cauchy integral is relatively mild, the behaviour of the integrand,
in particular its residue, near the singularity is very important. That said, it is
evident that we must use something resembling an open method as we surely
cannot evaluate the integrand at the singular point.

On top of these difficulties we have the additional requirement of high accu-
racy in the evaluation of the Hilbert transform otherwise we run the risk that

numerically 9[@] will differ significantly from the identity.3Y There are two paths

109



110

to high accuracy: low order with small step size or high order allowing larger
steps. This naturally brings us to the question of Gauss-type rules versus those
based on the Euler-Maclaurin summation formula (e.g. Simpson’s rule and the
like). Some comment on the choice of how to proceed is called for. One often
hears (or reads) the warning “High accuracy does not necessarily mean high or-
der.” There is, of course, some truth to this statement; functions whose high
order derivatives take on large values within the region of integration may well
defeat a high order method. This is, however, the ezception. (See Oliver3? for
an enlightening discussion of this issue.) In our case, we know that the functions
under consideration are well behaved, in practice they will very likely be C°.
Given our high accuracy requirements, it seems reasonable to explore high order

Gauss-type rules.

I. Quadrature Formulee for Principal Value
Integrals

We take as our prototypical Cauchy integral

I=P/_11dx£g—c2—=‘£i_r%(/:+/_—:>dx@, (423)

where ¢ is assumed to belong to H*. The idea is to develop a quadrature rule so

that we can write

N
I'= Z%‘ﬁ(%) + Ry, (424)
i=0

where R is the (hopefully small) remainder. Thus we expect to approximate /

as

N
I wd(s;). (425)

i=0
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Note that this approximation is quite general — by simply scaling and translating

the variable of integration we find
P —gd x(—x) —P/d ('0——"'211) o(z;), (426)

where

T—¢
olw)=o(24). (427
The requirement that the singularity be in the center of the region of integration
is both essential and not particularly restricting; it is always possible to divide
an integral over an arbitrary interval into sum of a principal value integral over
(sub) interval centered on the singularity and a non-singular over the remainder

of the original interval.

The basic idea is that if we can find a good polynomial approximation for ¢
then (423) reduces to a sum of simple integrals that can be explicitly evaluated.
It is well known that interpolation based on Chebyshev polynomials is very nearly
equivalent to using the “minimax” polynomial. This makes Chebyshev polyno-
mials a logical choice. Let T, (z) be the n-th Chebyshev polynomial with roots z;.
Using Lagrange’s interpolation formulal33! we find

o(z) = Z S G é(z;) + 7, (x), (428)

=0 (z — z,)T;(x;)

where the remainder r,, is given by

(n+1)
@) =10 5, <ot (429)

Since |T, (z)| is bounded by 1 for z € [-1,1],

(n-+1)
o 1),xe[a;<1]\¢ (©) (430)

Ira(@)] <
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and thus the quality of our approximation depends on how rapidly ¢ varies and on
the degree of the polynomial used. For the moment, we will ignore the remainder
term returning to it later.

Using this approximation for ¢ in (423), we find

I~ ZT, P/ m(x ) (431)

=0 n

Notice that only the even part of the integrand (which is the odd part of ¢) will

contribute to . We can take advantage of this and write

I~ ZT’ / {z—(x)+( 1)”;_’{52}, (432)

20"

where we have made use of the parity of the Chebyshev polynomials. The integral
in the above now has a removable singularity at z = 0 and thus exists in the usual

sense. Furthermore, this is exactly the form we were seeking in (425). Let

=T )/ {T(m +(—1)":”T(2}. (433)

The evaluation of these integrals is not as bad as it first appears. The key to this

is that we have a closed form expression for the roots, x;:

2+ 1
2n—-1

xizcos[ w], i=0,1...n. (434)
While one would prefer an algebraic expression for w;, the number of terms
involved, even for moderately large n, makes this impractical. We have com-
puted weights and coordinates for orders up to 29 to 30 places in Maple directly
from (433) using a combination of symbolic manipulation and arbitrary precision

arithmetic.
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In principle, we can determine the quadrature remainder R, by integration of
the remainder term of the approximation, r,,. This is not entirely straightforward,

but in the case where n is odd it is possible to obtain a generous upper bound:34

|R,| < max (435)

z€[-1,1]

In practice, it turns out that the even order rules give consistently better perfor-
mance than those of odd order. This is in part due to the odd order polynomials
having at root at z = 0 for which the weight is zero. Hence for a rule of or-
der 2n + 1 only 2n points contribute.

As an illustration of the performance of this quadrature method, consider the
Sine-Integral function

T 3 !/ T H !
Si(z) = / dx'f’l-’i(ﬁ—):lp/ g’ () (436)
0 z 2 J_; T

which has the power series

2n+l

Z (2n + 1 (2n+ 1)1 (437)

Si(z) =

Using the quadrature described above, we have evaluated Si(z) with several

different orders and compared with the exact value.!3% Define €, 8s
€n = |81, (7) = i), (438)

where the n-point quadrature rule was used to compute Si_ ;. Based on the
remainder expressions we expect € ~ £+, In Figure 3, log(e,,) is plotted versus =
for several different values of n.

The error curves exhibit two distinct behaviours. For small z, ¢, is essentially

oscillatory, while for larger z is grows as a power (linearly on a logarithmic scale).
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Figure 2: A plot of Si(z). This function is used as a test of the various principal

value quadrature methods.

T
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The oscillatory behaviour is a result of the finite word size of the computer (in this

case approximately 20 decimal digits) — in this region the exact result and the

quadrature result are virtually indistinguishable. As z becomes larger, the error

terms grows, finally becoming significant. The power law scaling is exactly what

we would expect based on our expression for the remainder. This interpretation

is borne out by fitting

€

n

= A, (2z)5.

The results of this fit are tabulated below (See Figure 4):

Order A, B,
8 1.0 x 10712 8.4

10 46x 10716 | 104

16 3.8x 10725 14.7

20 2.5x 10738 | 19.2
mid-point | 1.4 x 10~6 2.8

(439)
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Figure 3: Absolute error (base ten logarithm) in calculating Si(z) using Chebyshev
based quadrature: (a) 8-point rule; (b) 10-point rule; (¢) 16-point rule; (d) 20-point

rule and (e) open mid-point rule using 486 evenly spaced points.

The dependence of €, on the interval size matches very nicely with the re-
mainder expression, indicating that this quadrature formula is performing as
expected. For these calculations, ¢ = sin(z) and so all of the derivatives are
bounded by unity. There seems to be no simple dependence of A, on n — this
is of no real importance — it is sufficient to see that A, decreases rapidly with
increasing n. In practice, we will not use the remainder formula as it will turn
out that we have a more reliable error estimate available. Also shown in Fig-
ure 3 is a calculation using an adaptive mid-point rule whose error is seen to be
somewhat better than quadratic. Note that this method requires significantly
more than an order of magnitude more integrand evaluations while yielding an
accuracy several orders of magnitude worse than the other methods. When the

interval becomes large enough, the mid-point rule is superior, but by this point
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Figure 4: Absolute error (base ten logarithm) in calculating Si(z) using Chebyshev
based quadrature: (a) 8-point rule; (b) 10-point rule; (¢) 16-point rule; (d) 20-point
rule and (e) open mid-point rule using 486 evenly spaced points. The linear region
of Figure 3 has been fit to a straight line (dashed line). See text for details.

the accuracy of all methods is so low as to be useless. The point of including
this calculation is to demonstrate that, in this application, series based rules are
simply not competitive with the high order rules we have been considering.

