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A unified thermodynamic algorithm is presented for constructing thermodynamically consistent dynamical
systems, i.e., systems that have Hamiltonian and dissipative parts that conserve energy while producing entropy.
The algorithm is based on the metriplectic 4-bracket given in Morrison and Updike [Phys. Rev. E 109, 045202
(2024)]. A feature of the unified thermodynamic algorithm is the force-flux relation Jα = −Lαβ ∇(δH/δξβ ) for
phenomenological coefficients Lαβ , Hamiltonian H , and dynamical variables ξβ . The algorithm is applied to
the Navier-Stokes-Fourier, the Cahn-Hilliard-Navier-Stokes, and Brenner-Navier-Stokes-Fourier systems, and
significant generalizations of these systems are obtained.
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I. INTRODUCTION

Metriplectic dynamics was established in the 1980s [1–3]
to provide a framework for describing joined Hamiltonian and
dissipative dynamics with the property that thermodynamic
consistency is guaranteed. (See [4–7] for different attempts
at incorporating dissipation in a framework.) Thermodynamic
consistency means the joined Hamiltonian and dissipative
system conserves energy, consistent with the first law of
thermodynamics, and produces entropy, consistent with the
second law.

In 1997, the name GENERIC was proposed [8,9] for a
framework that is equivalent to metriplectic dynamics (see
page 11 of [10]). In a sequence of works [8,9,11] these
authors were the first to explicitly incorporate ideas from
nonequilibrium thermodynamics (e.g., [12]) into the frame-
work. Specifically, Onsager’s reciprocal relations [13,14]
were employed to ensure entropy production. More recently,
the same connection between nonequilibrium thermodynam-
ics theory and metriplectic dynamics was made in [15] for a
general class of magnetofluid models and, more generally in
[10], where the metriplectic 4-bracket, a convenient quantity
for constructing thermodynamically consistent systems, was
introduced.

In the theory of nonequilibrium thermodynamics, it is as-
sumed that the fluxes, say Jα , are typically linear functions
of thermodynamic forces (sometimes called affinities), say
Xβ ; i.e.,

Jα = LαβXβ, (1)
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where Lαβ is a symmetric matrix, α and β are indices for the
set of dynamical variables, and the repeated β index is to be
summed.

In our previous work [16], we proposed an algorithm for
constructing a metriplectic 4-bracket and, consequently, a
means for producing thermodynamically consistent systems.
This was done for a general Navier-Stokes Cahn-Hilliard
system, a model for two-phase flow. The algorithm has the
following four steps. (1) First, select a set of dynamical
variables. (2) Next, select energy and entropy functionals,
H and S, dependent on the dynamical variables, based on
the physics of the phenomena to be described. (3) The third
step is to obtain the noncanonical Poisson bracket [17] of
the ideal (nondissipative) part of the theory, with the chosen
entropy as a Casimir invariant. (4) The final step is to construct
a metriplectic 4-bracket. We will refer to the algorithm as
the “unified thermodynamic algorithm” or UT algorithm for
short.

The present work differs from previous work by singling
out a particular way to take step (4), one that has significant
consequences. In previous works [10,16,18], step (4) relied on
past experience and intuition. As with previous work, this final
step of the UT algorithm makes use of the Kulkarni-Nomizu
(K-N) product [19,20] of two operators M and �. However,
the burden of determining the two operators is made algorith-
mic and leads to several desirable properties. For example,
a preferred choice of thermodynamic forces and fluxes is
obtained, which are seen to be related in a manner different
from the Onsager reciprocal relations of Eq. (1), viz.,

Jα = −Lαβ ∇(δH/δξβ ), (2)

where ξβ are a specific set of dynamical variables from
step (1) of the UT algorithm, H is the Hamiltonian as ob-
tained from step (2), and δH/δξβ is the functional derivative.
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Tensorial consistency and the Curie symmetry principle [12]
follow automatically from Eq. (2). In addition, we will see
that expression (2) is intimately connected to the distinc-
tive physical roles played by M and �, which guide their
determination. Another consequence of our new step (4) of
the UT algorithm is an unambiguous distinction between
thermodynamic variables that enter a system because of the
assumption of local thermodynamic equilibrium from those
that enter in the phenomenological coefficients. We also note
that expression (2) can be further generalized [see Eq. (33)
below] by replacing ∇ with any pseudodifferential operator
that has an adjoint instead of a simple spatial gradient. This
adjoint assumption is crucial for obtaining general classes of
metriplectic 4-brackets.

Consequently, the algorithm can proceed using the inputs:
the Hamiltonian functional H , the entropy functional S, and
the unknown coefficients Lαβ . Specification of H requires a
choice for the internal energy, a function of thermodynamic
variables that determines the equations of state. This em-
bodies the assumption of local thermodynamic equilibrium.
The dependence of the phenomenological coefficients Lαβ

on thermodynamic variables, however, provides another chal-
lenge. They may come from experiments, dilute liquid/gas
kinetic theory, the Green-Kubo formalism [12], or molecular
dynamics simulations. We emphasize that the UT algorithm
has the new feature of clearly distinguishing dependencies
on dynamical and thermodynamic variables that arise from
the forces determined by δH/δξβ from those determined by
phenomenological coefficients Lαβ .

A point regarding the UT algorithm that is not addressed
here is why the K-N form is used at all. This is a deeper
question which could be addressed by appealing to general
principles of an underlying kinetic theory. The universality of
the 4-bracket applicability, ranging from various collisional
kinetic theories to a large variety of complex fluids, suggest
that this might be possible.

This paper is structured as follows. In Sec. II, we provide
an overview of the metriplectic framework, where founda-
tional concepts are reviewed, starting with the Hamiltonian
formalism (Sec. II A) and moving to the metriplectic 4-bracket
formalism (Sec. II B). At the end of this section we discuss
the critical features needed in order to develop a system-
atic method to build the metriplectic 4-bracket. In Sec. III,
we focus on the derivation of the metriplectic 4-bracket.
Here, a systematic approach to the theory is developed
(Sec. III A), followed by a discussion on the relationship
to nonequilibrium thermodynamics principles (Sec. III B).
In Sec. IV, we present three examples to illustrate the
application of the developed theory by applying the UT
algorithm. Specifically, the Navier-Stokes-Fourier (NSF) sys-
tem (Sec. IV A), the Cahn-Hilliard-Navier-Stokes (CHNS)
system (Sec. IV B), and the Brenner-Navier-Stokes-Fourier
(BNSF) system (Sec. IV C) are explored as cases demon-
strating the theory’s flexibility and general applicability. We
observe that the NSF and BNSF systems are special cases of
a general theory we develop. Finally, in Sec. V we briefly
summarize and make a few comments about ongoing and
future work.

II. OVERVIEW ON METRIPLECTIC FRAMEWORK

A. Hamiltonian formalism

Let us briefly recall the Hamiltonian formalism in infinite
dimensions. The first step of the UT algorithm presented in
[16] involves selecting a set of dynamical variables. It is
preferable to choose conserved quantities as the variables.
For example, in fluid dynamics, one might select the mass
density, momentum density, and entropy density. In general,
we consider the dynamics of classical field theories involving
multi-component fields

ξ(z, t ) = (ξ 1(z, t ), ξ 2(z, t ), . . . , ξN (z, t )) (3)

defined on z = (z1, z2, . . . , zn) ∈ � for times t ∈ R. Here, we
use z to be a label space coordinate with the volume element
dnz, but with the domain � unspecified. For example, in
fluid mechanics � would be the three-dimensional domain
occupied by the fluid and we will use x = (x1, x2, x3) to
indicate a point in � for this case. In general, we suppose that
ξ 1, . . . , ξN can be real-valued scalars or densities defined on
space-time � × R, vector fields in the tangent or cotangent
bundles of the manifold �, or even elements in its tensor
bundle. Thus, for some α, ξα could be a scalar, a vector, or
any tensorial quantity that is convenient for the system being
described. We will forgo formal geometric considerations and
suppose our infinite-dimensional phase space has coordinates
ξ = (ξ 1, . . . , ξN ) and observables are functionals that map
ξ �→ R at each fixed time. We will denote the space of such
functionals by B. Then a Poisson bracket is an antisymmetric
bilinear operator

{ ·, · } : B × B → B, (4)

where this bracket is assumed to satisfy the Jacobi identity,
{{F, G}, K} + {{K, F }, G} + {{G, K}, F } = 0, thereby pro-
viding a realization of a Lie algebra [see, e.g., [21] Chap. 14],
and, in addition, fulfill the Leibniz rule. A general infinite-
dimensional form of this bracket, for any given two function-
als F, G ∈ B, can be written as follows:

{ F, G } =
∫

�

dnz
∫

�

dnz′ J αβ δF

δξα (z)

δG

δξβ (z′)
, (5)

where J αβ (z, z′) is a 2-tensor functional operator that is
antisymmetric, with coordinate form given by the following
integral kernel:

J αβ (z, z′)[ξ] = J (dξα (z), dξβ (z′))[ξ],

where α, β range over 1, 2, . . . , N , and δF/δξα , δG/δξβ are
the functional derivatives (see, e.g., [17] for a formal review
of these notions).

