
Basic Logic and Set Theory

This short overview is designed to lay down the rudimentary aspects of sets and their associated notation.

Set theory provides a foundation for virtually all of modern mathematics, and as such it is helpful to have

at least an intuitive grasp of it. Fortunately, intuition generally does not fail us when it comes to the

basics of set theory.

• A set, usually denoted by capital letters such as A, B, X, and so on, is a collection of elements,

which may be anything so long as it is unambiguously defined. We mean that x is an element of

the set A when it is written x ∈ A. If x is not an element of A, we write x /∈ A.

– For example, let A denote the set of people in a room, B denote the set of past and present

U.S. Presidents, and Ω denote the set of tree species found in North America (assume these

definitions may be tweaked so as to satisfy our requirement of unambiguity). If we let x denote

George Washington, then clearly x ∈ B while x /∈ A. Let α denote the trees displaced by the

Dell Medical School’s construction, and let β denote the Live Oak species Quercus fusiformis.

Then β ∈ Ω, but α /∈ Ω.

– Practically any mathematical object we refer to is a set. For instance, we often speak of the

set of natural numbers N, the set of integers Z, the set of rational numbers Q, the set of real

numbers R, and the set of complex numbers C. Thus, −4 /∈ N, while −4 ∈ Z. We may speak

of the set of all circles in the Euclidean plane, the set of all continuous functions defined on

the interval [0, 1] or the set of all polynomials with rational coefficients.

– Clearly, we will never be able to list all of the elements in most sets we ever consider. However,

this is unnecessary as long as the set is clearly defined so that we may immediately note whether

or not any particular element is a member of the set.

– On a side note, we are restricted in what we can call a set. Particularly, sets cannot be “too

big” (e.g. there is no such thing as the set of all sets).

• We say A is a subset of B (or A is contained in B, or A is included in B, or B contains A), written

A ⊆ B, if x ∈ B whenever x ∈ A. That is, all of the elements of A are also in B. We say A is a

proper subset of B if A ⊆ B and also there exists x ∈ B with x /∈ A; that is, B contains everything

in A and also something more. In this case we write A ⊂ B if we wish to emphasize that A is

properly contained in B. We write A * B to mean A is not a subset of B.

– Again, if A denotes the set of all people in a lecture hall, and B denotes the set of all people

in that lecture hall who are awake, we probably observe that B ⊆ A (and hopefully it is not

the case that B ⊂ A). If Ω is described as above, and Ω0 is the set of all tree species native to

Texas, then we see Ω0 ⊆ Ω and indeed we may say this inclusion is proper: Ω0 ⊂ Ω.

– You may be interested to see that we have the following chain of sets of numbers:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

• Before moving on, it will be useful to introduce some common logical symbols:

– The colon “:” means “such that.”

– p⇒ q is the implication symbol which reads “the statement p implies the statement q” (i.e. if

p is true, then q is also true).
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– p⇔ q is the equivalence (or biconditional) symbol, which reads “the statement p if and only if

the statement q” (i.e. p is true if q is true, and p is false if q is false).

– ∀ is the universal quantifier, meaning “for all.” e.g. as the square of any real number x is

nonnegative, we may write ∀x ∈ R, x2 ≥ 0 (for any real number x, x2 is greater than or equal

to 0).

– ∃ is the existential quantifier, meaning “there exists.” e.g. in any subset (more about this

soon) X of integers, there exists a largest element, so we may write ∀X ⊆ Z,∃ x ∈ X : ∀ y ∈
X ⇒ x ≥ y.

– ∃! is the uniqueness quantifier, meaning “there exists exactly one.” e.g. any natural number

n ∈ N has a unique factorization into prime numbers. Therefore, if Y is the set of all prime

numbers (this has been proved to be an infinite set), then we can write:

∀n ∈ N ∃! {p1, p2, ..., p`} ⊂ Y : n = pα1
1 pα2

2 ...pα`
` for some {α1, α2, ..., α`} ⊂ N

To illustrate: if n = 5880, then the unique set of prime factors is {2, 3, 5, 7} ⊂ Y , and 5880 =

23 · 3 · 5 · 72, where {3, 1, 1, 2} ⊂ N is the corresponding set of their powers.

• Two sets A and B are said to be equal, written A = B, if they contain exactly the same elements.