We have been using the term “order” rather loosely. By a quadrature rule
of order n one means a rule that will exactly integrate a polynomial of degree n.
Strictly speaking, although these rules make use of non-uniformly spaced abscissa,
they are not of the Gauss typel®® but rather more closely related to Newton-Cotes
formulse. Similar rules, also based on polynomial interpolation, have been devel-
oped by Price.37] There is also a connection to the Clenshaw-Curtis method which
also utilizes Chebyshev based approximation/3®41 but requires the computation

of a cosine transform. The method of Clenshaw and Curtis is also sometimes
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used to compute singular integrals but in general the quadrature schemes that

we have discussed here appear to be superior.

Having made the observation that only the odd part of ¢ contributes to the

integral in (423), it is tempting to define
zg(z) = ¢(z) - ¢(~z), (440)

enabling us to write

1
I:/_dxg(x). (441)

1

The difficulty here is that we cannot guarantee that g(z) is regular as z — 0,
only that zg(z) — 0 as £ — 0. However, as long as we do not evaluate g(z)
at a point too close to z = 0 this is not likely to be a problem.*? In Gauss-
Legendre quadrature, the points are symmetric about 0. Thus for rules with an
even number of points, z = 0 is not one of the abscissa values. In effect, these
Gauss-Legendre rules are “open” with respect to the origin. Even for the 40
point rule, the closest coordinate to the origin is approximately 0.0045 and so
the danger of loss of significance, even if g(z) is singular at z = 0, is not great.
In practice, the functions that we will be interested in are in 3!, in which case
we know that g(z) will be well behaved at z = 0.

We now use a standard Gauss-Legendre formula to compute (441), keeping
in mind there are some functions for which this will not be successful. The
advantage of this over the quadrature rule developed above is that Gauss rules
using n points are of order 2n. Using the integral representation of Si(z) we have
made a comparison of the error associated with different order Gauss-Legendre
quadrature rules. In Figure 5, loge,, is plotted versus z for the same values of n as

were used in Figure 3. The overall behaviour of the error term is qualitatively very
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Figure 5: Absolute error (base ten logarithm) in calculating Si(z) using Gauss-
Legendre quadrature: (a) 8-point rule; (b) 10-point rule; (¢) 16-point rule and
(d) 20-point rule.

similar to the Chebyshev methods. The significant difference is in dependence

of the error on the interval size; the exponent is approximately twice as large.

Fitting the error to a power law as before, we find:

Points An B,
8 4.1 x 10~ 15.8
10 2.4 x 10731 19.6
16 5.1 x 1059 31.2
20 5.3 x 10~ 38.3

As we expect with Gaussian quadratures, the n-point rule is of order 2n. Fur-
thermore, A, decreases even more rapidly with n than in the Chebyshev case.
In Gaussian quadratures, the abscissa are chosen to ensure that the resulting

rule will be of order 2n. In developing our quadrature rule, we choose the abscissa
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Figure 6: Absolute error (base ten logarithm) in calculating Si(z) using Gauss-
Legendre quadrature: (a) 8-point rule; (b) 10-point rule; (c¢) 16-point rule and
(d) 20-point rule. The linear region of Figure 5 has been fit to a straight line
(dashed line).

to minimize the interpolation error. Although this yielded a lower order rule (for
a given number of integrand evaluations), the advantage is that the Chebyshev
based rule will be able to compute some integrals that will defeat the Gauss-
Legendre method. The use of Gauss-Legendre quadrature for computing Cauchy
integrals has also been suggested by Price.3”] The algorithm for computing the
Hilbert transform, that we will describe below, will allow for the use of either

method as appropriate.

II. Numerical Evaluation of Hilbert Transforms

Having found a satisfactory method for computing a principal value integral, we

are now in a position to construct an algorithm to compute the Hilbert transform.
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Recall the definition of the Hilbert transform of ¢:
1 P / dz’ — ¢
T -z
1 !
T e -z te

X—

Notice that we treat the integration about infinity as a Cauchy principal value.

We introduce points A > B > 0 and partition the real axis into six intervals,

giving

0= Lim{ [ e a5
1 ., /d)(fz /¢($
+—7FXh—I>noo{/ do o —z / dz a:—a:}

1 , #(z') ) b
+—7;/_A 22 /dx_z (443)

By a simple change of variables, ' — 1/u, we can map the integral about

infinity to a principal value integral about the origin. Doing so gives

F() = 1 P/ Ciw 9@

o —z

L s YA (/)
+7_erLE»I%){/_1/Adu u(l — uz) +/u duu(l—u:c)}
1 =5, ¢(z’) L / ¢( )
+7r/ dz z’—x+7r/x+3d T -z

L[ $ L 1 A $(1fw)

o'—z  m J_y4 w(l—uz)

+l/m_d’¢(”)+—/ dr’ 2@ (444)

TJ_a -z B T -z



121

The two principal value integrals are in the form of (426) and can be directly
evaluated with either of the quadrature rules described above. Provided that B
is not too small i.e. larger than say 1/2, the integrands in the two remaining inte-
grals are going to be well behaved and can be evaluated using standard (Gaussian)
quadrature techniques. The choice of A is governed by ¢; it should be chosen such
that ¢ has no significant features for z > A. Ideally, we would like to choose A
such that ¢ =~ 0 for £ > A. We have implemented an algorithm!34, essentially
as described here and found extremely good performance, yielding accuracies of
approximately 1 part in 1018, for functions that approach 0 rapidly for large z.

We will return to the issue of the nature of ¢ below.

As outlined above, accuracy is of primary importance to us, however, effi-
ciency is also important since we have a great number of calculation to perform.
From a standpoint of efficiency, one would like to find some way to “re-use” in-
tegrand evaluations when computing successive transforms. The basic idea is to

recognize that the integral we wish to evaluate is of the form

B(z) = / dr! f(") o(z',2), (445)

where f = ¢ which is, in general, computationally expensive, while g = 1/(z' —z)
can be computed quickly. The point is that the expensive part, f, does not depend
on = and thus does not need to be re-computed when we evaluate the transform
at different points.

Adopting this notion means that we have to be more systematic in picking A
and B. The procedure is as follows: We divide the real axis into /V panels such
that the n-th panel, denoted by P,, covers the interval [, i,u,] and py =

—py- It is convenient to pick up such that one is only interested in evaluating @
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for |z| < pp. This restriction is not essential but greatly simplifies the code and
is reasonable in the case of computing G and S.

Assuming this restriction, we can write

p(u) é(z
_P/ d’x,_z+7rP d el Z/d’ o, (446)
n;éng

where ng is the label of the panel containing z, P, denotes the interval [—pq Lug!]

ow)=14(3). (447

In each panel, we introduce a local coordinate, ¢, that ranges from —1 to 1.

and

Explicitly, for z € P,

r=z,=d,£+s,, (448)
where
1
d, = 3 (B = Bpy)y T#0 (449a)
1
sp=5 (¥ iy ), n#0, (4490)
1
dy = —, (449¢)
Ho

We can now write

/P ngd ' ¢ +%p / dg = <p(§ / de “’"i. (450)
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For each panel, we evaluate the integrals using a quadrature rule with A, ab-

scissa £ and corresponding weights w]. The expression for ¢ now reads

#a)=1p[ @ S 1 Zdo ?nl“’(f +o ZZdnwmx -

T JP,, n;én.,m 1
(451)
where z,, is understood to be shorthand for d, £ + s,,. Defining
W, = dowp, 0(£7,), (452a)
Wr =d, wy ¢(z,), n#0, (452b)
= =d.& +s,, (452¢)

we can write

>"%P/d’¢(z ZWOI 1: += ZZ g (459)

/
Z .’ZI T
n;én, m=1

Viewing the z dependence in the right-hand side of the above as parametric, we

see that these sums have the form of a standard quadrature rule for the functions

9E) =g, (454a)
BE) = — (454b)
T 1-8¢’
with points 2 and weights WT. That is, we can write
1 ) #() < 0)
Y — n -—‘ n r—-n
b(z) == A x,_x+;ZW0h ZZW ").  (455)
ns m=1 n;én,m—l

The key point here is that W[ depends on ¢ but not on z, thus they need

only be calculated once, no matter how many times ¢ is to be evaluated. There
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still remains the matter of the principal value integral. As we saw above, we
require the singular point to be in the center of interval of integration thus we
must divide P, into at least two regions. Since this division will depend on z,
integrations over F, for different values of z will have no evaluations of f in
common (even for those values of z that have the same value of n,).

