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At the charge neutral point, graphene exhibits a very unusual high-resistance metallic state and a

transition to a complete insulating phase in a strong magnetic field. We propose that the current carriers in

this state are the charged vortices of the XY valley-pseudospin order parameter, a situation which is dual to

a conventional thin superconducting film. We study energetics and the stability of this phase in the

presence of disorder.
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The initial experiments of the quantum Hall effect
(QHE) in monolayer graphene discovered the quantum
Hall plateaus �xy ¼ 4ðN þ 1

2Þðe2=hÞ (N 2 Z) at filling

factors � ¼ 2�‘2B� ¼ �2;�6;�10; . . . [1]. Here, ‘B is
the magnetic length, � the carrier density measured from
the charge neutral point, and the factor of 4 arises from the
spin and valley (K andK0) degeneracy. Recent experiments
under stronger magnetic fields, on the other hand, showed
additional plateaus at � ¼ 0;�1;�4 [2,3]. Further experi-
ments [4] at � ¼ 0 in high quality samples revealed a rapid
divergence of the longitudinal resistance Rxx at a critical
field Bc. Interestingly such divergence fits the Kosterlitz-

Thouless (KT) [5] form Rxx � ea=
ffiffiffiffiffiffiffiffiffiffi
Bc�B

p
over three decades

of the resistance [4]. Moreover, for B< Bc the resistance
saturates at low temperature to a value much larger than the
quantum of resistance [4], a behavior qualitatively differ-
ent from conventional thermally activated transport in
strong magnetic fields.

Since the critical field Bc lies in the regime where the
fourfold degeneracy of the N ¼ 0 Landau levels (LLs) is
split, it is important to understand the cause of such split-
ting. There are several theoretical proposals. The common
theme is the observation that the exchange effect of the
long-range part of the Coulomb interaction [6] favors the
spontaneous polarization of the real and/or valley spins [7–
18]. [The valley spin is a SU(2) pseudospin variable, which
we denote by T; its z component Tz ¼ þ1 (�1) corre-
sponds toK (K0), respectively.] In one of the proposals, it is
argued that the Zeeman energy favors the polarization of
the real instead of the valley spin [11,12]. In another it is
argued that the short-range part of the Coulomb interaction
favors the spontaneous polarization of the valley spin so
that K and K0 becomes unequally populated [8,10,13–16].
Because theN ¼ 0 Landau states associated withK0 andK
localize on complementary sublattices (A and B, respec-
tively) this amounts to a charge-density-wave (CDW)
modulation which breaks the A-B sublattice symmetry.

The type of diverging resistance observed in Ref. [4] is
difficult to account for in the real spin polarization scenario

since in this scenario there are spin-filtered counterpropa-
gating edge states that give rise to a metallic conductance
of 2e2=h at � ¼ 0 [11,12,19]. Similarly in the CDW sce-
nario [13–16] it is difficult to explain the KT-type resist-
ance divergence and the high-resistance metallic state
below the critical field [4]. In addition to the above, there
is a work (Ref. [20]) which claims an explicit valley
symmetry breaking term is consistent with the lattice point
group symmetry. Like others, this work cannot account for
the KT behavior.
Motivated by the KT behavior and the highly resistive

metallic state, we propose an alternative scenario: the
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FIG. 1 (color online). (a) The Kekule bond-density-wave order
with two defects marked by a filled circle. The defects are
charged as they support a midgap electron state. (b) The U(1)
phase � ¼ tan�1ðTy=TxÞ corresponding to the bond order

pattern (a). (c) The valley-spin polarization ratio as a function
of magnetic field B and sample mobility �. (d) Same as (a) but

for the pseudospin supercurrent jzsc=j
zðcleanÞ
sc , where jzðcleanÞsc is the

value in the clean limit. The number of orbitals per valley and
per spin is N� ¼ 50.
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degeneracy splitting at � ¼ 0 is due to a spontaneous
ordering of the pseudospin on the Tx � Ty plane (XY

pseudospin ferromagnet). This involves a spontaneously
generated hybridization between theN ¼ 0 LLs associated
with B (K) and A (K0), and is represented by the ground
state wave function

