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Fractional quantum Hall states in bilayer systems at the total filling fraction � ¼ 1=2 are examined
numerically within some ranges of layer separation and interlayer tunneling. It is shown that the ground
state changes continuously from a two-component state to a one-component state as the interlayer
tunneling rate is increased, while the lowest excited state changes discontinuously. This fact explains the
unusual behavior of the observed activation energies which reveals an upward cusp as a function of
interlayer tunneling. Some trial wave functions for the ground state and quasihole excited states are
inspected.
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The fractional quantum Hall effect (FQHE)1) occurs at the
filling factor � � n�0=B ¼ p=ð2p� 1Þ (p integer) in a two-
dimensional electron system with the perpendicular mag-
netic field B, while the � ¼ 1=2 effect has never been
observed.2) Here, �0 � hc=e is the flux quantum and n is the
electron density. In the physics of the FQHE system, the
composite fermion picture is quite useful.3) In this descrip-
tion, the � ¼ p=ð2p� 1Þ FQHE state can be understood as
the �0 ¼ p integer quantum Hall effect of composite
fermions which possess two-flux quanta 2�0.

3) Thus, � ¼
1=2 corresponds to a zero-field system of composite
fermions and the ground state can be understood as a Fermi
liquid state of composite fermions.4)

On the other hand at � ¼ 5=2, which is half-filling of the
second Landau level, the fractionally quantized plateau of
the Hall resistance was observed.5) After some numerical
investigations,6,7) the ground state at � ¼ 5=2 is believed to
be a kind of p-wave paired state of composite fermions first
discussed by Moore and Read:8)

�Pf ¼ Pf
1

uivj � viuj

� �Y
i<j

ðuivj � viujÞ2: ð1Þ

Here, we use spherical geometry9) for convenience; ðuj; vjÞ ¼
ðcosð�j=2Þei�j=2; sinð�j=2Þe�i�j=2Þ is the spinor coordinate of
the j’th electron, and Pf½A� is the Pfaffian of the antisym-
metric matrix A.

When an internal degree of freedom such as a spin or
layer index is introduced, the physics becomes more
colorful. The � ¼ 1=2 FQHE was observed in a double-
quantum-well (DQW) structure10) and a wide-single-quan-
tum-well (WSQW).11) In a two-layer system without
interlayer transfer, the ground state can be approximated
by a two-component state proposed by Halperin:12)

�331 ¼
Y
i<j

ðuivj � viujÞ3
Y
i<j

ð�i�j � �i�jÞ3

�
Y
i; j

ðui�j � vi�jÞ1; ð2Þ

within certain ranges of the ratio d=l of the layer separation
and the magnetic length.13) Here, ðui; viÞ and ð�i; �iÞ are
complex spinor coordinates of electrons in the top and

bottom layers, respectively. The d=l-dependence observed in
the 1=2 FQHE in DQW10) fits the theoretical prediction very
well.13) On the other hand, the 1=2 state measured in WSQW
is more subtle,11) since such a system possesses the duality
of a bilayer and a thick single-layer system. In fact, both
one-component14) and two-component15) theoretical models
have been proposed. To determine the nature of the ground
state in WSQW experimentally, Suen et al. measured
activation energy as a function of interlayer tunneling.16)

At � ¼ 2=3, the gap shows a downward cusp behavior which
indicates a clear transition from a two-component state to a
one-component state. However, at � ¼ 1=2 such a character-
istic was not observed. Since the gap first increases when
tunneling amplitude �SAS is decreased, they considered the
two-component state, most likely �331-like state, as the
ground state. They also concluded that the two-component
state does not evolve to the one-component FQHE state but
to a metallic state as �SAS increases. At the center of the
FQHE region, the gap shows a sharp upward cusp.

