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Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy
excitations. When Zeeman and spin-orbit interactions are neglected, its Landau levels are fourfold
degenerate, explaining the 4e2=h separation between quantized Hall conductivity values seen in recent
experiments. In this Letter we derive a criterion for the occurrence of interaction-driven quantum Hall
effects near intermediate integer values of e2=h due to charge gaps in broken symmetry states.
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Introduction.—Two-dimensional graphite (graphene) is
a gapless semiconductor with a honeycomb lattice and an
unusual massless Dirac-fermion band structure [1] that has
long attracted theoretical attention. The topology of its
Bloch states leads to large momentum-space Berry phases
[2], quantized and half-quantized Hall effects, and a van-
ishing density of states at the neutral Fermi energy which
qualitatively alters the way in which electron-electron
interactions [3] influence electronic properties. The integer
quantum Hall effect in graphene is expected to be unusual
because its Landau levels are widely separated and four-
fold degenerate in the absence of weak Zeeman and spin-
orbit interactions. Interest in graphene has increased re-
cently because of experimental progress [4], including the
discovery of the integer quantum Hall effect [5] with
quantized values of the Hall conductivity [�xy � 4�n�
1=2��e2=h�] separated by 4e2=h. In this Letter we address
the quantum Hall effects that should occur at intermediate
integer values of filling factor �, giving rise to plateaus at
�xy � ��e2=h�, in principle for all integer values of �.
These additional plateaus are expected to arise from charge
gaps induced by electron-electron interactions, but have
not yet been observed. They would be a new example [6] of
the enhanced interaction physics that occurs at integer
filling factors in a strong magnetic field whenever N � 2
Landau levels are degenerate or nearly degenerate. At
integer filling factors the mean-field-theory scenario in
which symmetries are broken to open gaps between qua-
siparticle orbitals usually applies. The ground state is then
well approximated by an unrestricted Hartree-Fock state
[7] in which an integer number i < N of Landau levels
associated with orthogonal SU�N� spinors is occupied. The
phenomenon of interaction induced gaps and broken sym-
metries at integer filling factors is known as quantum Hall
ferromagnetism. The fourfold degeneracy of graphene’s
Landau levels follows from approximate spin-degeneracy
and from Bloch state degeneracy between two inequivalent
points in the honeycomb lattice Brillouin zone. The low-
energy physics of graphene is well described [3] in a four-
component spinor envelope-function formalism with
SU�4� invariant electron-electron interactions. Graphene

is therefore a good example of SU�4� quantum Hall ferro-
magnetism [8], much more accurately approximating this
symmetry than bilayer electron systems [9], for example.
The absence of additional integer Hall plateaus due to
quantum Hall ferromagnetism in all but the most recent
samples is almost certainly due to disorder. Figure 1 sum-
marizes the estimate of the minimum sample mobility
required to see quantum Hall ferromagnetism in graphene
which is explained below.

Massless Dirac-Weyl quasiparticles.—The ~k � ~p
Hamiltonian of the graphene bands is

 H0 � v�px � eAx��z�x � v�py � eAy��y; (1)

where �z � � labels the two-degenerate (K and K0) val-
leys, �� are Pauli matrices that act in the space of the two-
atoms per unit cell, and ~A�~r� is the vector potential. In the
zero-field case, the Hamiltonian (1) has linear dispersion
E � �v@k for both spin states and for both K and K0

valleys. In a magnetic field the spectrum of H0 consists
of fourfold degenerate (including spin) Landau level
branches with En � �@v
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FIG. 1 (color online). Phase diagram for SU�4� quantum Hall
ferromagnetism in the n � 0 and n � 1 Landau levels of gra-
phene. In our model the ordered region is bounded by a maxi-
mum value of �s, the ratio of the density of Coulomb scatterers
to the density of a full Landau level. �s is inversely proportional
to the product of the sample mobility and the external field
strength and order near integer filling factors requires the mini-
mum values for this product indicated on the right-hand vertical
axis.
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in Fig. 1. For n � 0 eigenfunctions of different valleys are
localized on different honeycomb sublattices while for n �

0, they are symmetric or antisymmetric combinations of
two-dimensional-electron-gas Landau level n states on one
sublattice and level n� 1 states on the other sublattice.
The spin degeneracy is lifted by weak Zeeman coupling
that we neglect for the moment.