j�i ¼ Y
m;s¼"#

1ffiffiffi
2

p ½cyKms þ ei�cyK0ms�j0i; (1)

where cy�ms is the creation operator for an electron in
mth N ¼ 0 LL orbital at valley � ¼ K;K0 with real spin
s ¼"; # . This type of order also breaks the lattice trans-
lation symmetry due to the mixing of B and A, and repre-
sents a bond-density wave of some kind (Kekule order)
[see Fig. 1(a)] [17,18,21–23]. The phase � of this hybrid-
ization matrix element is the U(1) phase angle representing
the direction in the Tx � Ty plane, T ¼ ðcos�; sin�; 0Þ,
and associated with the sliding degrees of freedom of this
density wave. The low-energy charged excitations are
vortices and antivortices [Fig. 1(b)]. We study their
binding-unbinding transition driven by magnetic fields or
disorder (see below).

We now take a look at, piece by piece, the Hamiltonian
for graphene in a strong magnetic field and the associated
energy scales, to address the plausibility of the intervalley
coherent state.

(1) At the charge neutral point the LL separation isffiffiffi
2

p
@vF=‘B ’ 400

ffiffiffiffiffiffiffiffiffiffi
B½T�p ½K�, which is the largest energy

scale of the problem. Therefore, in the rest of this Letter
we perform projection onto the N ¼ 0 LLs.

(2) The Coulomb interaction HC, which is the second
largest energy scale of the problem, is approximately
symmetric under rotation in the combined space of real

and valley spins. The exchange energy is Eex
C �ffiffiffiffiffiffiffiffiffi

�=2
p ðe2=�‘BÞ ’ 120

ffiffiffiffiffiffiffiffiffiffi
B½T�p ½K� [6].

As a result it favors the polarization of the SU(4) spin
albeit it does not care whether the polarization should
occur in the real spin or valley spin or some combination
of both [7].

(3) We now describe the parts of the Hamiltonian which
break the SU(4) symmetry, HSB ¼ R

d2rH SB,

H SB ¼ � 1

2
�zSz �U0jSj2 �UzT

2
z �U?ðT2

x þ T2
y Þ:
(2)

Here S is the real spin operator. The first term in HSB

represents the Zeeman energy where �z � g�BB ’
1:3ðB½T�Þ½K�. The short-range part of the Coulomb inter-
action is not SU(4) symmetric and gives rise to U0 and Uz.
They can be estimated from the on-site and the nearest
neighbor interactions, and are smaller than Eex

C by a factor

a=‘B [8,9], where a is the lattice constant. WhileU0 favors
the real spin polarization, Uz favors the CDW phase ðTz �
0Þ [8–10].

On the other hand, the U? term can arise from the
electron-phonon interaction. One such example is the in-

plane optical mode at the K point, whose interaction with
electrons can schematically be represented as [17,24]

H? ¼ f
Z

d2ru � ðc y��xc Þ þ NCk

2
u2; (3)

where u ¼ ðux; uyÞ represents the (uniform) Kekule-type

distortion of the lattice, k measures the elastic energy, and
NC is the total number of carbon atoms. The two sets of
Pauli matrices, f�x;y;z;0g and f�x;y;z;0g, act on sublattice

(A; B) and valley (K;K0), respectively; c yð�x �
i�yÞ�xc / Tx � iTy / e�i� serves as the U(1) order pa-

rameter of the Kekule bond-density wave. Upon integrat-
ing out the phonon, this gives rise to the U? term with
U? � 2:0ðB½T�Þ½K�. Note that U? is comparable to �z.
This can be traced back to the strong coupling between the
K phonon and electrons [25,26]. Out-of-plane lattice dis-
tortion is studied in Ref. [16], and shown to contribute to
Uz which are much weaker than that associated with in-
plane modes in graphene [24]. The SU(4) breaking terms
are summarized in Table I.
Since the SU(4) symmetric part of the Coulomb inter-

action is much stronger than the symmetry breaking parts
HSB, it is the former that sets the basic energy scale for the
SU(4) symmetry breaking. The symmetry breaking terms
simply select the way the SU(4) symmetry is broken: they
determine the nature of the ordered phase. Although U0,
Uz,U? in Table I all have similar energy scales, it suggests
the U(1) broken intervalley coherent state (1) is a reason-
able candidate for lifting the degeneracy of theN ¼ 0 LLs.
We now describe the field-induced transition at zero