Upon inserting any functional of ξ, say an observable ξα ,
into the Poisson bracket its evolution is determined by

∂tξ
α = {ξα, H}, (6)

where H[ξ] ∈ B is a Hamiltonian functional. Here and hence-
forth we use the shorthand ∂t = ∂/∂t for the partial derivative
with respect time and we will use an overdot to mean the total
derivative d/dt , i.e, Ḟ = dF/dt . For example, the evolution
of the Hamiltonian functional is given by Ḣ = {H, H} = 0
due to the antisymmetry of the bracket. We will also use the
shorthand ∂i = ∂/∂zi for the partial derivative with respect to
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the spatial variable zi. Casimir invariants are special function-
als C that satisfy {F,C} = 0 for any functional F , and thus are
constants of motion for any Hamiltonian.

The second step of the UT algorithm is the selection of
the Hamiltonian functional and a Casimir invariant to serve
as the entropy. The choice of these functionals is based on
the physics of the phenomena one wishes to describe. How-
ever, across all the cases we have examined, the Hamiltonian
functional is the total energy of the system and the usual total
entropy of the system is a Casimir invariant.

The construction of the noncanonical Poisson bracket (5)
is the third step of the UT algorithm. Since the publication
of [22], there is a huge literature on this for a variety of
systems (e.g., [10,15,17,18,23–26] give Poisson brackets for a
great many systems, including fluid dynamics, magneto-fluid
dynamics, two-phase fluid dynamics, plasma kinetic theory,
and so on).

B. Metriplectic 4-bracket formalism

Step (4), the final step of the UT algorithm, is the con-
struction of the metriplectic 4-bracket. This construction
was introduced in [10] to describe dissipative dynamics.
We briefly recall the metriplectic 4-bracket description for
infinite-dimensional systems. In this description, we consider
the dynamics of classical field theories with multi-component
fields, as presented in Eq. (3). We define the 4-bracket on
functionals as

( ·, · ; ·, · ) : B × B × B × B → B, (7)

such that for any four functionals F, K, G, N ∈ B we have

(F, K ; G, N ) =
∫

�

dnz
∫

�

dnz′
∫

�

dnz′′
∫

�

dnz′′′ R̂αβγ δ

× δF

δξα (z)

δK

δξβ (z′)
δG

δξγ (z′′)
δN

δξ δ (z′′′)
, (8)

where R̂αβγ δ (z, z′, z′′, z′′′) is a 4-tensor functional operator
with coordinate form given by the following integral kernel:

R̂αβγ δ (z, z′, z′′, z′′′)[ξ]

= R̂(dξα (z), dξβ (z′), dξγ (z′′), dξ δ (z′′))[ξ],

where α, β, γ , δ range over 1, 2, . . . , N . The 4-bracket is as-
sumed to satisfy the following proprieties:

(a) Linearity in all arguments, e.g, for all λ ∈ R

(F + λH, K ; G, N ) = (F, K ; G, N ) + λ(H, K ; G, N ) (9)

(b) The algebraic symmetries

(F, K ; G, N ) = −(K, F ; G, N ), (10)

(F, K ; G, N ) = −(F, K ; N, G), (11)

(F, K ; G, N ) = (G, N ; F, K ). (12)

(c) Derivation in all arguments, e.g.,

(FH, K ; G, N ) = F (H, K ; G, N ) + (F, K ; G, N )H. (13)

Here, as usual, FH denotes point-wise multiplication.
One way to create a specific metriplectic 4-bracket that has

the requisite symmetry properties from Eqs. (9)–(13) is by

using the Kulkarni-Nomizu (K-N) product [19,20]. (See also
[27] for relevant theorems.) Given two symmetric operator
fields, say � and M, the K-N product is defined as follows:

(� ∧ M )(dF, dK, dG, dN ) = �(dF, dG)M(dK, dN )

− �(dF, dN )M(dK, dG)

+ M(dF, dG)�(dK, dN )

− M(dF, dN )�(dK, dG).
(14)

Thus, consistent with the bracket formulation of Eq. (8), we
define a 4-bracket according to

(F, K ; G, N ) =
∫

�

dnz W (� ∧ M )(dF, dK, dG, dN ), (15)

where W is an arbitrary weight function, depending on ξ and
z, that multiplies � ∧ M. For the general forms of the bilinear
operators � and M, we refer to [10,16]; here, we omit the
details for brevity.

The 4-bracket tool plays a crucial role in the dissipa-
tive description of dynamics, provided it satisfies certain
properties which guarantee the thermodynamic consistency—
namely, the first law (energy conservation) and the second
law (entropy production). These properties are referred to as
“minimal metriplectic properties”.

Let H be the Hamiltonian functional associated to the
Poisson bracket (5) and S its Casimir invariant. As we men-
tioned previously, in the vast majority of infinite-dimensional
dynamics, particularly in fluid dynamics, H and S present
the total energy and the total entropy, respectively. Thus,
the minimal metriplectic properties are the combination of
the requisite symmetries (9)–(13) and the positive semi-
definiteness in the following manner: The sectional curvature
defined as K (H, S) := (S, H ; S, H ) should be non-negative

K (H, S) � 0. (16)

The 4-brackets arising from a K-N product (15), will have the
minimal metriplectic proprieties if both � and M are positive.
If one of � or M is positive definite, defining an inner product,
then the sectional curvature satisfies (S, H ; S, H ) � 0 with
equality if and only if δS/δξ ∝ δH/δξ. The proofs of these
results were first established in [10] for the finite-dimensional
case and later extended to the infinite-dimensional case
in [16].

Now, for any observable functional of ξ, say ξα , its dissi-
pative evolution is prescribed by

∂tξ
α = (ξα, H ; S, H ). (17)

Thus, we have thermodynamic consistency because

Ḣ = (H, H ; S, H ) ≡ 0, (18)

Ṡ = (S, H ; S, H ) = K (H, S) � 0, (19)

where Eq. (18) follows from the antisymmetry condition of
Eqs. (10) and (19) follow from Eq. (16), i.e., that the sectional
curvature is non-negative.

We remind the reader, that the 4-bracket automatically
gives metriplectic 2-brackets (see [10] for discussion), such
as those in the early works [1–3] via (F, G)H = (F, H ; G, H ).
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Because of the symmetries of the 4-bracket, Ḣ will vanish for
any H , as opposed to designing the earlier 2-brackets to make
this happen for specific Hamiltonians.

In our previous work [16], the fourth and final step of the
UT algorithm was achieved by constructing the 4-bracket via
the K-N product using the following general forms for the
bilinear operators � and M:

M(dF, dG) = Fξα AαβGξβ , (20)

�(dF, dG) = L(α)(Fξα ) · Bαβ · L(β )(Gξβ ), (21)

where we compactified our notation by defining Fξα:= δF/δξα

and Fξ := (Fξ 1 , Fξ 2 , . . . , FξN ). Here, the repeated indices are to
be summed, Aαβ and Bαβ are symmetric in α, β = 1, . . . , N ,
i.e., Aαβ = Aβα and Bαβ = Bβα , and L(α), for α ∈ {1, . . . , N},
is contained within a general class of pseudodifferential op-
erators on B. We have placed parentheses around the upper
index of L(α) to emphasize that this index is not to be summed.
When a specific value is placed in this slot there is no con-
fusion and the parentheses will be dropped. We will see later
that the parameters Aαβ and Bαβ could be scalars, 2-tensors, 3-
tensors or even 4-tensors, depending on the tensorial character
of ξα and the type of dissipation phenomena. The “·′′ of Eq.
(21) then symbolizes the appropriate contractions.