Stoner criterion.—The simplest approximation [10] for
interacting electrons in a strong magnetic field is one in
which interactions are treated in the Hartree-Fock approxi-
mation and disorder in the self-consistent Born approxi-
mation [10] (SCBA). In the strong-field limit the total
energy in this approximation is given by

 

E
N�
�

X4

��1

�Z ��

��
dEEA�E� �

X
2
�2
�

�
; (2)

where N� is the orbital Landau level degeneracy, �� is the
Fermi level for spinor-component �,

 X �
Z d2 ~q

�2��2
Vint� ~q� exp��q2‘2=2�F2� ~q� (3)

is the exchange integral, ‘ � �@c=eB�1=2 is the magnetic
length, and F� ~q� is a form factor we will discuss later. In
the SCBA the Landau level spectral function has the form

 A�E� �
2

��
	1� �E=��2
1=2; (4)

where � is the Landau level width [10]:

 

�2

4
� ns

Z d2 ~q

�2��2
jUdis� ~q�j2 exp��q2‘2=2�F2� ~q� (5)

which is estimated below. In Eqs. (3) and (5) Vint� ~q� and
Udis� ~q� are the Fourier transforms of the electron-electron
interaction and the disorder potential and ns is the density
of disorder scatterers. In the case of graphene, the spinor
index � runs over four possible values. These expressions
assume perfect SU�4� invariance of the disorder-scattering
and electron-electron interactions. While this is certainly
an approximation, we believe it to be an excellent one.
They also assume that spatial invariance is recovered after
disorder averaging, so that the electron density matrix is
diagonal in its orbital labels and the energy simply propor-
tional to the number of orbitals in a Landau level N�. In
Eq. (2) the �� values are the eigenvalues of the density
matrix in spinor space,

 �� �
Z ��

��
dEA�E�; (6)

which are invariant under unitary transformations of the
four-dimensional spinor space, consistent with SU�4�
symmetry.

In the normal state the four (nearly) degenerate Landau
levels are equally occupied. To look for broken symmetry
states we write �� �

�T
4 � ��� where �T � N=N� is the

total filling factor in the fourfold degenerate Landau level
of interest. Expanding to second order in ��� and using
that

P
���� � 0 we find that
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where �0 is the normal state Fermi level. The normal state
is unstable when the second term in square brackets is
negative, in other words when XA��0�> 1. This criterion
for quantum Hall ferromagnetism is closely analogous to
the Stoner [11] criterion for ferromagnetism in metals, and
has been successfully applied [12] to understand the ap-
pearance of spin splittings at odd integer filling factors in a
semiconductor two-dimensional electron gas. In the case
of quantum Hall ferromagnetism (QHF) the exchange
energy competes with disorder energy rather than with
band energy. We can apply the QHF Stoner criterion to
graphene by relating the disorder potential to the zero-field
mobility of graphene, a quantity that is conveniently avail-
able from experiment.

Zero-field mobility and Coulomb scattering.—We start
from the Boltzmann transport theory expression for the
conductivity, applied to the fourfold degenerate Bloch
bands of graphene:

 �B�0 �
e2�v2D�EF�

2
�
e2

h
2EF�
@

; (8)

where � is the scattering rate,

 ��1 �
nskF

2�@2v

Z 2�

0
d	jUdis�q�j

2�1� cos	�
�1� cos	�

2
;

(9)

	 is the scattering angle, kF is the Fermi wave vector, and
q � 2kF sin�	=2� is the scattering wave vector on the
circular two-dimensional Fermi surface. The last
	-dependent factor in Eq. (9) is nonstandard and is due
to the wave vector dependence of the relative phase of
graphene Bloch band wave functions on the two sites
within its honeycomb lattice unit cell. The factor of kF in
Eq. (9) reflects the density dependence of the density-of-
final states for elastic scattering of Fermi surface quasipar-
ticles. For short-range scatterers the integral in Eq. (9)
remains finite as density / k2