In practise, it is convenient (primarily for testing purposes) to use a fixed-size
interval for the principal value integration and so we need to divide P, into three
pieces. Furthermore, it is not desirable to integrate over too small an interval.
Therefore, whenever z is too close to one of the end points of P, , it is necessary
to merge P, with the adjacent panel before dividing into three sub-intervals.
These additional considerations merely add to the “bookkeeping” requirement of
the implementation and do not alter the basic algorithm.

The motivation for this more complex algorithm was efficiency. The price
for this is complexity and storage. Storage is simply not an issue — typically
the storage requirement are on the order of several thousand floating-point num-
bers. The bookkeeping requirements are likewise reasonabiy modest. The overali
performance increase depends on many factors but a crude estimate (ignoring
the time needed for bookkeeping operations etc.) is the ratio the computational
times for ¢ and f. For computing the transform of a simple function this turns
out to be a serious over estimate of the improvement since the “extra” compu-
tations associated with the integration over P, ~are significant and the overall
computation takes about 70% of the time of the first algorithm. Below, we will
see that this idea can be used even more effectively in calculating G, where the

savings are more than an order of magnitude.

We have implemented an algorithm based on the method described above per-

formed extensive testing. Shown in Figure 7 is the result of using this algorithm
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to compute the Hilbert transform of
$(z) = Vme ™ (456)
which is given exactly by

#(z) = —2 daw (%) , (457)

where daw(z) is Dawson’s integral.*3 This computation was done with 10 uni-
formly sized panels covering [—7.5,7.5]. The singular integrations we done over
an interval of size 0.6. All integral we evaluated with 28-th order Gauss-Legendre
quadrature. A comparison with the exact result (see Figure 8) shows the high

accuracy possible with this method.

2
1 —
) ¢
0_
1 ¢
-1 —
) T T [ T T | T T ' T T I T T
0.0 1.5 3.0 4.5 6.0 7.5

Figure 7: Plot of ¢(z) for ¢ = \/7e~*", computed using the algorithm described in
the text. The exact result is ¢ = —2daw(z/v/2).
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Figure 8 Absolute error (base ten logarithm) in the numerical evaluation ¢(z)
for ¢ = e'“’z, computed using the algorithm described in the text.

In part the high accuracy seen in Figure 8 is due to ¢ vanishing rapidly as z
increases. Thus one finds that using this algorithm to compute transforms of
functions that vanish slowly for large z to be considerably less satisfactory. This
is largely caused by the loss of significance in subtracting nearly equal quantities.
This will be of little concern to us since we will only be computing transforms of

functions that contain Gaussian factors.

A further (and more interesting) test can be found in connection with the
parameter functions for the longitudinal transforms G and § Recall that if 8+

i # 0 and f = % + @, then x and ¢ defined by

X+iC=ﬁ+z’a (458)

are related by x = x> + (.
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Consider the function
Ez) =1+4a[l+ f,22(2) + f,b(z = 0)Z(2)] = f+ ia, (459)

where z = 2+ iy, Z is the plasma dispersion function,4l and a, b, f, and f, are

constants. As y — 07, we obtain

a(z) = av/T [faat:e_””2 + fp (z = b) e_(’""b)z] ) (460a)

B(z)=1+a[l - 2f, zdaw(z) — 2f, (z — b) daw(z — b)] . (4600)

The character of this function, which is essentially the dielectric function for
a two stream plasma, depends rather strongly on the parameters a, b, f, and f;.
In particular for a = 7, b = 1.75, f, = 0.6 and f, = 0.4, Z(z) has no roots in
the upper half-plane. (This can be easily seen using Nyquist’s method.) In this

case 7! is analytic in the upper half plane and has boundary values

1

eIl (461)

X+i¢=

Using the values of the parameters given above, x and ¢ were computed (see Fig-
ure 9) and 1+ was computed and compared to x (see Figure 10). The calculation
was done with 16 uniformly sized panels covering [—8,8] and the singular inte-
grations were evaluated over an interval of size 0.5. All integrals were evaluated
with 24-th order Gauss-Legendre quadrature. The function ¢ has some rather
sharp features which contribute to the structure of the error shown in Figure 10.
These features required the smaller panel sizes than in the previous calculation.
Clearly, the efficiency of this method could be further increased if the panel sizes
were adaptively chosen based on the structure of the function under considera-

tion.
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Figure 9: Plot of x and (fora=7,b=1.75, f, =06 and f, =0.4
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Figure 10: Absolute difference (base ten logarithm) between the numerical evalu-
ation of {(z) + x* and { fora = 7, b= 175, f”_ = 0.6 and f, = 0.4
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Figure 11: Plot of x and {, fora =7, b= 3, f©_=0.6 and f, = 0.4

If we change the parameters slightly, taking b = 3, we find that = now has
a root in the upper half-plane. As we saw in Chapter 7, this root alters the

relationship between x and ¢ such that

(T = zp)x™ + 9! (382)

=x®+({+2 :
X (@ — 20)% + 93

where z, = 7, + iy, is the root of Z and x™' +i(™! = E/(z, + iyy) " For these
values of the parameters, x and ¢ are shown in Figure 11 and 2, = 1.632+0.2684.
In Figure 12 we compare the right-hand side of (382) with 1 + ¢ and see that
they are substantially different, with the former agreeing with the value of x
to better that 1 part in 10'3 over the entire interval [—5,7.5]. The transforms
were evaluated with 16 uniformly sized panels covering [—8, 8] with the singular
integrations computed on an interval of size 0.4. All integrals were evaluated

using 24-th order Gauss-Legendre quadrature. This example provides a dramatic
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Figure 12: Showing the importance of the discrete eigenfunction when = has a
root in the upper half-plane. Here the root is located at 1.63226070416668 +
0.2683836801828421. Plotted are (a) 1+ and (b) 1+ +2Re(x™* +3¢~1)/(x —2p)
as in (382). The curve (b) differs from x by less than 10713 over the entire range
of the plot. The parameter as have the same values as in Figure 11

demonstration of the importance of the discrete eigenfunctions as well as an

indication of the correctness of the regularizing procedure developed in Chapter 7.

III. Evaluating the Integral Transform
Solutions of the Longitudinal Vlasov
Equation

We now move on to the numerical evaluation the solution of the longitudinal

Vlasov equation given in (212) which is valid for stable equilibria.*5! We consider

the equilibrium

1 2
fO = —=nye™, (462)
/i
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where n is the particle density. Note that we measure velocity in units of the
equilibrium thermal velocity. For this equilibrium the dielectric function is given

by

w2
e, (ku) =1+ k—g [2—4udaw (%)J + 2z~3\/7_rue —u?