This final step of the UT algorithm, as implemented in
the previous works [10,16,18], has two avenues for criticism.
First, in the examples of previous works, in particular for the
NSF and CHNS systems, the definitions of M and � were
not established in a systematic or methodological way. Rather,
they were engineered to give desired results. Second, since
we aim to develop a general dissipative dynamics formalism,
independently of specification of the thermodynamics, it is
reasonable that quantities should depend only on the selected
set of dynamical variables, with the exception of coefficients
of phenomenological laws. For example, in previous works,
various factors of 1/T were inserted in various places in an
ad hoc manner. Is this inserted temperature determined by the
internal energy function of H or is it some other phenomeno-
logical assumption?

In Sec. III A, we will propose an unambiguous method
for choosing the operators M and �, and thereby overcome
these criticisms by a direct construction of the metriplectic
4-bracket. This approach is general and applicable to a broad
range of infinite-dimensional systems. Various types of fluid
dynamics, magnetofluid dynamics, two-phase fluid flows, and
so on, are particular cases. We will show how our construction
can significantly generalize systems in the literature.

III. DERIVATION OF METRIPLECTIC 4-BRACKETS

A. Systematic development of the theory

In this section we give our method for constructing the
metriplectic 4-bracket. Thus, as discussed in Sec. II B, the UT
algorithm becomes complete if we accomplish the final step
by selecting the bilinear symmetric operators M and � of the
K-N product. We provide a direct procedure for making these
selections.

En route to our goal, we make some notational choices.
In the first step of the UT algorithm, the selected set of dy-

namical variables defined on space-time � × R was defined
as follows:

ξ(z, t ) = (ξ 1(z, t ), ξ 2(z, t ), . . . , ξN (z, t )), (22)

where we previously commented that it is preferable to choose
the ξα to be densities. To be more specific, here we suppose
ξ 1(z, t ), ξ 2(z, t ), . . . , ξN−1(z, t ) satisfy conservation laws and
the last component, ξN , represents the entropy density, i.e, the
entropy per unit volume. In practice the various ξα besides the
entropy ξN may, based on the physical properties under con-
sideration, have particular tensorial qualities, e.g., they may be
scalars, vectors, or tensors or pseudo-tensors of arbitrary rank.
To avoid a clutter of notation, we will not be explicit about
this tensorial character, but strive for a notation that makes
it clear how to proceed in particular cases. The examples of
Sec. IV should help clarify this. We also assume � denotes
an arbitrary domain of Rn with ∂� being its boundary. For
convenience, we will omit the incremental volume element
dnz for integrations over �, i.e.,

∫
�

= ∫
�

dnz. We assume
strong boundary conditions such that all integrations by parts
produce vanishing boundary terms.

Given our choice of ξN as the entropy density, the total
entropy is evidently given by the following:

S[ξ] =
∫

�

ξN . (23)

This functional is required to be a Casimir invariant of the
noncanonical Poisson bracket { ·, · }, which one is assumed to
have found in the third step of the UT algorithm, i.e.,

{F, S} = 0, ∀F. (24)

The Hamiltonian functional H associated to the noncanonical
Poisson bracket { ·, · } is given by

H[ξ] =
∫

�

h, (25)

where h, the Hamiltonian density, in general depends on all
the variables ξ 1, ξ 2, . . . , ξN . We will take H to be the total
energy, as is indeed the case for the examples mentioned in
Sec. II A. The evolution of the dynamical variables in the ideal
case, i.e., when dissipation is not included, is given by

∂tξ
α = {ξα, H}, α = 1, 2, . . . , N. (26)

Now it remains to add to Eq. (26) the dissipative evolution,
which has the following natural combined form:

∂tξ
α = {ξα, H} + L(α) · Jα, α = 1, . . . , N − 1, (27)

∂tξ
N = {ξN , H} + L(N ) · JN + Zα · L̃αβ · Zβ. (28)

Equation (27) is the sum of two conservative terms, the first
being Hamiltonian while the second is dissipative. In this
second expression α is not summed, but a particular operator
L(α) may act on each flux Jα . Recall, this was the purpose of
the parenthesis. If ξα were a rank m tensor, then usually Jα

would be of rank m + 1 with the contraction indicated by “ · ”
providing tensorial consistency. However, we leave open the
possibility that L(α) may contribute to tensorial consistency.
For usual nonequilibrium thermodynamics L(α) = −∇, for
all α, and the conservative form of Eq. (27) is manifest.
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Equation (28) similarly has conservative terms, but the ad-
dition of the last term is responsible for entropy production.
Because ξN is a scalar density, JN is a vector and the con-
tractions of Zα · L̃αβ · Zβ between some “vector fields” Zα

and a quantity L̃αβ produces the correct tensorial form. Since
the entropy production must be guaranteed, we assume L̃αβ is
symmetric and positive semidefinite, giving

Ṡ =
∫

�

Zα · L̃αβ · Zβ =:
∫

�

σ̇ prod � 0. (29)

The construction above is similar to that presented in [[15],
see page 14], in order to construct a general form of metriplec-
tic 2-bracket. However, there the pseudodifferential operators
were all taken to be spatial gradients, i.e., L(α) := −∇. Here,
we generalize this by supposing each operator L(α) has an
adjoint L(α)

∗ defined with respect to the standard inner product,
i.e., ( f , g) = ∫

�
f g, which of course is the case for ∇, where

∇∗ = −∇.
What we have accomplished so far is the first step of

the anlysis-synthesis method, the analysis phase. With this
method we work backwards from the desired form of the
dynamical Eqs. (27) and (28). In the second step, the synthesis
phase, we determine explicitly the quantities Jα , Zα , and L̃αβ .
We will show that these quantities are expressed in terms of
the functional derivatives of the Hamiltonian Hξα . To be clear,
we remind the reader that the goal of this analysis-synthesis
process is to construct the operators M and �.

Given any functional F [ξ], we have the basic identity

Ḟ [ξ] =
∫

�

δF

δξα
∂tξ

α. (30)

This follows upon assuming � is fixed and boundary
terms vanish, which we have assumed throughout. Applying
Eq. (30) to H and using our notation Hξα = δH/δξα , we
obtain upon substitution of Eqs. (27) and (28)

Ḣ [ξ] =
∫

�

Hξα L(α) · Jα + HξN Zα · L̃αβ · Zβ

=
∫

�

Jα · L(α)
∗ Hξα + HξN Zα · L̃αβ · Zβ. (31)

To ensure energy conservation, Eq. (31) must vanish. Simple
and natural choices that achieve this end are the following
generalized force-flux relations:

Zα = L(α)
∗ Hξα , (32)

Jα = −HξN L̃αβL(β )
∗ Hξβ . (33)

To understand these formulas, consider the standard case
where L(α) = −∇ for all α. This gives the force-flux relations,

Zα = ∇Hξα , (34)

Jα = −HξN L̃αβ∇Hξβ = −Lαβ∇Hξβ , (35)

where in the second equality of Eq. (35) we have made com-
parison with Eq. (2). Thus,

Lαβ = HξN L̃αβ (36)

and we see that the Lαβ of Eq. (2) is not the same as L̃αβ of
Eq. (28). If the Hamiltonian obtains its σ dependence in the

standard way via an internal energy function, we will see that
these quantities differ by a factor of T , i.e.,

L̃αβ = Lαβ/T . (37)

Now, we are in position to determine the M and � of the
K-N product and hence the metriplectic 4-bracket. We are led
to the following choices:

M(dF, dG) = FξN GξN , (38)

�(dF, dG) = L(α)
∗ (Fξα )L̃αβL(β )

∗ (Gξβ )

= L(α)
∗ (Fξα )

Lαβ

HξN

L(β )
∗ (Gξβ ). (39)

Here, we have chosen the simplest form for M, which singles
out entropy, and makes the meaning of � perspicuous.