There are also some theoretical progresses. Based on the
pairing picture of composite fermions, Halperin considered
the continuous evolution of the ground state between �331

and �Pf , and proposed a d–�SAS phase diagram.17) Pursuing
this scenario, Ho argued interesting connections between
these 1=2 FQHE states and superfluid 3He.18) Namely, �331

and �Pf correspond to the ABM state and A1 state,
respectively, and the introduction of �SAS corresponds to
the Zeeman splitting along the x-axis in 3He superfluid.
Here, the pseudospins " and # are assigned the electrons in
the top and bottom layers, respectively. Although such a
mean-field picture of composite fermion pairing possesses a
beautiful structure, the relation to the experimental result
mentioned above has been unclear and it stays only in
theoretical curiosity. In this article, we perform a numerical
investigation of the evolution of the � ¼ 1=2 FQHE state as
a function of interlayer tunneling and layer spacing. It is
shown that the ground state evolves continuously, while the
quasihole state evolves discontinuously between the two-
component and one-component states. Based on these
results, a reasonable explanation for the inscrutable upward
cusp behavior of the activation energy is presented.

The Hamiltonian is given by

H ¼ HSAS þ HC: ð3Þ
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The single-particle Hamiltonian;

HSAS ¼ �
1

2
�SAS

X
m

X
�

cym�cm�� ¼ ��SASSx ð4Þ

describes electron transfer between the layers. Here, the total
pseudospin operator is defined using Pauli matrices as S ¼
ð1=2Þ

P
m cym����0cm�0 . On the other hand, HC represents a

Coulomb interaction within and between the layers:

HC ¼
1

2

X
m1�m4

hm1;m2jV��0 jm3;m4i

� cym1�
cym2�0cm3�0cm4�: ð5Þ

To model a bilayer system, we consider not only the layer
spacing d but also the thickness w. They are treated using
the following form of Coulomb interaction: V"" ¼ V## ¼
e2=�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ w2

p
and V"# ¼ V#" ¼ e2=�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
. Since we

are interested in changing d, the thickness is fixed at the
physically motivated value w ¼ 3:8l for a WSQW in this
article. The eigenstates of the Hamiltonian are obtained
exactly with the use of the exact diagonalization. In Fig. 1,
we show the neutral and charged (inset) excitation energies.
We first consider the quantity given as �E� ¼ EðN� þ
1;NÞ þ EðN� � 1;NÞ � 2EðN�;NÞ in the N ¼ 6 electron
system as a function of interlayer tunneling where the
number of flux N� is equal to 2N � 3 ¼ 9 for the ground
state with p-wave pairing.13,20) As shown in Fig. 1, the
upward cusp behavior is found at d=l ¼ 5:0, and 9.0. The
charged excitations are quasiholes or vortices, which
effectively contain a half quantum of flux because of
pairing. Thus, to obtain the activation energy, one should
divide the value �E� by 2 after subtracting the interaction
energy for two e� ¼ ��e=2 charges. Here, note that the flux
�0 ¼ hc=e corresponds to the quasihole with the charge �e at
the filling �.9) In consideration of this fact, the upward cusp
behavior of the activation energy observed experimentally is
reproduced in our simple theoretical model.

Our statement is as follows: The ground state changes
continuously contrary to the case of � ¼ 2=3, while the
quasihole excited state changes discontinuously as a function
of �SAS. Since the neutral excitations do not show a
minimum but cusp also at this point, the ground state
evolution is not a second ordere transition. The calculated
expectation value hSxi indicates a continuous evolution from

a two-component state (hSxi ¼ 0) to a one-component
(hSxi ¼ N=2) state as shown in Fig. 2. Now we show the
calculated overlaps between the exact ground state and the
trial states as a function of �SAS at d=l ¼ 5:0 in Fig. 2. The
data show that �331 and �Pf are relevant for small �SAS and
large �SAS, respectively. We found that the crossing point of
these two quantities corresponds to the point of the upward
cusp in the quantity �E� at each value of d=l. Thus contrary
to the conclusion in ref. 15 or ref. 16, we found that the
upward cusp is related to the crossover between the one-
component and two-component states.