=f+ia. (463)
For large v, @ =~ 0 and # = 0 can be solved for u provided

k
= >0.5336. (464)
Wp

While ¢, is not exactly zero for any u in the upper half-plane, for sufficiently
large u, it will not be possible (numerically) to distinguish ¢, from zero — thus
we will have the equivalent of a neutral mode. To avoid the complication of
including neutral modes into the code, we restrict £ such kvy, < 0.5336w,. If
we take a box of size L to be our spatial domain; the above restriction on & is
equivalent to a Debye length of approximately 17% L.[46! Thus this restriction on
possible wave numbers is physically acceptable.
Given an initial condition Fy(v), we compute £, as above (dropping the factor
of —dime/k):
§p(u) = [ v = XF + CFy, (465)

from which we can compute
@ (v,) = § [¢, cos(kut)] —i§ [¢ sin(kut)] . (466)

We can easily calculate the electric field:

E®(t 4“3 dv fO(
nk - 1 uk u’
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4 :
= -277]::—6 /du e thut E(u). (467)

One of the significant advantages of this method is that it is possible to com-
€]

pute E{(¢) directly from the initial condition without computing f¢. This
results in considerable efficiency — not having to perform a high accuracy calcu-
lation of f"(,‘c) to obtain the electric field — as well as in great convenience as often
one is only interested in the behaviour of the perturbed field. Note that this is
not the case for the transverse motion; there it is necessary to compute (at least
indirectly) £ to determine the evolution of the fields.

In our Hilbert transform algorithm, we factored the integrand into two pieces:
one that is computationally expensive and one that is easily computed. The
calculation of G can make further use of this idea by absorbing the trigonometric
terms into the “fast” function, g, which then has a parametric dependence on ¢.
This is advantageous since the weights, W, which are functions of x and ¢, need

only be computed once. These weights can also be used in the calculation of the

electric field.

Since § is linear we have an explicit expression for f§:

f(w,t) = ~k§ [gyu sin(kut)] — ik G [g, v cos(kut)] - (468)

This is computationally no more intensive than computing f{". Therefore it
seems reasonable to make use of this as an independent error estimation by

computing the left-hand side of the Vlasov equation. Define

€, +ie, = dea /du e~hute, (u)

—G [¢, cos (kut) {1 — iku}] +iG [¢;sin (kut) {1 + tku}] . (469)
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Assuming that the extra factor of » does not greatly affect the accuracy of our
calculation of G, we can use the magnitude of € as an indication of the numerical
error in the computed f{".[47) Having this error estimate is a significant advantage
of our method. Since we are evaluating an exact solution, as opposed to explicitly
solving the differential equation, the differential equation is available as a test
of the quality of the solution. This permits long time evolution calculations
since we can, whenever necessary — based on the actual numerical error, re-
initialize (at modest computational cost) the panels used in the Hilbert transform
algorithm to cope with the fine structure produced by velocity filamentation.
This ability effectively circumvents the computational problems associated with
velocity filamentation.

As a simple test of our methods, we consider a single, dynamically accessible

Fourier mode
F(v) = —ve /%, (470)

corresponding to £ = 1. We readily find

Fv) = % v daw (7) - % (471)
and thus
Ew)=§ [F] = —ux(u) e IV 4 %g(u) [2u daw (%) - b] . (472)

As we alluded above, both terms in ¢ have exponential factors and thus our
Hilbert transform algorithm should work nicely.

As a test on the quality of G, we can compute §[€] and compare with F’
(see Figure 13). As seen from the figure, the implementation of G is extremely

good. The structure of the error arises from two sources. The large scale features
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Figure 13: Absolute error (base ten logarithm) in calculating the initial condition

with b= 1 using G. This is a measure of the extend to which § [§] = 1 numerically.
are due to variations in the derivatives of x and {. The finer details are an artifact
of the quadrature formula. Recall that that remainder term is an upper bound
on the error — thus for certain values of the transformed variable the actual error
can be significantly less. These fine details amount to an aliasing of the points
where G[¢] is evaluated and these special values.

Setting b = 1, L = 4 and W, = 1, we calculate the perturbed electric field
directly from the initial condition. (See Figure 14.) Figures 15 and 16 show the
real and imaginary parts of f{), respectively, obtained from evaluating § [¢(w, )]
using the methods discussed above. For these calculations, 14 uniformly sized
panels spanning [—7,7] were used. The singular integrals were computed over
an interval of size 1.0. All integrals were evaluated using 26-th order Gauss-
Legendre quadrature. Shown in Figures 17 and 18 are the real and imaginary

parts of e, respectively. As we can see, the overall error in the solution is quite
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small, growing with time due the oscillatory nature of £, (). As noted above, the
initial condition was dynamically accessible. For our equilibrium, (462), whose
derivative has a simple root at v = 0, the condition of dynamical accessibility
requires that the perturbation have at least a first order zero at v = 0. From
Figures 15 and 16, this condition is seen to be satisfied over the time interval
considered. This behaviour is exactly that shown in Section 4-I. Note that with
our choice of parameters, we are in the regime of strong damping as is evidenced
o)

by the rapid decay of Elf}c). This can be confirmed by observing that f;’ becomes

highly oscillatory and thus, due to phase mixing, El(l}c) dies away.

0.6
0.4
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Figure 14: The real part of E}/(t) compute from the initial condition (470). For

this initial condition, Im E}})(t) = 0.

Notice that not only does f"(,lc) become more oscillatory with time, but the real
and imaginary parts develop a nearly 7/2 phase shift. One then wonders how an

initial condition having these same characteristics would evolve and what would
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-2.0 -1.0 0.0 1.0 2.0

Figure 19: A plot of the initial condition given in (473).

be the behaviour of the resulting perturbed electric field. To this end we repeat

the above calculation, using

F_ =sin(10v) e’ (473a)

F; = —vcos(10v) e (473b)

This initial condition is plotted in Figure 19. Unlike the previous example, we
cannot compute F in closed form and hence we will not have a closed form
expression for £(u). This will be an even more stringent test of the Hilbert
transform algorithm as we are now using it to compute £. Again we compute G [€]
and compare with F' as a check (see Figure 20) and we find that the algorithm
is performing satisfactorily.

The time evolution of this initial condition is somewhat surprising. One

might expect that, since it closely resembles the large time behaviour of a smooth
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Figure 20: The real part of the absolute error (base ten logarithm) in calculating
the initial condition using §. The imaginary part of this error is similar. We use

this is a measure of the extend to which § [§] =1 numerically.

condition, the solution would continue to become more oscillatory creating no
electric field. The real and imaginary parts of ”‘,‘c’ corresponding to this initial
condition are shown in Figures 21 and 22 respectively. Shown in Figures 23
and 24 are the real and imaginary parts of £, respectively. The actually behaviour
is considerably different from what we had (naively) expected; £’ develops a
significant area of slow oscillation which gives rise (quite quickly) to a large electric
field (see Figure 25). While the initial condition may look like the result of time-
evolving a smooth initial condition, it is not exactly thus. The behaviour of f;
and Elf}c) prior to ¢ = 10 is the initial transient that precedes Landau damping.
Had our initial condition been ezactly the been the long-time state of a smooth

initial condition, we would not have seen this transient stage; the solution would

have continued to become every more oscillatory. This example serves to illustrate
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the special nature of the structure of the solutions of the Vlasov equation; given a
particular initial condition, the Vlasov equation “knows” whether it is the result
of time evolving a smooth initial condition (and thus should continue to become

more oscillatory) or whether it is still in the pre-Landau damping transient phase.

Figure 25: The perturbed electric field arising from the initial condition (473).