Constructing the 4-bracket with these choices of M and �,
according to

(F, K ; G, N ) =
∫

�

(� ∧ M )(dF, dK, dG, dN ), (40)

gives Eqs. (27) and (28), in metriplectic form, viz.,

∂tξ
α = { ξα, H } + (ξα, H ; S, H ), ∀α = 1, . . . , N. (41)

Manifestly, Eq. (18) is satisfied and we have for (19)

Ṡ = (S, H ; S, H ) = K (H, S) =
∫

�

�(dH, dH )

=
∫

�

L(α)
∗ (Hξα) L̃αβL(β )

∗ (Hξβ) � 0. (42)

Comparison with Eq. (29) reveals σ̇ prod becomes

σ̇ prod = �(dH, dH ) = L(α)
∗

(
Hξα

)
L̃αβL(β )

∗
(
Hξβ

)
= L(α)

∗
(
Hξα

)Lαβ

HξN

L(β )
∗

(
Hξβ

)
. (43)

Thus, the theory is complete once the phenomenological coef-
ficients Lαβ are determined. We reiterate that our construction
clearly delineates between the phenomenological laws em-
bodied in Lαβ and the local thermodynamics contained in
the Hamiltonian, e.g., in the internal energy function. Also,
choosing M, as in Eq. (38), endows � with the physical mean-
ing inherent in Eqs. (42) and (43), relating entropy production
and sectional curvature.

We comment further on these coefficients in the context of
nonequilibrium thermodynamics theory in Sec. III B.

B. Nonequilibrium thermodynamics theory

Many phenomena can be described by the idea that fluxes
are caused by gradients of quantities, which are viewed as
the thermodynamic forces. For example, Fourier’s law re-
lates heat flow to temperature gradients, Fick’s law relates
diffusion to concentration gradients, and in the Navier-Stokes
equation momentum flux is related to velocity gradients. In
nonequilibrium thermodynamics this is generalized by as-
suming fluxes are linear combinations of thermodynamic
forces and, thereby, allowing for cross-effects. This is the
essence of the Onsager reciprocal relations [13,14], which are
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here represented by the force-flux relations of Eq. (1) (see,
e.g., [12]).

For gaseous systems, an underlying kinetic theory can
provide a justification for the phenomenological relations em-
bodied in the Lαβ . This is the case for low-density gases, but,
in general, such calculations are difficult or even prohibitive.
However, many irreversible processes are empirically seen
to be governed by linear relations between fluxes and forces
[28] and, in this way, the Lαβ are provided. However they are
provided, our theory leaves open the possibility that they can
depend on all the dynamical variables.

Returning to the theory developed in Sec. III A, we ob-
serve from Eq. (33) that the thermodynamic forcelike terms
now take the new form L(α)Hξα , where H is the Hamiltonian
functional [cf. Eq. (2)]. In Sec. IV, we will confirm that our
new form L(α)Hξα can match known examples and that our
last step of the UT algorithm leading to the metriplectic 4-
bracket provides a means for generalizing known examples
and providing new thermodynamically consistent theories.

IV. EXAMPLES

In this section, we will give three examples. For all the
examples, we consider the case where we have a single
real-valued field variable, depending on one space- and one
time-independent variable, ξ(x, t ) where x = (x1, x2, x3) is
a Cartesian coordinate for a fluid contained in a volume �.
Throughout the following, we use boldface to denote vectors,
an over bar to denote rank-2 tensors, and a double over bar to
denote rank-4 tensors.

A. Navier-Stokes-Fourier (NSF)

As a first example, we begin with the NSF system, which
was previously considered in [2,10,16,29]. En route, we find
the algorithm produces a significantly more general system
that contains the NSF as a special case.

First step of UT algorithm. We choose the set of fluid
variables as follows:

ξ(x, t ) = (ρ(x, t ), m(x, t ), σ (x, t )), (44)

where ρ is the mass density, m = ρv is the momentum density
with v being the Eulerian velocity field, and σ is the entropy
density. Observe we have singled out the entropy density σ as
the last variable, consistent with Eq. (22).

Second step of UT algorithm. Consistent with Eq. (23),
we take the total entropy to be the integral of the last
component

S =
∫

�

σ. (45)

A natural choice of Hamiltonian functional for NSF is

H =
∫

�

|m|2
2ρ

+ ρ u(ρ, σ/ρ), (46)

the sum of fluid kinetic energy and ρ times the specific in-
ternal energy u, which is known to be conserved by the NSF.
More general Hamiltonians including, e.g., the gravitational
force would be straightforward. The usual thermodynamic

relations are

p = ρ2 ∂u

∂ρ
and T = ∂u

∂s
, (47)

where the specific entropy s = σ/ρ. Alternatively, we can
leave the Hamiltonian unspecified, i.e., let it be any functional
H[ρ, m, σ ]; independent of its form, any H will be conserved
by the metriplectic 4-bracket dynamics.

Third step of UT algorithm. The appropriate Poisson
bracket is the so-called Lie-Poisson bracket given in Eq. [22].
For two functionals F, G ∈ B it is defined as follows:

{F, G} = −
∫

�

m · [Fm · ∇Gm − Gm · ∇Fm]

+ ρ[Fm · ∇Gρ − Gm · ∇Fρ]

+ σ [Fm · ∇Gσ − Gm · ∇Fσ ], (48)

where S is a Casimir invariant, i.e., { S, F } = 0, for any
functional F .

Fourth step of UT algorithm. To construct the metriplectic
4-bracket, we proceed with the systematic development pre-
sented in Sec. III A, viz., M and � are given by

M(dF, dG) = Fσ Gσ , (49)

�(dF, dG) = L(α)
∗

(
Fξα

)Lαβ

Hσ

L(β )
∗

(
Gξβ

)
, (50)

and the UT algorithm is complete up to the choices for L(α)
∗

and Lαβ . For any choices of these quantities, according to Eqs.
(33) and (36), the 4-bracket using Eqs. (49) and (50) will
be consistent with the following general expressions for the
fluxes:

Jρ = −Lρρ · Lρ
∗ (Hρ ) − Lρm :Lm

∗ (Hm) − Lρσ · Lσ
∗ (Hσ ),

J̄m = −Lmρ ⊗ Lρ
∗ (Hρ ) − Lmm :Lm

∗ (Hm) − Lmσ ⊗ Lσ
∗ (Hσ ),

Js = −Lσρ · Lρ
∗ (Hρ ) − Lσm :Lm

∗ (Hm) − Lσσ · Lσ
∗ (Hσ ),

(51)

where Jρ is the net mass flux, J̄m is the momentum flux,
and Js is the net entropy flux. Equation (51) shows how our
choices of M and �, of Eqs. (49) and (50), respectively, pro-
duce a quite-general thermodynamically consistent system,
one that significantly generalizes the NSF system. In fact,
the 4-bracket that produces Eq. (51) is sufficiently general to
produce the Brenner-Navier-Stokes system of Sec. IV C and
the generalizations of the BNS that we describe there.

Now, we specialize and show that the general expressions
for the fluxes of Eq. (51) reduce to those known for the NSF
(see, e.g., [2,12,15]), viz.,

Jρ = 0, J̄m = − ¯̄
 : ∇v, Js = − κ̄

T
· ∇T, (52)

where Jρ is the net (vector) mass flux, J̄m is the momentum
flux (rank 2 tensor), and Js is the net (vector) entropy flux. In
Eq. (52), κ̄ is the thermal conductivity tensor, D̄ is the diffu-
sion tensor, which along with κ̄ is assumed to be a symmetric
and positive definite 2-tensor, and ¯̄
 is the viscosity 4-tensor,
the usual rank 4 isotropic Cartesian tensor given by


i jkl = η
(
δilδ jk + δ jlδik − 2

3δi jδkl
) + ζ δi jδkl , (53)
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with viscosity coefficients η and ζ and i, j, k, and l taking on
values 1, 2, 3. In Eq. (52) and, henceforth, we use a single “ · ”
to indicate neighboring contractions and we use the double
dot convention as follows:

(κ̄ · ∇Gσ )i = κi j∂ jGσ

( ¯̄
 :∇m)i j = 
i jkl∂kml

(ε :∇m)i = εi jk∂ jmk, (54)

where repeated indices are summed over. We have added Eq.
(54) for later use, when we have a double contraction with a
3-tensor ε.