temperature using the self-consistent Hartree-Fock (HF)
theory. To account for competition between interaction and
disorder effects, we allow the XY pseudospin order pa-
rameter to be spatially inhomogeneous. The matrix ele-
ment of the HF Hamiltonian, in the Landau gauge, can be
written in the form [27],

hm�jHHFjm0�0i¼X
q

eiqxXm0	qy‘
2
B;Xm�Xm0 ½UH

��0 ðqÞþUF
��0 ðqÞ

þUXY
��0 ðqÞþ	��0UimpðqÞ�: (4)

Here the system size is L�L¼2�‘2BN�, Xm ¼ 2�‘2Bm=L

ðm ¼ 1; 2; . . . ; N�Þ, and� ¼ 1; . . . ; 4 is the index for (real)

spin and valley. The Hartree and Fock potentials, and the
anisotropic interaction, are given as follows:

TABLE I. SU(4) symmetry breaking terms, with the pattern of
symmetry breaking and the energy scales.

Residual symmetry [ðspinÞ � ðvalleyÞ] Energy scale

�z No� SUð2Þ 1:3½K� � B½T� [3]
U0 SUð2Þ � SUð2Þ 1:0½K� � B½T� [8]
Uz SUð2Þ � Z2 (CDW) 0:5½K� � B½T� [8]
U? SUð2Þ � Uð1Þ (Kekule) 2:0½K� � B½T� [17]
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UH
��0 ðqÞ¼ 	��0

2�‘2B
VCðqÞe�q2‘2B=2

X
�00
���00 ðqÞ;

UF
��0 ðqÞ¼� 1

L2

X
p

VCðpÞe�ðp2‘2B=2Þþiq�p‘2B���0 ðqÞ;

UXY
��0 ðqÞ¼�U?

2�

X
�1�2

��1�2
ðqÞe�q2‘2B=2

X
j¼x;y

T̂j
��0 T̂

j
�1�2

;

(5)

where VCðqÞ ¼ 2�e2=�q and T̂j ¼ �0 � �j. The SU(4)

order parameter in Eqs. (4) and (5) is determined self-

consistently from ��0�ðqÞ ¼ N�1
�

P
mm0 hcym�cm0�0 i �

e�iqxXm	qy‘
2
B;Xm0�Xm

. The disorder potentialUimpðqÞ is given
in terms of charged impurities located randomly at RI by

UimpðqÞ ¼ L�2
PNimp

I¼1 e
iq�RIVCðqÞe�½q2=4�iqxqy=2�‘2B . The

disorder strength is described by the impurity filling
�imp ¼ ðh=eBÞnimp, where nimp ¼ Nimp=L

2 is the impurity

density. In terms of the zero-field mobility of graphene,
� ¼ �xx=ne ’ 20e=hnimp [7], the disorder strength is de-

termined by a product B��.
In the clean limit, Nimp ¼ 0, the ground state is fully

pseudospin polarized due to the Coulomb exchange. In a
weak field or in a dirty sample, on the other hand, the
Coulomb interaction plays a minor role and the four
(nearly) degenerated LLs are equally occupied. As shown
in Fig. 1(c), the pseudospin polarization ratio diminishes in
the weak field and low mobility limit. In particular when
B< B	 ’ 10=ð�½104 cm2=V s�Þ½T� the pseudospin sym-
metry is restored by disorder. Here B	, referred to by the
dashed line in Fig. 1(c), plays the role of the mean-field
critical field.