The results of the chapter not demonstrate the computational efficacy of
using singular eigenfunctions. Using singular eigenfunction expansions, we are
able to efficiently solve the initial value problem with the added feature of having
a reliable error bound. These numerical techniques open the door to exploring
numerous phenomena associated with the linearized Vlasov equations, not the

least of which is transient behaviour prior to the on set of Landau damping.
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Conclusions

In the preceding chapters we have seen that by constructing an appropriate in-
tegral transform, the Maxwell-Vlasov system, linearized about a homogeneous
equilibrium, can be reduced to a simple set of ordinary differential equations.
For both the longitudinal and transverse degrees of freedom, we were able to
construct a general solution and identify a class of initial conditions, D¥ and D
respectively, for which a solution can be obtained. In addition we were able to
show that as time evolved, the solution remained in the function space of the
initial condition.

The same integral transforms that we used to solve the Maxwell-Vlasov equa-
tions were also used to change coordinates resulting in a diagonal form for the
bracket and Hamiltonian. A further scaling yielded action-angle variables for this
system. Thus we were able to take a noncanonical field theory and, by means
of a coordinate transformation obtain, a canonical Hamiltonian system. These
techniques have been generalized by Balmforth and Morrison[*8l and applied to
problems in fluid mechanics.

The diagonal form of the Hamiltonian was quadratic in the Fourier amplitudes
of the electric field, however, this expression was not equivalent to electromagnetic
energy stored in a dielectric. The source of this discrepancy is the presence in a
plasma of resonant particles — a characteristic not shared by dielectrics.

We extended our formalism for the longitudinal case, to include both neu-
tral and unstable modes. It was seen that the necessary discrete eigenfunctions

appear as a natural consequence of regularizing certain singular quantities. The
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key ingredient in the neutral mode analysis was the introduction of generalized
functions and their Hilbert transforms which allowed for a natural regularization
procedure. Notably for the neutral mode case only one discrete eigenfunction was
necessary to restore completeness. We have a general (constructive) prescription
for the treatment of discrete modes. While we only explicitly computed the eigen-
functions for a simple root of the dielectric function, it is clear that the process
of regularizing the inverse transform by canceling the singular terms in the Lau-
rent expansion will generalize to multiple roots. The neutral mode contribution
to the energy was equal to the dielectric energy reinforcing the importance of
resonant particles in the distinction between a plasma and a dielectric. Using the
neutral modes as a model, the treatment of unstable modes was straightforward
not requiring generalized functions.

We considered various numerical algorithms for the evaluation of the Hilbert
transform. An algorithm based on Gaussian quadrature was implemented and
proved to be quite effective. This algorithm was then used to evaluate the integral
transforms used to solve the longitudinal equations. The algorithm was tested
on a simple Maxwellian initial condition and the resulting perturbed electric field
was seen to Landau damp due to phase mixing. A further test was performed
with an initial condition which already exhibited significant phase mixing. This
configuration in a significant transient period prior to the onset of Landau damp-
ing. After a long period of quiescence, a large transient electric field built up
which subsequently damped away. The performance of this algorithm was ex-
tremely good and gives a clear indication of the computational value of singular
mode expansions.

There are a number of future directions that this work can take. The analyt-

ical techniques that we have developed for solving the Riemann-Hilbert problem
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are applicable to a wide range of singular integral equations. Since the Hilbert
transform commutes with the derivative operator, these techniques could be suc-
cessfully applied to more complicated intergo-differential equations.

A logical next step would be to apply these methods to second order pertur-
bation theory. The approach would be to use the linear solutions as a basis for
representing the next higher order effects. Since we know that the linear solu-
tions are complete over a broad class of functions, one hopes that they would be
a suitable basis for describing weakly nonlinear behaviour. This is a particularly
intriguing idea since we already have the necessary numerical tools to evaluate
singular mode expansions.

We have specifically ignored the effects of the finite value of the speed of
light on the transverse motion. As Felderhof points out, the distribution function
must vanish identically for velocities greater than the speed of light and as a result
the dielectric functions has infinitely many (two for each wavenumber) discrete
solutions with superluminal phase velocity. This effect is more important in
the transverse case than in the longitudinal due to the way that the speed of
light enters Maxwell’s equations. One can view this as the effect of choosing a
particular boundary condition for the perturbed distribution function. A proper
treatment of this effect would require the extension of our formalism to include
step-function initial conditions. One expects that a procedure similar to the
method used to handle the poles in the neutral mode case would be effective here.
This extension is also of interest since one can envision a variety of physically
realistic initial conditions that have discontinuities in velocity.

Experimental techniques have recently been developed that use laser-induced
fluorescence to perform non-perturbing measurements of the phase space distri-

bution functions®51 in collisionless ion plasmas. Experimental conditions are
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such that linear theory applies well and the spatial variation can be restricted to
one dimension. These experiments appear to be well suited to test our various
calculational methods as well as verify the correctness of the energy expressions.

There are similar singular integral equations in other areas of physics that
are equally interesting, in particular the Lippmann-Schwinger equation which
describes quantum mechanical scattering. In this case the structure of the con-
tinuum is slightly different since the discrete modes are not embedded in the
continuum as they are in Vlasov theory, however the parallels are sufficiently

strong to make a serious study of the relationship worthwhile.

Having developed a considerable set of analytic and corresponding numerical
tools one wants to find a broad a range of applications as possible — this is fuelled
by the feeling that at the deepest levels many areas of physics have a great deal

in common.



Appendix A

Some Properties
of the
Hilbert Transform

Here we review some aspects of the theory of Cauchy integrals with application
to Hilbert transforms. This subject is often formulated in terms of L function
spaces.!52:93] An alternative formulation, based upon the concept of Holder con-
tinuity, is due to several Soviet mathematician!!%20 whose work was motivated
in part by problems in elasticity theory. Although, for our purposes, this lat-
ter formulation has certain important advantages, we are not able to completely
dispose of the notion of L? spaces. Thus we will make use of a hybrid of these

approaches.

1. Preliminaries

A function ¢ : R — R is said to satisfy the Holder condition of index p if
|4(z) — ¢(m)| < Al —yl*, Vzy€eR, (474)

where A, > 0. If p > 1, satisfying this condition would imply that ¢’ = 0 for
all z, i.e. that ¢ is a constant, thus we only consider y in the range 0 < p < 1.
(For g = 1 the Holder condition is identical to the Lipschitz condition.) We
denote the class of functions satisfying the Holder condition by H¥. Note that
if $ € H* then ¢ € H" for v < p and thus when we say that a function is in ¥,
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it will be understood that y is to be taken as the largest number such that the
Holder condition is satisfied.

There is a sub-class of Holder function that will be of special interest to us.
Namely those functions which, in addition to belonging to H*, possess a limit ¢,
as |z| — oo and, for sufficiently large |z|, satisfy

AI
[6(z) — ¢™°] < T2 (475)
where A’, @ > 0. Denote this restricted class by F*.
Consider ¢ € H! and ¢ € HY then the following results hold:[20]

ESVESH (476a)

¢ € HP, (476b)
where p = min(u,v). Further, if ¢/% is bounded for all z we have

% € H”. (476c)
In this context, the Hélder condition is essentially a local statement of the prop-
erties of ¢. For z and y arbitrarily far apart (474) reduces to a statement of
boundedness and the index is meaningless. When z and y are taken to be close
together, the index is related to the series expansions of ¢ and in this way, clearly

separates functions into different categories.