F vanishes. Since D�EF� is
proportional to kF for two-dimensional Dirac bands,
Eq. (9) implies a conductivity that is independent of kF
and therefore independent of carrier density. Indeed theo-
retical studies of the conductivity of graphene [13] predict
that the conductivity has a weak density dependence, re-
maining finite as kF ! 0. Experiment, on the other hand,
finds that the mobility � � ��=ne in graphene is nearly
constant except at very low densities and that it has values
�104 cm2 V�1 s�1 in samples that are sufficiently high
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quality to exhibit the integer quantum Hall effect.
Evidently quasiparticle scattering amplitudes are enhanced
at lower densities in such a way as to convert the k�1

F
dependence of the scattering rate in Eq. (9) to a k�1

F
dependence. One plausible explanation for this behavior
is that Dirac band quasiparticle scattering is dominated by
Coulomb scattering from charged defects near the gra-
phene plane. For two-dimensional graphene Udis�q� �
VC�q� � 2�e2=q. Inserting this expression in Eq. (9) we
obtain that

 

EF�
@
�
n
ns

4

�g2 ; (10)

where g � e2

@v� 3 is the effective fine structure constant
used to characterize the ratio of Coulomb interaction and
band energy scales in graphene. In Eq. (10) nS should be
thought of as the density of Coulomb scatterers that are
located in the substrate within a Fermi wavelength of the
graphene plane. The influence of more remote scatterers is
suppressed by the factor exp��qd� that appears in the two-
dimensional Fourier transform of the Coulomb interaction.
Inserting Eq. (10) in Eq. (8) we find that mobility

 ��
170 cm2 V�1 s�1

ns	1011 cm�2

: (11)

In systems with Coulomb electron-electron or electron-
impurity interactions screening normally plays an essential
role, changing long-range interactions into short-range
ones. In a static approximation, the screened disorder
potential in graphene is

 Usc�q� �
2�e2

q� 2�e2��q�
; (12)

where ��q� is the polarization function of the graphene
Dirac bands. Screening does not change the density depen-
dence of the conductivity in graphene because ��q� also
scales like kF. The influence of screening on the mobility
can be estimated by making a Tomas-Fermi approxima-
tion, replacing ��q� by ��q � 0� �D�EF�. When the
coupling constant g is much larger than 1 Usc�q� ’
�@v��=�2kF� and

 

EF�
@
’
n
ns

64

�
; (13)

yielding a value for the mobility that is 16g2 times larger
than the unscreened value. We note that g cancels in
Eq. (13), which is fortunate because its effective value
can be influenced by nonuniversal substrate dielectric
screening. Corrections to Eq. (13) become important for
g < 1. We can use these expressions to extract a value for
the density of scatterers ns from measured mobilities. This
procedure might retain partial validity, depending on the
details, even if the limiting scatterers are not Coulombic.
Similar density dependence could in principle arise from a
partially accidental combination of disorder sources that

gives rise to a similar increase in transition rates at small
wave vectors, or from strong short-ranged scattering that
approaches the unitary limit. Other potential disorder
sources include random crumpling of the graphene sheet
and coordination defects in the graphene sheet that give
rise to long-range strain fields. The procedure we now use
to translate between zero-field mobilities and strong-field
Landau level widths will retain its validity in some, but not
all, plausible scenarios. In particular, the values of �B at
the stoner phase boundary are likely to be similar for
Coulomb and topological defect scattering [14].

Self-consistent screening in a magnetic field.—We are
now in a position to estimate the Landau level width and
apply the Stoner criterion. For Coulomb scattering
 

�2

4
� ns

Z d2 ~q

�2��2

�������� 2�e2

q� 2�e2�� ~q�

��������
2

� exp��q2‘2=2�F2� ~q�: (14)

Notice that �2 diverges if we neglect screening. We now
need to specify the form factor F�q�. Taking the Coulomb
interaction to be diagonal in honeycomb lattice site index it
follows [10] that the form factor F�q�  1 for n � 0 and
that

 F�q� � 1
2	Ljnj�q

2‘2=2� � Ljnj�1�q
2‘2=2�
 (15)

for n � 0. If the magnetic field is strong enough to neglect
coupling between different Landau levels the normal state
polarization function ��q�j is given approximately by

 ��q� �
4 exp��q2‘2=2�

2�‘2 A��0�: (16)