To see how the fluxes of Eq. (52) emerge from our gen-
eral expressions of Eq. (51), we set L(α)

∗ = ∇, for all α, and
assume H is given by Eq. (46); therefore,

Hσ = T, Hm = v, Hρ = −|m|2
2ρ2

− T σ

ρ
+ p

ρ
+ u, (55)

and comparison of Eq. (51) with Eq. (52) reveals that the only
nonzero phenomenological coefficients Lαβ are the following:

Lmm = ¯̄
 and Lσσ = κ̄

T
. (56)

Thus, we immediately obtain � from Eq. (50) as

�(dF, dG) = ∇Fm :
Lmm

Hσ

: ∇Gm + ∇Fσ · Lσσ

Hσ

· ∇Gσ

= ∇Fm :
¯̄


T
: ∇Gm + ∇Fσ · κ̄

T 2
· ∇Gσ (57)

which, together with the expression for M of Eq. (49), gives
the 4-bracket

(F, K ; G, N )

=
∫

�

1

T
[[Kσ∇Fm − Fσ ∇Km] : ¯̄
 : [Nσ∇Gm − Gσ∇Nm]

+ 1

T
[Kσ ∇Fσ − Fσ ∇Kσ ]·κ̄ ·[Nσ ∇Gσ − Gσ∇Nσ ]].

(58)

Insertion of H of Eq. (46) and S of Eq. (45), yields the NSF
dynamical system

∂tρ = {ρ, H} + (ρ, H ; S, H )

= −v · ∇ρ − ρ ∇ · v, (59)

∂t v = {v, H} + (v, H ; S, H )

= −v · ∇v − ∇p/ρ + 1

ρ
∇ · ( ¯̄
 : ∇v), (60)

∂tσ = {σ, H} + (σ, H ; S, H )

= −v · ∇σ − σ ∇ · v + ∇ ·
(

κ̄

T
· ∇T

)

+ 1

T 2
∇T · κ̄ · ∇T + 1

T
∇v : ¯̄
 : ∇v. (61)

By construction we automatically have the entropy production

Ṡ = (S, H ; S, H ) =
∫

�

σ̇ prod � 0, (62)

where

σ̇ prod = ∇v :
¯̄


T
: ∇v + ∇T · κ̄

T 2
· ∇T .

It is important to note that the square of the temperature in the
denominator of the coefficient κ̄/T 2 in σ̇ prod has factors from
different physical origins. One factor comes from the system-
atic theory, where temperature is defined as T := Hσ , while
the second arises from the phenomenological law, specifically
Fourier’s law, where the heat flux is given by q = −κ̄ ∇T/T .

B. Cahn-Hilliard-Navier-Stokes (CHNS)

Various equations have been proposed for describing two-
phase fluid flow by combing the physics of the Cahn-Hillard
equation [30] with that of the Navier-Stokes equations (see,
e.g., [31–34] and references therein). In these CHNS models,
the influence of a second phase of matter is included by adding
a concentration variable that describes the second phase. In
[16] we used the metriplectic 4-bracket formalism to obtain
a general model that encompasses, corrects, and generalizes
existing models. As in Sec. IV A, in this section we will
proceed with the UT algorithm and obtain a very general
thermodynamically consistent two-phase flow system.

First step of UT algorithm. To our set of fluid variables we
add a variable c̃, which is a concentration per unit volume that
describes the second phase. Thus, our dynamical variables are

ξ(x, t ) = (ρ(x, t ), m(x, t ), c̃(x, t ), σ̄ (x, t )), (63)

where, again, the mixture of two phases is assumed to be
contained in a volume �, with coordinate x, and to the den-
sities ρ, m, and σ̄ used (as in Sec. IV A) we add c̃. Again,
we have singled out the entropy density σ̄ as the last variable
of ξ, consistent with Eq. (22). (Note, the reason for the bar
will soon become clear.) The specific concentration associated
with c̃ is given by c = c̃/ρ.

Second step of UT algorithm. Again, consistent with
Eq. (23), we take the total entropy to be the integral of the
last component

S =
∫

�

σ̄ . (64)

It was shown in [16] that this simple entropy can be used in-
stead of the complicated entropy expressions used in [31–34],
which were modeled after the free energy of the Cahn-Hilliard
equation.

We record here for later use the relationship between our
simple entropy σ̄ and the previous one, which we denote by
σ̄ , viz.,

σ̄ = σ + λs

2
�2(∇c). (65)

Here, the coefficient λs is a constant and the function � is a
homogeneous function of degree unity, i.e.,

�(λp) = λ�(p) for all λ > 0. (66)

Because � is a homogeneous function of degree unity we have

�(p) = p · ζ := p j
∂�(p)

∂ p j
, (67)
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where ζ is a homogeneous function of degree zero. The func-
tion � was shown in [35] to describe anisotropic weighted
mean curvature effects due to anisotropic surface tension.

Any Hamiltonian H[ρ, m, c̃, σ̄ ] would be possible, how-
ever, as also shown in [16], the price paid for a simplified
entropy is the following complicated Hamiltonian:

H =
∫

�

|m|2
2ρ

+ ρ u(ρ, σ/ρ, c̃/ρ) + λu

2
�2(∇(c̃/ρ)), (68)

where in the second argument of the internal energy u we
have inserted σ as a shorthand for the expression in terms of
σ̄ , c̃, and ρ obtained upon inserting σ from Eq. (65). From
this extensive internal energy function, we obtain the intensive
thermodynamical variables, including the chemical potential
as

p = ρ2 ∂u

∂ρ
, T = ∂u

∂s
, and μ = ∂u

∂c
, (69)

where now s = σ̄ /ρ and recall c = c̃/ρ. The parameter λu

is another constant that describes anisotropic surface energy
effects. In the previous works, it was shown how the constants
λs and λu are related to λ f , a parameter that depends on the
temperature according to

λ f (T ) = λu − T λs. (70)

We take this as given, referring the reader to the previous
works for explanation.

Third step of UT algorithm. The appropriate Poisson
bracket, defined on two functionals (F, G ∈ B) is that for the
Gibbs-Euler system given in [16]. This bracket, which is a
natural generalization of that given in [22], is given by

{F, G} = −
∫

�

m · [Fm · ∇Gm − Gm · ∇Fm]

+ ρ[Fm · ∇Gρ − Gm · ∇Fρ]

+ σ̄ [Fm · ∇Gσ̄ − Gm · ∇Fσ̄ ]

+ c̃[Fm · ∇Gc̃ − Gm · ∇Fc̃]. (71)

It is simple to verify that the S of Eq. (64) is a Casimir
invariant of this bracket.

Fourth step of UT algorithm. To construct the metriplectic
4-bracket, we proceed as in Sec. IV A with the forms of M
and � given by Eqs. (49) and (50), albeit with σ̄ replacing σ

in Eq. (49). Thus, the determination of our system is complete
when we make choices for L(α)

∗ and the Lαβ . For any choices
of these quantities, the 4-bracket constructed from M and �

will be consistent with the following general expressions for
the fluxes obtained from Eq. (2):

Jρ = − Lρρ · Lρ
∗ (Hρ ) − Lρm : Lm

∗ (Hm)

− Lρσ · Lσ̄
∗ (Hσ̄ ) − Lρc̃ · Lc̃

∗(Hc̃),

J̄m = − Lmρ ⊗ Lρ
∗ (Hρ ) − Lmm : Lm

∗ (Hm)

− Lmσ ⊗ Lσ̄
∗ (Hσ̄ ) − Lmc̃ ⊗ Lc̃

∗(Hc̃),

Jc = − Lc̃ρ · Lρ
∗ (Hρ ) − Lc̃m : Lm

∗ (Hm)

− Lc̃σ̄ · Lσ̄
∗ (Hσ̄ ) − Lc̃c̃ · Lc̃

∗(Hc̃),

Js = − Lσ̄ ρ · Lρ
∗ (Hρ ) − Lσ̄m : Lm

∗ (Hm)

− Lσ̄ σ̄ · Lσ̄
∗ (Hσ̄ ) − Lσ̄ c̃ · Lc̃

∗(Hc̃). (72)

Thus, we have obtained a quite-general class of thermody-
namically consistent systems, one that generalizes a variety of
existing CHNS systems, depending on the choice of H , Lαβ ,
and Lα

∗ .
Now, we specialize and show that the general expressions

for the fluxes of Eq. (72) reduce to those known for the CHNS.
For example, if we choose L(α)

∗ = ∇, for all α, and H to be
the expression of Eq. (68), then we obtain the CHNS system
of Anderson et al. [31–33] (see also [16]). Using