Consider the integral

&(z)=P bdx' 9(=) (477)
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where P indicates the Cauchy principal value:

P/d'¢ —21_{%(/“6/ )d'¢ (478)

For ¢(z) € H* the integral in (477) is guaranteed to exist and ®(z) satisfies the
Holder condition!!® for z € (a,b). It is important to note that the endpoints of
the interval have been excluded. An important feature of Cauchy integrals arises

when one compares

/ dz’ ——— / dz '¢ix_xm (479)
and "
/ &' P/ da" _$)' zL - (480)

Although the only difference between (479) and (480) is the order of integration,

the two expressions are, in general, not equal but are related by the Poincaré-

Bertrand formula:[54
! '/
P/ .’L"—-xll P/d.’L‘ ”_qb(f-’j"x) — “7T2¢(1',:z:)

+P/dx”P/da; d’(x(;”,,) o (481

As we mentioned above, there is an alternative formulation of this theory in terms
of L? spaces. The central concept of that formulation(®® is the result: if ¢ € L7,
for p > 1 then ® belongs to L. Unfortunately there is no general inclusion

relationship between L? spaces and classes of Holder functions.
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2. Hilbert Transforms

Of particular interest to us is the limit —a = b — oo. This is equivalent

to treating the integration about infinity in the Cauchy sense. Provided that we

only consider functions belonging to 3, the results of the previous section apply.
We define the Hilbert transform of ¢ € H* asl%]

Ba) = 1ol (@) = 2P [av ) (482)

-z

where the limits of integration have been taken to infinity as above. Henceforth we
will drop the P with the implicit understanding that, where necessary, integrals
are to be interpreted in the sense of the Cauchy principal values. As we saw
above, for ¢(z) € H the integral is guaranteed to exist and ¢ € H? and thus
the Hilbert transform can be thought of as a linear functional that maps H¢
to HZ.

Using the Poincaré-Bertrand formula it is possible to establish two useful
properties of (482). Firstly it thus seems natural to consider H [H [¢]] which

clearly exists for ¢ € H&. Explicitly we have

HUH) ) = & o 2 [ 22D (483)
Using (481)
HIH D] (@) = ~4(a) + 75 [d" 9(a") /dm x,,_z,)
- -to)s g for 55 for [ -
= —¢(z), (484)

since H[1] = 0. Thus we see that the inverse of the Hilbert transform is sim-

ply —H.
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Secondly, we also use the Poincaré-Bertrand formula to obtain a “convolu-

tion” formula for the Hilbert transform. Let ¢ € H2 and ¢ € HY. Consider

1= o B
' ¢($’) ! 5(-77”)
= Wz/d B2) fogr £) (485)

Using (481) to interchange the order of integration gives
HIpW () = ¥0)Be) - 5 oo [aw D
" ¢($”) ) Ba') G
V(@) é(2) 7r2/d {_/d -z z! —a:}

= @3 - £ [ 2 () - B} (486)

T

Thus we conclude that

3P =90 +3%+90. (487)

A generalization of Parseval’s formula can also be derived. Let ¢ and o
be as above with the further requirement ¢ € I” and 9 € L? where p, ¢ > 1
and 1/p+1/q = 1. Then ¢, ¢3, ¢3 and P are all in L! and

[t o(a) () = [d0Ba@)p0a), (4880)
[ds6)%@) = - [a5B0)v(a). (4885)

We can also derive forumle which are analogous of the derivative and integral

formulee for Fourier transforms:

¢ =za 1p+an4(0), n>0, (489a)

1
= TG - 2T, 0 <, (489D)
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where, in the case of n < 0, 2™ ¢ must be bounded at z = 0 and for n > 0, 2" ¢

must be bounded as 2 — oo. For n = 1 we have

To=1¢+ %/dm’ #(z'), (490a)
@:? L1 [y 2@) (4908)
T T T T’

In 1904, D. Hilbert proved the Hilbert Inversion Theorem which, through
Cauchy integrals over the unit circle, provided a connection between the real and
imaginary parts of an analytic function. This theorem can be applied to the
upper half-plane where the relevant Cauchy integrals are over the real axis. In
this case, the theorem is as follows: Let F'(z) = u(z,y) + ¢v(z,y) be analytic
in the upper half-plane and let u(z) and v(z) be the limiting values of u(z,y)

and v(z,y) as y — 07 respectively. Then

v(z) = —u(z) + v, (491a)

u(z) = 7(z) + u*, (491b)

where u® and v* are the values of u and v at infinity. The converse also holds:
If a(z) € H" then, to within an arbitrary (complex) constant, @ + ¢« is the
boundary value of a uniquely determined function analytic in the upper half

plane. Further, this function is given by
/ dt 2 o‘(t) (492)

This result can also be applied to the limit y — 0~ of a function analytic in the

lower half-plane, in which case the boundary value is @—¢ « and the formula (492)

still holds.
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These results will be of considerable value in our analysis of integral trans-

form. As an example of the power of this theorem, compare the boundary value

of F(2):

Fz+i0N) =a+ia, (493)
with that of F'(z) =i F:
Fl(z+i0") = o/ +id' = —a +ia. (494)
Thus
—a=0d =7, (495)

which is seen to be equivalent to (484). By a similar argument involving the

product of analytic functions, one obtains the convolution theorem, (487).



Appendix B

The Dielectric Function

Starting with Ichimaru’s definition®! of the dielectric tensor €5, We specialize to
the case where the equilibrium is isotropic in v and decompose this tensor into
its longitudinal and transverse parts, which we find can be expressed entirely in
terms of f. For notational convenience, we assume that f is normalized (in
velocity space) to unity and the equilibrium density is contained in W-

We take as out staring point the definition:

w? 1 v. af®
— p 3 3 _ _ AV
e (k,u) = 05 — k2 UQ;LII_I}(ln dvﬁ.v—u—iu u=k- vaJ +Uk of
(496)

Since f is isotropic in v,

1 af®
V. fO =5fO = 497
vf f 1)" avll ( )
So
~ f(o) U—-17 af(o)
L. Ic © — [ g, )
u—k B'U] +v; v, f v" v; + 811“
u 0 f‘°’
v; 2 6’0 (498)
Thus the dielectric tensor can be written as
w2
1 Y; Vs 1 0f©@
- _ _2_ i 3 177 =
€; = 0 2 u ,}5%+ v v, —u—ipv, Oy
w2
1 f(O)
—5. -1 ym g 2
T 2w ul_rf(l)+ % 7)"(2}" —in) /d V.UV B, (499)
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Decomposing v into longitudinal and transverse components yields

of© f(O)!
2
/d v, V) 5 =/2 k, ]k”2+ k‘zv”—i-kJ z] v, - (500)

It

Making use of (570), (573) and (580), the above becomes

f(o) k. k. f(O) &
/dZv‘L Yty o, - lzczj U“Q 612 =59, /% (501)
I
where
mk =5 %k (502)

projects vectors into the plane perpendicular to k. Using (502) in the expression

for €55 We obtain

k, k 24 v af®
=, — “p 1i / d !

“ij = % lc2 k2 u ”1_1}(1)+ %I v, —u—ip Oy,

-1k —El lim [dv, _r fO. (503)
YU k2 u ot Vy, —u—dp”! '
We define ¢, and €, by the decomposition
k; k

€; = k2 i € (504)

Comparing our expressions for €;j) We see that

€, = =1- — P/d fH(O)' f(o)l

= —ﬁp d’U v“

=€ +ie, (505)

w2
©) _ o P £0)/
fll ]C2 fll
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and
2 2
Wy 1 1 LWy 1
ET =1+ 7{:% &'P/dv" ’U_—Zf"w) + ’L7l'-k—z2) Efum)
1
=€) + i€, (506)

where P denotes the Cauchy principal value.

Examining (505), it is immediately apparent that ¢} = 1+ €. Since f( is
an even function of u, m = F/u Thus from (506) we see that € =1 + €L,
This is, of course, exactly what we expect given that ¢; ; is defined as the limiting
value of a function analytic in the upper half-plane. This relationship between
the real and imaginary parts of the dielectric function is extremely important in

the solution of the linearized Maxwell-Vlasov equations.
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Review of the Van Kampen Solution

Here we present the essence of the solution of the moment equations due to

van Kampen and Felderhof.®”] Our notation differs from theirs to allow easy

comparison with our integral transform solutions.