The factor of 4 in Eq. (16) is the graphene Landau level
degeneracy and the factor exp��q2‘2=2� accounts for the
orbital character of Landau level wave functions. Since
A��0� is proportional to ��1, Eq. (14) must be solved self-
consistently [15] giving rise to the following implicit equa-
tion for ~�  �=�e2=‘�:

 1 � 4�s
Z 1

0
dx

F2 exp��x2=2�

	~�x� F24 ~A0 exp��x2=2�
2
: (17)

In Eq. (17) ~A0  �A��0� and �s � 2�‘2ns is the ‘‘filling
factor‘‘ of scatterers. Note that since the right-hand side of
Eq. (17) is a monotonically increasing function of �s and a
monotonically decreasing function of ~�, ~� must increase
monotonically with �s.

Graphene QHF phase boundary.—The Stoner criterion
can be written in terms of ~�, ~A0, and the dimensionless
exchange integral

 

~X 
X

e2=‘
�
Z 1

0
dx

~�xF2 exp��x2=2�
~�x� 4 ~A0F

2 exp��x2=2�
: (18)

In the absence of screening (large ~�), ~X �
���������
�=2

p
for n � 0

and ~X � �11=16�
���������
�=2

p
for n � 1. The Stoner criterion,
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~X ~A0=~� > 1; (19)

is satisfied for �s > ��s . Since �s / ns=B / 1=�B, our
Stoner criterion specifies the minimum values for the
product of field and mobility illustrated in Fig. 1:

 B	10 T
�	104 cm2 V�1 s�1
 * 1=��s��T�: (20)

The origin of the weaker tendency to ordered states in the
fourfold degenerate n � 1 Landau level is the difference in
form factor F�q�.

Discussion.—Although the Stoner criterion can be ap-
plied at all filling factors and provides a reasonable assess-
ment of the crossover between interaction dominated and
disorder dominated physics, we caution that the simple
quantum Hall ferromagnet states can occur only at integer
values of the total filling factor. We expect the emergence
of interaction-driven gaps at intermediate integer filling
factors to be the first signal that sample quality is adequate
to see interaction dominated physics. Judging by the rela-
tive size of charge gaps at integer and fractional filling
factors, we expect that the first fractional filling factors will
require mobilities approximately 5 times larger than those
required to realize quantum Hall ferromagnetism; the
SU�4� nature of these Landau levels will open up a new
frontier for the fractional quantum Hall effect that is likely
to yield some surprises. We have so far neglected the
Zeeman energy because it is much weaker than the com-
peting disorder and interaction energy scales and will have
little influence on whether or not quantum Hall ferromag-
netism occurs. (The Zeeman energy is �1 meV at �10 T
compared to a n � 0 Landau level interaction energy scale
�100 meV depending on the degree of substrate dielectric
screening.) When quantum Hall ferromagnetism does oc-
cur, however, the Zeeman energy will play a larger role.
For � � �1, in particular, the Zeeman energy will select
ordered states that are spin polarized, and break symmetry
in the SU�2� valley space. The interaction terms in gra-
phene should be weakly dependent on valley index, be-
cause interactions on the same graphene sublattice should
be more strongly repulsive than interactions between sub-
lattices at short distances, reducing the broken symmetry to
U�1�. For this reason, we anticipate that the � � �1 quan-
tum Hall ferromagnet in graphene should have a
Kosterlitz-Thouless phase transition at a low temperature.
Finally we compare our result with the recent experiment
[6] that has reported quantum Hall ferromagnetism in
graphene. The mobility of the sample used in [6] is � �
5� 104	cm2=V s
. Figure 1 indicates that for this mobility
and � � �1 the symmetry breaks at 17 T, in agreement
with experiment [6]. The appearance of quantum Hall
plateaus observed at � � �4, in the middle of the fourfold
degenerate n � �1 Landau levels at around 30 T, is also
in reasonable agreement with Fig. 1 giving the critical field
40 T. The influence of dielectric screening on our phase
diagram, which we expect to be rather weak, and of screen-
ing due to virtual inter-Landau-level transitions, which we

expect to be important at larger n, will be discussed in
subsequent work.
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