Hρ = − |m|2
2ρ2

+ u + ρuρ −
(

σ

ρ
− λs

2ρ
�2

)
us − c̃

ρ
uc

+ c̃

ρ2
∇ · (usλs�ζ) + c̃

ρ2
∇ · (�ζλu), (73)

Hc̃ = uc + λs

ρ
∇ · (us�ζ) − 1

ρ
∇ · (λs�ζ) =: μ�, (74)

Hm = v, Hσ̄ = us = T, (75)

where, from Eq. (69), we defined uρ := ∂u/∂ρ = p/ρ, us :=
∂u/∂s = T , and uc := ∂u/∂c = μ. Upon setting all the Lαβ to
zero except

Lmm = ¯̄
, Lσ̄ σ̄ = κ̄

T
, and Lc̃c̃ = D̄. (76)

Equations (72) for the fluxes reduce to the following forms:

Jρ = 0, J̄m = − ¯̄
 : ∇v, (77)

Jc = −D̄ · ∇μ�, Js = − κ̄

T
· ∇T, (78)

where μ� := μ − 1
ρ
∇ · (λ f �ζ) and D̄ is a rank-2 diffusion

tensor. Equations are the known fluxes for the CHNS system
of [31–33].

The metriplectic 4-bracket for this case, as determined by
M(dF, dG) = Fσ̄ Gσ̄ , (79)

�(dF, dG) = ∇Fm : ¯̄
 : ∇Gm + ∇Fσ̄ · κ̄

T 2
· ∇Gσ̄

+ ∇(Fc̃) · D̄

T
· ∇(Gc̃), (80)

is

(F, K ; G, N )

=
∫

�

1

T

[
[Kσ̄∇Fm − Fσ̄∇Km] : ¯̄
 :[Nσ̄∇Gm − Gσ̄∇Nm]

+ 1

T
[Kσ̄∇Fσ̄ − Fσ̄ ∇Kσ̄ ] · κ̄ · [Nσ̄ ∇Gσ̄ − Gσ̄∇Nσ̄ ]

+[Kσ̄ ∇Fc̃ − Fσ̄∇Kc̃]·D̄·[Nσ̄∇Gc̃ − Gσ̄∇Nc̃]

]
. (81)

Upon insertion of H given by Eq. (68) and S given by Eq. (64),
using Eqs. (73), (74), and (75) with Sσ̄ = 1, the following
CHNS system is produced:

∂tρ = {ρ, H} + (ρ, H ; S, H )

= −v · ∇ρ − ρ ∇ · v, (82)

∂t v = {v, H} + (v, H ; S, H )

= −v · ∇v − 1

ρ
∇ · [(p − λ f �

2/2)Ī

+ λ f �ζ ⊗ ∇c] + 1

ρ
∇ · ( ¯̄
 : ∇v), (83)
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∂t c̃ = {c̃, H} + (c̃, H ; S, H )

= −v · ∇c̃ − c̃ ∇ · v + ∇ · (D̄ · ∇μ0
�

)
, (84)

∂t σ̄ = {σ̄ , H} + (σ̄ , H ; S, H )

= −v · ∇σ̄ − σ̄ ∇ · v (85)

+ ∇ ·
(

κ̄

T
· ∇T

)
+ 1

T 2
∇T · κ̄ · ∇T

+ 1

T
∇v : ¯̄
 : ∇v + 1

T
∇μ� · D̄ · ∇μ�, (86)

where Ī is the identity and recall ξ is defined in Eq. (67),

μ� := uc + λs

ρ
∇ · (us�ζ) − 1

ρ
∇ · (λs�ζ), (87)

and ⊗ is the usual tensor product (w ⊗ v)i j = wiv j .
The total entropy is governed by the following:

Ṡ = (S, H ; S, H )

=
∫

�

1

T

[
∇v : ¯̄
 : ∇v + 1

T
∇T · κ̄ · ∇T

+ ∇μ� · D̄ · ∇μ�

]
� 0, (88)

whence it is seen to be produced.
As noted above, some previous approaches to modeling

CHNS systems employed nonstandard entropy expressions
[31–34]. In [16], we proposed the following general ex-
pression, written in terms of the variables (ρ, v, c, s), which
encompasses the previous nonstandard expressions as special
cases:

Sa =
∫

�

ρs + ρa

2
λs�

2(∇c), (89)

Ha =
∫

�

ρ

2
|v|2 + ρu(ρ, s, c) + ρa

2
λu�

2(∇c). (90)

Upon setting a = 0, Eqs. (89) and (90) reduce to the expres-
sions of [31–33], while upon setting a = 1 they reduce to
those of [34], provided the choice of an isotropic surface en-
ergy is assumed, viz., �(∇c) = |∇c|. These were apparently
modeled after the free-energy expression of the Cahn-Hilliard
equation which is a linear combination of energy and entropy.

In [16], the entropy of Eq. (89) was simplified to the stan-
dard form of Eq. (64) by a coordinate change. This resulted
in the more complicated internal energy function of Eq. (68),
as compared with Eq. (90), where in the former the σ in
the argument of u is replaced by σ = σ̄ − λs

2 �2(∇c). Given
that an incremental volume of fluid contains both phases, it is
perhaps not surprising that the internal energy should reflect
this.

In [16] we proceeded with the UT algorithm and obtained
a metriplectic 4-bracket for a generalized system which in-
cludes both the a = 0 and a = 1 cases (with a small correction
to [34]). However, because the development of Sec. III A was
not yet available, step (4) of the algorithm required some
investigation on how to appropriately place the following
pseudodifferential operator in �:

Lc̃(Fξ ) := ∇(Fc̃ + ∇ · (λs�ζFσ )/ρ). (91)

Given that the operators L(α) can be placed at will in the ex-
pression of � of Eq. (50), it is clear that our new development
can reproduce and generalize our previous work and produce
an even-more general class of thermodynamically consistent
models that describe two-phase flows. Instead of pursuing
this, we will show in the next section how the development
of Sec. IV A produces and generalizes models by Brenner and
others.

C. Brenner-Navier-Stokes-Fourier (BNSF)

In a series of papers [36–39], Brenner proposed a modifi-
cation to address what he believed to be certain limitations of
the traditional Navier-Stokes-Fourier system. In this section.
we will show that his theory emerges as a special case of
our development of Sec. IV A. Moreover, our theory shows
the following: how to unambiguously delineate the dissipative
dynamics from the nondisipative (Hamiltonian) dynamics;
that generalizations of Brenner’s theory by other authors are,
again, special cases of our theory; in particular they all emerge
from Eq. (51); all these theories amount to modifications of
the form of dissipation in the Navier-Stokes equations.

Brenner’s proposed modification is based on a “bive-
locity theory” which introduces the idea of two distinct
velocities: the mass velocity vm, which corresponds to the
conventional understanding, and a volume velocity denoted
by v. In studies of classical continuum fluid mechanics, these
velocities are assumed to be identical. However, Brenner ar-
gued that, in general, vm �= v. This hypothesis leads to a
nontraditional extension of the NSF system, known as the
Brenner-Navier-Stokes-Fourier (BNSF) system, which is for-
mulated as follows:

∂ρ + ∇ · (ρvm) = 0, (92)

∂ (ρ v) + ∇ · (ρ vmv) = ∇ · (−pĪ + ¯̄
 : ∇v), (93)

∂σ + ∇ · (σvm) = ∇ ·
[

κ̄

T
· ∇T

− w
T

(p + u − ρα)

]
+ σ̇ prod. (94)

Here, as before, u(ρ, s) is the internal energy per unit mass,
α is a new unconstrained phenomenological parameter, and w
represent the velocity difference vector,

w = v − vm.

(Note, in the works of Brenner the symbol J is used for this
velocity difference.)

It remains to close this system by determining w in terms of
the dynamical variables. In [36], Brenner first proposed w =
α∇ ln(ρ). Later in [38] and [11,40], using Öttinger’s version
of GENERIC, it was settled on the following form for w:

w = D̃(∇p − γ∇T ), (95)

where, for simplicity, we introduced the diffusionlike coeffi-
cient D̃ := D′/(ρ2T ) and the parameter γ is defined by

ρα − u = p − γ T .