1. Solution of the Moment Equations

The moment equations, derived in Chapter 2, are given by
TN @ 4 € py ey _
fnk +2kv“ Ik + mEuk fu =0,
(1) __ (1)
_Enk - 47re/dv" Unfu )
1 () ¢h)
zkE”k = 47re/dv" e
and
f(1) | o @ _ € o) _
Lk + ’I,k’l)" 1k T _n—?:EJ.kfn - O’
(1) 2 A1) _ 1)
—E+ck"A = 47re/dv" e

AD +cEY =0.

(58a)

(58b)

(58¢)

Following van Kampen and Felderhof, we seek a family of solutions parameterized

by k£ and u of the form

fip(v,t) = /du h"k(u,v“)e"ik“t,
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(507a)



f}c)(v",t) = /du th(u,v")e_ik“t.
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(507b)

Given the form of (507), it is clear that we expect u to take on a continuum of

values which we can assume to range from —oo to co.

In what follows, it is convenient to retain E‘} as a dynamical variable, that
Ik

is, to retain Poisson’s equation as a constraint. Let Ep € and A . be the

temporal Fourier transforms of E(, EY} and A%} respectively:

Elf}c)(t) = /du £“k(u)e_ik“t,
BO() = / du €, () =k,

AR = /du A (u) e~ tkut

where & (1) etc. correspond to the Fourier mode of frequency w = ku.

Substituting (507) and (508) into (57) and (58) gives

/du ekt [ik(vn - u)hnk + %gnk fu(O),] =0,

/ du ¢~ [z‘kﬁnk — 4me / dv, h"k] =0,

and

fl
o

/du e"ik”t{ik(vII —u)h ;- %Qk f,,(°)}
/du e"ik“t{z’ku £, +ck® A, — dme /dv" hlk}

/du e"ik“t{z’kuAlk - cSLk} =0,

il
o

(508a)
(5080)

(508¢)

(509a)

(5090)

(510a)
(5100)

(510c)
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respectively. Since the Fourier modes are linearly independent the above equa-

tions are equivalent to

ik(v, — u)h; + %Suk fo'=0, (511a)
ikE,, — dme / dv, b, =0, (5115)
and
ik(v, — w)h,, ~ -;—1 [0 =0, (512a)
iku€,, + ck®A, , — dre /dv" h, =0, (512b)
ikuA  —cE, =0. (512c¢)

I. THE LONGITUDINAL SOLUTION

We first consider the longitudinal equations (511). The general solution of the

kinetic equation, (511a), is
h =% sorp_ 1 Lo us( 513
w(t7,) = mk ik v —u (ks u)b(u ~v,), (513)
I

where C, is to be determined by substituting (513) into (5115). Doing so gives

) 4rrie? For
ik «_‘,'”k(u) - m—gnlk(u) P/dv" v, —u - 47”30" =0. (514)

Solving the above for C, we find

W

ik dre? i
C”(k:,u) = Ré'“k l:l — _mk2 P/dq)u ” ll_ -
il

ik

= mgnkff(k,U). (515)



164

Combining the expression for C, with (513) gives the complete expression for Ry

ik 1 1
b (u,v,) = m‘fuk [;fi(k’"")PE‘_—; + €7 (k,v,) 6(u — v")]
I

ik

= Zﬁguk SL(’M,’U"). (516)
So we find
. ik —iku

R, t) = 1 [ @S, (wy)e kut, (517)

Notice that the van Kampen mode, G, , is the same as the kernel of our transform
that was used to diagonalize the longitudinal motion however, in the later no time

dependence is assumed.

II. THE TRANSVERSE SOLUTION

We now solve to transverse equations using the same method. Here we begin by
solving (512c) for A ;:

ic
A=~ (518)

and then eliminating A, , in the remaining field equation giving
2
) c
ik (u - -17) £, = 47Te/dv" h,. (519)
The most general solution of the transverse kinetic equation, (512a), is

ie 1
h (uv,) = Mgl.k f[fo)Pm- +C (ku)é(u—v,). (520)

We determine C by substituting (520) into (519) giving

(0)

2 .2
ik (u— C_) £, - 47’:; £lkP/dv" I} dreC. (521)

U t U=,
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Solving for C , we obtain

k ¢ 4me? 52
G = Zﬁgﬂc [u— w + mk?2 P/dv" v, —u

. 1k [ uer — C—J- (522)

Substituting the above into (520) and using the definition of the transverse di-

electric function, (506), we find

ik 11 c?
b (uv) = Z’/r—t;g v, €n(k,v,) = Pu_-———q—}— + (v, &2 (kv,) = —| 8(u—v,)
i lI
ik
= £,5(uy,). (523)
Thus we have
ik

10,0 = 1 [E, )5, (wr,). (524)

Again notice that the van Kampen mode, G, is the same as the kernel of the

transform that was used to diagonalize the transverse motion.

2. Completeness of the Solutions

The last step it to show that the general solution is given by a sum over the van
Kampen modes, that is to show that the van Kampen modes are a complete basis

for expanding a general solution. With G, and G, given by

S,(w9,) = (5,9, - P—— + &X(k,,)6(u ~ v,), (5250)

I

2
” ] 6(u~v,), (525h)

ST(’U:,’U“) II T(k 'U ) 1 Pu__l—v— + l' 1 T(k v )
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we interpret £, (u) and £ ; (u) as the coefficients of the basis functions, §, and G,
in the expansion. Thus we have to show that the general solution, f{; and £

can be written as

1 k ethT—tku
1 (,0,1) = 22 /du ik gikm=ikitg (u,0)€,(u),  (526a)
(1)(1: 'U",t 2Z/d Zk 2km Zkutg (u ’U“) -Lk( ) (526b)

In both cases, these completeness requirements amount to the ability to expand

the appropriate initial condition. Thus we need to show that

fun(v, /dug u,v,) €, (u), (527a)

Frv) = 4”“ /dug (u,9,) € 4(u), (527b)

where f,, (v ) and f,;(v,) are the values of £ and £ at ¢ = 0 respectively, can

be solved for Snk and £ ;.

I. SOKHOTSKI FORMULZE

In solving these equations, we make use of the Sokhotskil®8l formulz. Let ¢ € H*

for some p. Then the functions ®* and @~ defined by
1 (=)
() — = !
® (x>—2¢z>+2w.P/d Al (5280)
o (z) = )+ —P/ A2y (5285)

are limiting values of functions analytic in the upper (®*) or lower (®~) half plane
as the real axis is approached from above or below respectively. The functions &%

and ®~ also belong to the class H~.
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Two immediate consequences of (528) are

¥ (z) — 7 (2) = ¢(z), (529a)
- 1 $() =
+ -+ P\
d7(z)+ @ (m)—m,P dz i id. (5290)
The splitting of an arbitrary Holder function into the into “+” and “~” parts as

defined by (529) is unique.®?

II. THE LONGITUDINAL CASE
We start with the longitudinal case. To solve (524) let

0,(u) = Zi:‘egnk(“)’ (530)

where the k dependence in o, will be temporarily suppressed. Then (524) now

reads

fu(v,) = /du S, (wv,)o,(u)

o, (u)

U —

= e2(0)0,(s,) + ,(0,) 1 P du (531)

Using the notation introduced in (529a) and (529b) an assuming f, € H, this

becomes

Ff—F; =€ (5f - 57) +id (5F +27)
=Lt - X"

=Tt —¢ 3, (532)

L

where the last line follows from the definition of €, (v) as the limiting value as v

approaches the real axis of a function analytic in the upper half-plane. Since the
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splitting is unique this can be separated into two independent equations:

F}=¢, I, (533a)
F=—€ X (533b)

L

Provided ¢, has no root in the upper half-plane (including the real axis) then the

same is true of €} in the lower half-plane and (533) can be readily solved to give
Tt =Lt (534a)

I =L (534b)

and

+ —
o= F_EL

*
€, €

1 N _
= |2 [ELF:--FGLFL]

le.