By this definition of equality, we see that A = B if and only if it is true that A ⊆ B and B ⊆ A.

Note that this gives a different characterization of a proper subset: A is a proper subset of B if it

is contained in B but not equal to B.

– If Ω′ is the set of all tree species native to Austin, TX, and Ω′′ is the set of all tree species

native to San Marcos, TX, then it is most likely the case that Ω′ = Ω′′. With almost equal

certainty, we may say that Ω′ ⊆ Ω0 but Ω′ 6= Ω0 (one need only find a tree species found in

Texas but not in Austin), so this inclusion is a proper one.

– Let 2Z denote the set of all even integers, and let X denote the set of all numbers which take

the form 2n− 12 for n ∈ Z. It is not hard to prove that 2Z = X.

• The empty set, denoted by ∅, is the unique set that contains no elements.

– Let A be the set of all corpses in a lecture hall. Hopefully A = ∅.
– Let B be the set of all even numbers which take the form 2n+ 1 for n ∈ Z. Then B = ∅.

• A set is often defined by describing the properties common to the elements contained in it. The

notation used is {x : x has so-and-so property} (the set of all x such that x has so-and-so property).

We may also define a set by listing a few of its elements and hoping the pattern is obvious to the

reader.

– A = {x : x is or has been a U.S. President} = {George Washington, John Adams, Thomas

Jefferson, ...}
– Ω = {x : x is a tree species native to North America} (using the list definition for this set is

probably not the wisest choice)

– N = {0, 1, 2, ...}
– Q = {pq : p, q ∈ Z and q 6= 0}
– 2Z = {2n : n ∈ Z} = {...,−4,−2, 0, 2, 4, ...}
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• The union of two sets A and B is denoted by A∪B. This is defined by the set containing all of the

elements in A, or in B, or in both. Using the above notation, we have A∪B = {x : x ∈ A or x ∈ B}.
We may likewise define the union of more than two sets. If A1, A2, ... are various sets, then the union

of Ai is denoted A1 ∪A2 ∪ ... ∪An (if there are n sets of which the union is constructed) or ∪ni=1Ai
to mean the set containing elements that are in at least one of the Ai.

– Let Ω1 be the set of all tree species native to one U.S. state, Ω2 be the set of all tree species

native to another state, and so on until Ω50. Then

Ω1 ∪ Ω2 ∪ ... ∪ Ω50 =

50⋃
i=1

Ωi = Ω̃,

where we let Ω̃ be the set of all tree species native to the United States.

– If we let 2Z+ 1 = {...,−5,−3,−1, 1, 3, 5, ...} denote the set of all odd integers, then 2Z∪ (2Z+

1) = Z. Note this merely states that every integer is either even or odd (or both).

• The intersection of two sets A and B is denoted by A ∩ B, and is defined to be the set containing

all of the elements in both A and B; that is, A ∩ B = {x : x ∈ A and x ∈ B}. Similarly, we may

generalize this to the intersection of n or even an infinite number of sets, denoted by A1∩A2∩...∩An
or ∩ni=1Ai in the finite case, which is meant to denote the set whose elements are in all of the Ai.

– Consider the set Ω1 ∩ Ω2 ∩ ... ∩ Ω50. Is this an empty set? That is, are there any tree species

which are native to all 50 states?

– Let 3Z = {3n : n ∈ Z} = {...,−9,−6,−3, 0, 3, 6, 9, ...} denote the set of all integers divisible by

3. Then we have 2Z ∩ 3Z = 6Z = {6n : n ∈ Z}, the set of all integers divisible by 6.

• The complement of a set A relative to another set U is denoted by U\A, or simply Ac or A′ when

the set U is understood from the context. This is the set of all elements in U that are not in A,

defined as {x : x ∈ U and x /∈ A}. When A ⊂ U , this gives us U = A ∪Ac.

– Let U be the set of all tree species on the planet, so that Ωc is the set of all tree species which

are not native to North America.

– Consider the set of irrational real numbers R\Q, or Qc when it is understood that our “universe”

U is the set of real numbers R.

– Similarly, if the “universe” is U = Z, then (2Z)c = 2Z + 1. That is,

(2Z)c = {x : x ∈ U and x /∈ 2Z} = {x : x is an integer and is not even} = 2Z + 1.
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