Next we inspect Ho’s d-vector description given by18)

dð�Þ ¼ ð0;�i sin �; cos �Þ within the middle range of tunnel-
ing. The p-wave paired state can be written as

�H½dð�Þ� ¼ Pf
��i�j½dð�Þ�
uivj � viuj

� �Y
i<j

ðuivj � viujÞ2; ð6Þ

where the 2� 2 matrix:

� ¼ i½ðdð�Þ � �Þ�y� ¼
sin � cos �

cos � sin �

� �
ð7Þ

is related to the order parameter of the triplet pairing,18,19)

and �j is the layer index of the j-th electron. Note that � ¼ 0

and � ¼ 	=4 correspond �331 and �Pf , respectively. We
constructed the wave function eq. (6) explicitly for several
values of �, and compared with the exact ground state in a
six electron system. The optimized �, which has the largest
overlap with the ground state wave function at each value of
�SAS, is plotted in Fig. 3. The trial state eq. (6) with the
optimized � has a large overlap of about 0.9. Note that in
triplet pairing the pseudospin is given as S / id � d�.
However, the pseudospin operator does not commute with
the total Hamiltonian, thus the above value does not
correspond to the exact value calculated in Fig. 2. THis is
different from the mean-field theory of composite fer-
mions.18,19)

As shown in Fig. 2, hSxi for the state with one extra flux
quantum (dashed line) has a leap in the line at �SAS=
ðe2=�lÞ ¼ 0:013, which indicates a level crossing between
two-component and one-component in the quasihole states.
As we mentioned above, the elementary charged excitations
are described as the half quantum vortex �0=2 which is
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Fig. 1. Neutral excitation energies as a function of �SAS=ðe2=�lÞ at d=l ¼
5:0. Inset: Calculated �E� in units of e2=�l as a function of �SAS=ðe2=�lÞ
for d=l ¼ 5:0 and d=l ¼ 9:0. The data show an upward cusp which is

similar to the experimentally observed energy gap. The number of
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0

0.1

0.2

0.3

0.4

0.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

<
Sx

>
 / 

N

∆SAS /(e2/εl)

Ψ331

ΨPf

O
V

E
R

L
A

P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
∆SAS/(e2/εl)

d/l=5.0

Fig. 2. Expectation value of the x-component of the pseudospin in the

ground state (solid line) and the state with an extra flux quantum (dashed

line) as a function of �SAS=ðe2=�lÞ. Inset: Overlap between the ground
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function of interlayer tunneling in the six-electron system at d=l ¼ 5:0.
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called the quasihole. However, it is impossible to construct
numerically the one-half flux state. Thus, we consider the
one extra flux quantum state which should correspond to the
two-quasihole state. The quasiholes in the Pfaffian state are
thought to obey non-abelian statistics8) which cause the
Berry phase matrices when some of the quasiholes are
interchanged contrary to the ordinary Laughlin quasiholes.
For 2n quasihole states, the 2n�1 degeneracy is needed to
possess non-abelian statistics. Read and Rezayi21) confirmed
this nature in an exact diagonalization investigation with a
three-body interaction which is the parent Hamiltonian for
the Pfaffian state and its quasihole excited states.20) One of
the two-quasiholes states is the Laughlin-type quasihole9)

state:
QN

i¼1 vi�Pf with the total angular momentum L ¼ 3 for
a six-electron system which corresponds to the two-quasi-
hole state with a zero relative angular momentum. Because
of the long-range nature of the Coulomb interaction, such a
state with a higher total angular momentum should be higher
in energy. The quantum number of the relative angular
momentum of the two-quasiholes must be even because of
their statistics. So the state with smaller energy has L ¼ 1 and
the trial function for the two-quasihole states is given by8,21)

�
2qh
Pf ¼ Pf

uivj þ viuj

uivj � viuj

� �Y
i<j

ðuivj � viujÞ2: ð8Þ

One of the quasihole is on the north pole and the other is on
the south pole. We expect such a state to become relevant in
a bilayer system with large �SAS. Actually h�2qh

Pf j�i ¼
0:93929 at �SAS ¼ 0:08ðe2=�lÞ and d=l ¼ 5:0. In the oppo-
site limit of �SAS ! 0, the quasihole states for �331, which
are given by

QN"
i¼1 vi�331 and

QN#
i¼1 �i�331, might be relevant.