1 _ . _
:W[Ef(Fj_FL)-}'%i(FL +FL+)]
L

Gf(u) (’U,)+ 62(7“”) lP/du' Lk(u,)

le, ()P e @)

= / ' G (o) £ (), (535)

giving
4re

Ey(1) = —= /du' S, (k,u',u) £, (o). (536)
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IITI. THE TRANSVERSE CASE

The transverse case proceeds along virtually identical lines. Put
(W) = 2w £,4(w) (557)
o, (u) = —u€,(u),

where again the £ dependence has again been suppressed. From (519), we see
that o, (u) and o, (u)/u? are well-defined for all v and consequently so are X+
and X% /u2.

Substituting this into (525) gives

c? 1 o(u
For(v,) = [eﬁ(v") - v_} o (v,) + e (v) ;P du *—_()— (538)
I I
Using the Sokhotski formulae, we write the above as
+ c? + c
— * —
FT — FT = [CT - FJ 2;_ - [ET - ;L_i:l E_L . (539)

Once again appealing to the uniqueness of the splitting we see that

2
Ft = [GT - %} =+ (540a)
62
Fr=-— [e; - ?] - (5400)

Provided that ¢, — c¢?/u? has no roots in the upper half-plane or on the real axis,

the same will be true of €&, — ¢?/u?; and we can solve (540) giving

o (u)=3t - X
___Ff F

T —cu e —ctlu

= /du' §T(u’, u) ka(u') , (541)
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which in turn gives
4me 1S ,
E,.(u)= e du' G .(u',u) £ (u'). (542)

We have shown that the van Kampen mode solution for both the longitudinal
and transverse equations are complete in the sense that they can be used to
represent an arbitrary (Holder) initial condition and hence the general solution

can be constructed by summing these modes.



Appendix D

Functional Derivatives
and Change of Variables

The goal here is to examine the behaviour of the functional derivative under a
change of variables. This is of central importance in determining how a Poisson
bracket will transform when a new set of field variables is introduced. Let ¢ be
some function of z and let F' be a functional of ¢. Consider a general transfor-

mation

P(z) = Flg)(z). (543)

That is, we consider the case where the new field % is a functional of the original
field.'9 We do not require that this transformation be invertible. The reason
for this is independent of the invertibility of &, for every variation in F due to
a variation in %, there is a corresponding (not necessarily unique) variation in ¢
that gives rise to the same variation in F'. For simplicity, we assume that the
domain of 9 is the same as ¢. Through (543) we can view F' as a functional of 9,

which leads to two equivalent expressions for the variation in F:

OF = d:l: —_— (544a)

¢
6F 59
do W}(w /d 55000 (544)

Taking the functional derivative of the transformation yields:

67# _
7k [1, (545)
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where we now interpret -] as an operator. From the expression for §F we find
OF oF OF
—6¢ = il = t—= ]
/d:c 7 8¢ /da: (w&"[éqﬁ] /dx&' [M}}&ﬁ, (546)
where F1 is the adjoint of F and is defined by
/dxﬂ&"[cp] - /dwsrf (4. (547)

Since 6¢ is arbitrary, we conclude

6F 6F

— =gt|=]. 548

i [6«/)] (548)
In the case where the inverse transformation, 5', exists we also have

OF  ~, [6F

— =gt|=|. 549

5= %) (549)

This has an immediate generalization. Let {¢,}, a = 1...N be a set of

functions of z and F be any functional of {¢,}. Consider the transformation

where M and NV are not necessarily equal. Following the same reasoning as above,

one can show - N 50 ; -
or _ el |2
5, ~ 2 [6¢a] Lwa] (551)

We now use this to establish two results that will be of considerable use.
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1. Directional Functional Derivatives

Let X be a vector valued function of », F' be a functional of X and k be a
unit vector that may be depend on . We can decompose X into its projections

parallel and perpendicular to k, viz

X=kX +X, (552)
where
X =k-X, (553a)
(Xx,), =05 X;, (553b)
and
k=6, —k.k (554)

This decomposition can be viewed as a change of variables from X to X and X .

In this case it is easy to see that the operators

— = k.
X, = Fi (555a)
5XJJ' k
> =115, (5550)
are both are self-adjoint. Using (551), we find
§F ~ 6F v OF
5x, ~ Msx, THhisx (556)
from which, we deduce
oF 6F

and
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oF 6F
(—5(? = (5—}—{—1 . (558)

2. Fourier Transforms and Functional
Derivatives

Taking a Fourier transform can be thought of as a change of coordinates.!!] Let 1

be an L? function of k - 7. We define the Fourier amplitudes, Yy, by
2 —ikm
U =77 [doeTiy(r) = Fy [yl (559)

where kr = k -r. The inverse transformation is given by
R ;
P(r) = 5 Z ¢kelkr'" (560)
k=—00

If 9 is also a function of v or ¢, then v, will depend on these variables as well.

Using the chain rule, (548), we have

6F— .- ] _E — = il‘”ﬁlé_}Tl
% 2 Mg = 2 60

k=—0c0 k=—o00 k

Applying the inverse transform to (561) we obtain

- =Xz iy Z—_ 2
50, V/d:z:e 5 (562)



Appendix E
Velocity Moments

In taking velocity moments of the equations of motion and in the brackets, there

are certain integrals that must be evaluated. There are three basic integrals that

arise:
)
/ d? 'vL 6f ,
(©)
/ d2'v_Lv 6f ,
L 311“
and
af @
2
/ 4, v, 90,

Recall that f© is isotrepic, that is

o) = 1o (o)

Thus
af(o (0)/ 'U“ o)/
Bv =f -;f
and
0
af( ) f(o)l — 'if(")’.
)
Hence
Lo 1040 105
vty du, vy By

The first integral is easily evaluated:

af(o) r
2 — 2 © — £/
% e
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(563)

(564)

(565)

(566)

(567)

(568)

(569)

(570)



The second integral is also straightforward to compute:

5f(°) 3f(0)
2 —
/dvlv o —/ dve/ dy, v"ﬂ,u e

L L

©
=, d'ua / dv_ v, 88]‘

where v, is the polar angle between v, and the z-direction. Since

27

we obtain
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(571)

(572)

(573)

Evaluating the third integral is somewhat more involved. We start by choos-

ing the orientation of our coordinate system so that Z is parallel to k. Further

we can orient the remaining directions so that

Y, =705V and 1y, =7 sinv,.
Then ,
cos“vy  sinvgcosvy O _
.20 . . —.2
U;%j =Y | sinvgcosy, sin? v, 0 = 9" 0,;(vp) -

0 0 0 i
Thus we have

L) Hf©
/dzfuiv“v* f /dve /de 'uuvuq f

()

_'u/dve /d'vlv“vl] 6f
EYC)

_v"/dvo 2]/dv 2af

(574)

(575)



= ~2v, /dvo 0, /va_ v f©

1
= -2, /dvo ©; o d*v, f©

The integral over v, can be easily computed. Doing so, one finds

/dve Oy =165,
where 4, 1s the perpendicular projection of 6

8 .—H’°H’c 5 =TIk

n-Tmji o nm 5

where

Thus we find
(0
/dzfv vL-vL-af— =Tk y f“(").

J Ov 1] ||
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(576)

(577)

(578)

(579)

(580)
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