Thus, the system contains one parameter, either α or γ . By
taking γ = ( ∂ p

∂T )ρ , Brenner established that the velocity dif-
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ference w becomes

w = D̃

κT
∇ ln ρ, (96)

where κT = 1
ρ

( ∂ρ

∂ p )T is the coefficient of isothermal com-
pressibility, assumed to be non-negative. In these works, it
is claimed that this is the most general possible constitutive
equation for the velocity difference w. However, a generaliza-
tion was given in [41], which we will further generalize below
using the UT algorithm.

To view the above BNSF system in a form adapted to the
UT algorithm, we interpret v to be the usual velocity field,
and write the system in terms of NSF variables ξ = (ρ, m =
ρv, σ ) as follows:

∂tρ + ∇ · (ρv) = ∇ · (ρw), (97)

∂t m + ∇ · (m ⊗ v) = ∇ ·(−pĪ + ¯̄
 :∇v + m ⊗ w), (98)

∂tσ + ∇ · (σv) = ∇ ·
[

κ̄

T
∇T + (σ − γ )w

]
+ σ̇ prod. (99)

Except for γ and w, the quantities above are defined as for the
NSF system. Evidently, from Eqs. (97), (98), and (99), it is
seen that the fluxes are given by the following:

Jρ = −ρw, (100)

J̄m = − ¯̄
 :∇v − m ⊗ w, (101)

Js = − κ̄

T
· ∇T − (σ − γ )w, (102)

which determine the phenomenological coefficients in terms
of w.

Given both the above and the results of Sec. IV A, there
is no need to run through the steps of the UT algorithm: the
variables ξ are the same, the forms of S and H of Eqs. (45)
and (46) are the same, the Poisson bracket is again the
Morrison-Greene Poisson bracket of Eq. (48) and the form of
the operators L(α) are also the same. Thus, it only remains
to determine the phenomenological coefficients and these
are provided by matching Eqs. (100), (101), and (102) with
Eq. (51).

Comparison of Eq. (100) with the first equation of (51)
leads to the determination of w. We have

Jρ = −Lρρ · ∇Hρ − Lρm :∇Hm − Lρσ · ∇Hσ , (103)

where the 2-tensors Lρρ and Lρσ and the 3-tensor Lρm are
contracted as in Eq. (54). From the functional derivative Hρ of
Eq. (55) and the local thermodynamic identities of Eq. (47),
we find

∇Hρ = −σ

ρ
∇T + 1

ρ
∇p − (∇v) · v (104)

and

∇p = ρ∇Hρ + (∇Hm) · m + σ∇Hσ . (105)

Thus, the difference velocity w of Eq. (95) can be written as
the following linear combination of ∇Hρ , ∇Hm and ∇Hσ :

w = D̃ρ ∇Hρ + D̃ (∇Hm) · m + D̃σ̂ ∇Hσ , (106)

where we defined σ̂ := σ − γ . Therefore, according to
Eq. (100),

Jρ = −D̃ρ2 ∇Hρ − D̃ρ (∇Hm) · m − D̃ρσ̂ ∇Hσ , (107)

and comparison with Eq. (103) yields

Lρρ = D̃ρ2 Ī, Lρm = D̃ρ Ī ⊗ m, Lρσ = D̃ρσ̂ Ī. (108)

Similarly, using Eqs. (51), (101), and (106),

J̄m = −Lmρ ⊗ ∇Hρ − Lmm :∇Hm − Lmσ ⊗ ∇Hσ

= − ¯̄
 :∇Hm − m ⊗
(D̃ρ ∇Hρ + D̃ (∇Hm) · m + D̃σ̂ ∇Hσ ) , (109)

whence we see

Lmρ = D̃ρ m, Lmσ = D̃σ̂ m, and

Lmm = ¯̄
 + D̃ m ⊗ Ī ⊗ m. (110)

Note, using our convention ( ¯̄
 :∇v)i j = 
i jkl∂kvl we have

(m ⊗ Ī ⊗ m) : ∇Hm)i j = (miδ jkml )∂kvl

= miml∂ jvl . (111)

Finally, using Eqs. (51), (102), and (106),

Js = −Lσρ · ∇Hρ − Lσm :∇Hm − Lσσ · ∇Hσ

= − κ̄

T
· ∇Hσ

− σ̂ (D̃ρ ∇Hρ + D̃ (∇Hm) · m + D̃σ̂ ∇Hσ ); (112)

whence we see

Lσρ = D̃ρσ̂ Ī, Lσσ = κ̄

T
+ D̃σ̂ 2 Ī (113)

Lσm = D̃σ̂ Ī ⊗ m. (114)

With these phenomenological coefficients, we obtain di-
rectly the operators M and �. Again, M is chosen, as in Eq.
(49), while � is given as follows:

�(dF, dG) = 1

T

[
D̃ρ2 ∇Fρ · ∇Gρ

+ D̃ρ (∇Fρ · (∇Gm) · m + ∇Gρ · (∇Fm) · m)

+ D̃ρσ̂ (∇Fρ · ∇Gσ + ∇Gρ · ∇Fσ )

+ ∇Fm : ( ¯̄
 + D̃ m ⊗ Ī ⊗ m) : ∇Gm

+ D̃σ̂ (∇Fσ · (∇Gm) · m + ∇Gσ · (∇Fm) · m)

+ ∇Fσ ·
(

κ̄

T
+ D̃σ̂ 2 Ī

)
· ∇Gσ

]
. (115)

Note, in the penultimate line of Eq. (115) we have used

∇Fσ · Ī ⊗ m :∇Gm = ∇Fσ · (∇Gm) · m. (116)
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[Recall Eq. (54).] The metriplectic 4-bracket (., . ; ., . ) that comes from the K-N product of M and � is the following:

(F, K ; G, N ) =
∫

�

Kσ Nσ

T

[
D̃ρ2∇Fρ · ∇Gρ + D̃ρ(∇Fρ · (∇Gm) · m + ∇Gρ · (∇Fm) · m)

+ D̃ρσ̂ (∇Fρ · ∇Gσ + ∇Gρ · ∇Fσ ) + ∇Fm : ( ¯̄
 + D̃m ⊗ Ī ⊗ m) : ∇Gm

+ D̃σ̂ (∇Fσ · (∇Gm) · m + ∇Gσ · (∇Fm) · m) + ∇Fσ ·
(

κ̄

T
+ D̃σ̂ 2 Ī

)
· ∇Gσ

]

− Kσ Gσ

T

[
D̃ρ2∇Fρ · ∇Nρ + D̃ρ (∇Fρ · (∇Nm) · m + ∇Nρ · (∇Fm) · m)

+ D̃ρσ̂ (∇Fρ · ∇Nσ + ∇Nρ · ∇Fσ ) + ∇Fm : ( ¯̄
 + D̃m ⊗ Ī ⊗ m) : ∇Nm

+ D̃σ̂ (∇Fσ · (∇Nm) · m + ∇Nσ · (∇Fm) · m) + ∇Fσ ·
(

κ̄

T
+ D̃σ̂ 2 Ī

)
· ∇Nσ

]

+ Fσ Gσ

T

[
D̃ρ2∇Kρ · ∇Nρ + D̃ρ (∇Kρ · (∇Nm) · m + ∇Nρ · (∇Km) · m)

+ D̃ρσ̂ (∇Kρ · ∇Nσ + ∇Nρ · ∇Kσ ) + ∇Km : ( ¯̄
 + D̃m ⊗ Ī ⊗ m) : ∇Nm

+ D̃σ̂ (∇Kσ · (∇Nm) · m + ∇Nσ · (∇Km) · m) + ∇Kσ ·
(

κ̄

T
+ D̃σ̂ 2 Ī

)
· ∇Nσ

]

− Fσ Nσ

T

[
D̃ρ2∇Kρ · ∇Gρ + D̃ρ (∇Kρ · (∇Gm) · m + ∇Gρ · (∇Km) · m)

+ D̃ρσ̂ (∇Kρ · ∇Gσ + ∇Gρ · ∇Kσ ) + ∇Km : ( ¯̄
 + D̃m ⊗ Ī ⊗ m) : ∇Gm

+ D̃σ̂ (∇Kσ · (∇Gm) · m + ∇Gσ · (∇Km) · m) + ∇Kσ ·
(

κ̄

T
+ D̃σ̂ 2 Ī

)
· ∇Gσ

]
. (117)