The lowest energy state with two quasiholes should have a
zero total angular momentum. In Fig. 4 energy eigenvalues
for some values of �SAS in a six-electron system with an
extra flux are shown against the total angular momentum L.
The state with L ¼ 0 is the lowest in the absence of
tunneling. As �SAS increases, the energy of the state with
L ¼ 1 decreases and becomes lowest when �SAS exceeds
0:013ðe2=�lÞ. The latter state can be approximated by �

2qh
Pf .

The level crossing point exactly corresponds to the cusp
point in Fig. 1. In other words, the upward cusp is a sign of
the transition between abelian and non-abelian statistics.

Now we study a larger d=l region. The � ¼ 1=2 FQHE
state is observed in the WSQW with large d=l > 7. This fact

is far from what was originally expected.13) Figure 5 shows
the interlayer pair-correlation function g"#ðrÞ at �SAS ¼ 0.
In a crude sense, the �331 state can be understood as two
Laughlin 1=3 states locked together so that the electrons in
one layer are bound to correlation holes in the other. We find
that the correlation hole or locking between the layers
declines and the system goes into the uncorrelating phase
when d=l becomes large as shown in Fig. 5. Thus the FQHE
state is not realized at d=l > 7 if �SAS ¼ 0. On the other
hand, at large �SAS=ðe2=�lÞ, our quantitative phase diagram
depicted in the inset of Fig. 3 indicates the 1=2 FQHE.
Actually as shown in Fig. 6, the ground state at large �SAS

can be understood as the Pfaffian state, while around the
cusp point, the optimized value of the Ho’s parameter is
� ¼ 	=6. The two-quasihole state also shows level crossing
when the tunneling rate �SAS is increased. As shown in the
inset of Fig. 6, at the large �SAS region, the two-quasihole
state of Moore and Read is relevant.

As a supplement, we comment on the experiment, at large
�SAS. In the experiment the gap becomes smaller when
�SAS is increased further, and vanishes at �SAS=ðe2=�lÞ >
0:08.16) To realize this larger tunneling region, the magnetic
field is reduced, and not only d=l but also w=l becomes small
(w=l � 2:5). That is, the well width w should be appreciated
as the third consequent parameter. When w and d are
significantly small and tunneling rate is large, the system
corresponds to a flat single-layer system, and the Rezayi–
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Read state22) describing the Fermi liquid state of composite
fermions4) might be relevant, and quantized plateau does not
appear. In fact, in the limit of �SAS ! 1 and d ¼ w ! 0,
the two-correlation function in the symmetric sector (dashed
line) shows a ‘2kF-like oscillation’

22) at N ¼ 10 and N� ¼ 18

as we see in Fig. 5. Contrary, at d ¼ w ¼ 6:0l, the short
range repulsion is reduced and the oscillation disappears,
indicating Cooper instability. Thus, to observe the one-
component 1=2 FQHE, a sample with a sufficiently wide
well and large tunneling rate must be utilied.

In this letter, we investigated the evolution of the � ¼ 1=2
bilayer FQHE state. We showed that the ground state
evolves continuously as the tunneling rate is changed, while
the quasihole state reveals a level crossing from a two-
component to a one-component. The fact that the energy gap
becomes maximum through the transition is really unusual
within the physics of quantum phase transition. Perhaps

similar singularity might be observed in transport phenom-
ena such as the Hall resistance of drag current or pseudospin
current.
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