Upon insertion of S as given by Eq. (45) and H as given by Eq.
(46), the system of (97), (98), and (99) is produced according
to

∂tρ = {ρ, H} + (ρ, H ; S, H ),

∂t m = {m, H} + (m, H ; S, H ),

∂tσ = {σ, H} + (σ, H ; S, H ),

and the total entropy production is governed by the following:

Ṡ = (S, H ; , S, H ) =
∫

�

�(dH, dH )

=
∫

�

1

D̃ T
w · w + ∇T · κ̄

T
· ∇T + ∇v : ¯̄
 : ∇v

=
∫

�

1

T

[
D̃|vm − v|2 + ∇T · κ̄

T
· ∇T

+ ∇v : ¯̄
 : ∇v
]

� 0. (118)

Alternatively, using Eq. (96):

Ṡ =
∫

�

1

T

[
D̃

κ2
T ρ2

|∇ρ|2 + ∇T · κ̄

T
· ∇T

+ ∇v : ¯̄
 : ∇v
]

� 0. (119)

Therefore, we shown that the system proposed by Bren-
ner [38] can be understood as an extension of the classical
Navier-Stokes-Fourier, achieved by introducing an additional
dissipation mechanism. Brenner postulates that his hypothesis
primarily alters the ideal part of the dynamics. However, if
by ideal is meant Hamiltonian, we see that this is not true,
since the Hamiltonian part is still governed by the Poisson
bracket of [22]. In addition, Brenner links this modification
to the compressibility of the fluid and suggests that the mass
velocity vm and volume velocity v coincide if, and only if, the
fluid is incompressible (i.e., ρ = const).

We have also shown that the expression of w given by
Eq. (95) is not the most general form giving a thermodynami-
cally consistent system; from Eq. (103)

w = (Lρρ · ∇Hρ + Lρm :∇Hm + Lρσ · ∇Hσ )/ρ, (120)

whence we see that w can be any linear combination of ∇Hρ ,
∇Hm and ∇Hσ contracted appropriately with the 2-tensors
Lρρ and Lρσ and the 3-tensor Lρm. Insertion of the expression
for w of Eq. (120), with the Hamiltonian of your choice, into
Eq. (94) gives a thermodynamically consistent generalizations
of the BNSF.

In a more recent paper [41], thermodynamically consistent
generalizations of the BNSF system were given. In concluding
this section, we show that the various generalizations of this
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reference are again special cases of our metriplectic system
of Sec. IV A with Eq. (120). Specifically, the cases of [41]
(rewritten in our notation) are as follows.

Equation (77) of [41]:

w = κm∇ ln ρ, (121)

where κm = D̃/κT , is Brenner’s (96) using γ = ( ∂ p
∂T )ρ .

Equation (78) of [41]:

w = κT ∇ ln T = κT

T
∇Hσ , (122)

is given by our Eq. (120) with the choices

Lρρ = Lρm = 0, Lρσ = ρ
κT

T
Ī (123)

Equation (79) of [41]:

w = κp∇ ln p = κp

p
∇p, (124)

which is produced in our formalism as

w = κp

p
(ρ∇Hρ + (∇Hm) · m + σ∇Hσ ), (125)

where κp is the thermal conductivity at constant pressure and
the third equality follows from Eq. (105). Equation (124) is
given by our Eq. (120) with the choices

Lρρ = ρ2 κp

p
Ī, Lρm = ρ κp Ī ⊗ m ;

Lρσ = ρ κp σ Ī. (126)

Equation (80) of [41]:

w = κτ∇ × v = κτ∇ × Hm, (127)

where κτ is another phenomenological quantity. Equation
(127) is a particular case of our theory by taking

Lρρ = 0, Lρm = ρ κτ ε, Lρσ = 0, (128)

where ε is the Levi-Civita 3-tensor (density) and contraction
is defined by Eq. (54). Note, the tensorial inconsistency of
Eq. (127) can be resolved by assuming κT is a pseudoscalar.

V. CONCLUSION

The main contribution of this paper is the unified ther-
modynamical algorithm that uses the metriplectic 4-bracket
of previous work [10,16,18] to methodically lead one to
general classes of thermodynamically consistent systems.
An important and novel by-product of this algorithm is the
definition of fluxes given by (2). In Sec. II we reviewed
the Hamiltonian and 4-bracket frameworks, on which the
UT algorithm is based. This is followed by Sec. III that
contains the main new contribution: the unambiguous de-
termination of the metriplectic 4-bracket. In Sec. IV we
present examples that generalize previous results. In par-
ticular, we showed that the Brenner-Navier-Stokes-Fourier
system and its generalizations of [41] are special cases
of our generalization of the Navier-Stokes-Fourier sys-
tem. They all amount to modifying the dissipation in the
Navier-Stokes equations.

The dichotomies of dissipative vs nondissipative and
reversible vs irreversible can be confused or used inappro-
priately, particularly when one is dealing with systems that
contain a set of conservation laws, such as those of Eq. (27).
One clear distinction can be made: that between Hamiltonian
vs non-Hamiltonian, where the former is an unambiguous
definition of what is meant by nondissipative. The distinction
between reversible and irreversible is also often confused.
All systems of autonomous ordinary differential equations are
reversible because the solution is a one-parameter Lie group,
and not all Hamiltonian systems have time reversible sym-
metry, a special case of a point symmetry. Again, there is no
confusion if one distinguishes Hamiltonian from nonHamilto-
nian, and the metriplectic 4-bracket formalism makes it clear
which parts are Hamiltonian and which parts are dissipative.

Another dichotomy concerns the placement of temperature
in the metriplectic formalism. Temperature may appear as a
result of the assumption of local thermodynamic equilibrium,
e.g., via an internal energy function u in the Hamiltonian, or
it may appear in the assumed forms of the phenomenological
coefficients Lαβ . In the first work on the metriplectic dynamics
of the NSF fluid [2], it was observed that the temperature
needed to be placed in an ad hoc manner so as to make
things work out. Similarly, the same observation was noted
in Chap. 3 of [11]. A resolution of this dichotomy is achieved
with the UT algorithm, where temperature may appear accord-
ing to Eqs. (27) and (39), or in the choice of phenomenological
coefficients. It is interesting to note that once M and � are
chosen and the 4-bracket is determined, one can use any
Hamiltonian and obtain a thermodynamically consistent sys-
tem. This provides additional freedom for modeling.

In closing we mention some possibilities for future work.
The results of this paper pertain to macroscopic or purely
continuum theories. Underlying kinetic theory can place con-
straints on such continuum theories. For example, in [42] it
was noted that the results of Brenner are in disagreement with
a number of kinetic-theory studies. In the present context,
an open question is how to connect the 4-bracket to a class
of underlying kinetic theories with dissipative mechanisms,
such as collision operators. On the kinetic level, a metriplectic
4-bracket was given in [18] for a generalization of the Landau
collision operator and the same can be done for a variety of
kinetic theories. So far, no connection has been made between
fluid and kinetic 4-brackets.

The UT algorithm can be both restricted and generalized.
For example, additional symmetries beyond Onsager, such
as Galilean or Poincaré invariance, can constrain the choices
of M and �. These symmetries might be traced from a ki-
netic theory or considered on the macroscopic level. Here
we have not considered these possibilities, so as to keep the
development general. An avenue for further generalization
would be to break the linear force-flux relations of Eqs. (1)
or (2). The essential feature of thermodynamic consistency
is global asymptotic stability and the concomitant produc-
tion of entropy. Dynamical systems with global asymptotic
stability can be recast into the form of Eqs. (1) or (2) by
using rectification arguments similar to those described in
[10]. Rectification arguments fail when additional fixed points
exist. Systems with this property would not be expected to be
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thermodynamically consistent, but one could still linearize
within basins of attraction.

Lastly, we mention that the metriplectic 4-bracket can
be used to obtain thermodynamically consistent numerical
algorithms for fluid and plasma systems. Previously, 2-
brackets have been used and proposed in [43–47] to obtain
thermodynamically consistent numerics, i.e., where the semi-
discrete equations are a finite-dimensional metriplectic system
in terms of the 2-bracket. However, recently in [29], the
4-bracket was found to be particularly useful because main-
taining symmetries while projecting onto a Galerkin basis is,
essentially, automatic.
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