Even B> B	 vortices and antivortices tend to destroy
the stiffness of the XY pseudospin order. An inkling of this
KT transition could be seen in the unrestricted HF calcu-
lation as follows. In the pseudospin XY (quasi-long-range)
ordered phase, angle-twisted states which have � ¼ QXm

in Eq. (1), namely, pseudospin-supercurrent-flowing states,
are metastable, because of the finite stiffness. Such states
can be selected by artificially starting with an initial order
parameter �KK0 ðqÞ ¼ 	q;Qx̂ in the initial step of the self-

consistency loop. One can then monitor whether or not the
pseudospin supercurrent generated can survive as one iter-
ates the HF calculation [28]. Charged impurities generate
quenched vortex-antivortex pairs that randomize �, and
hence the pseudospin supercurrent is expected to vanish in
a weak field and low �s (see Fig. 2.) In Fig. 1(d), the
pseudospin supercurrent of the metastable state, given by
[29] jzsc ¼ �e

L2

P
q;ss0��½iq� ẑ�VCðqÞ��sð�qÞ���s0 ðqÞ, is

plotted, where � ¼ �1 for K and K0, and ��sðqÞ is the
density operator for valley � and spin s. Here note that
pseudospin supercurrents are charge neutral objects and
thus are not related to true charge currents. We calculate jzsc
to discriminate whether vortices and antivortices are bound
or unbound. As Fig. 1(d) indicates, the pseudospin super-
current drops around Bc ’ 40=ð�½104 cm2=V s�Þ½T�>B	.
When B 
 Bc and when the temperatures is sufficiently

lower than the Coulomb exchange energy but still finite,
the U(1) phase fluctuations are described by the following
classical action [5,6]:

SXY ¼ �s

2

Z
d2xðr�Þ2: (6)

The unbinding of the vortex-antivortex pairs triggers the
KT transition from the pseudospin XY quasi-long-range
ordered phase to the disorder phase at Bc.
Vortices and antivortices are charged [6,23] and they can

contribute to electrical transport. The reason why they
carry a charge can be understood on the honeycomb lattice
as follows [Fig. 1(a)]: A defect in the Kekule order can be
visualized as a A or B sublattice site that is not dimerized
with neighbors, and hence supports a midgap state (zero
mode). The presence (absence) of an electron on such a site
makes the Kekule vortex or antivortex positively (nega-
tively) charged. The pseudospin is pointing Tz¼þ1 (�1)
at the vortex core while Tz¼�1 (þ1) at the antivortex
core. Hence, the charge and currents generated by vortex
excitations are given by j� ¼ ðTz=�Þ���
@�@
�, where

� ¼ 0; x; y.
In the XY ordered phase where the vortex and antivortex

are bound, it is energetically favorable for the Tz of the pair
to point in the same direction. As a result, the bound vortex
pairs are charge neutral. On the other hand, a charged
vortex-antivortex pair can be induced and pinned by
charged impurities. As the number of vortex-antivortex
pairs increases, by increasing the impurity density or by
decreasing magnetic fields, the binding interactions be-
tween vortex and antivortex are screened, causing the KT
transition.
In the KT disordered phase (B	 < B< Bc), the vortices

are unbound, and their diffusion gives rise to a conductivity
given by � / nvtx�vtx where nvtx is the density of vortices
and �vtx the mobility. This vortex conducting mechanism
is a two-dimensional analog of the soliton conduction
mediated by charged defects (domain walls) in polyacety-
lene [30]. In the KT disordered phase nvtx � 1=�2 where �

is the KT correlation length [5]. Since � / ea=
ffiffiffiffiffiffiffiffiffiffi
Bc�B

p
, this

gives rise to the KT-divergent resistivity. This argument

x / L

y
/L

1

0
0 1

FIG. 2. A typical local XY pseudospin configuration (Tx; Ty)
represented by arrows. The z component is represented by a gray
plot with black as þ1 and white as �1. The number of orbitals
per valley and per spin is N� ¼ 50, and the number of impurities

is Nimp ¼ 20.
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closely follows the one used by Halperin and Nelson in
analyzing the behavior of the electrical conductivity of a
thin film superconductor above its KT transition [31].
Indeed, our situation is dual to theirs. In Ref. [31] the
Cooper pair (charge) current exerts the magnus force on
the vortices and, through the finite vortex mobility, induces
a vortex current perpendicular to it. Since vortex current
causes a transverse electric field (hence a voltage drop)
through the Josephson relation, this gives rise to a finite
electrical resistivity. In our case the vortex is charged, and
it is the external electric field that induced the vortex
(charge) current. Thus our electric field plays the role of
charge (Cooper pair) current in Ref. [31], while our charge
(vortex) current plays the role of electric field in Ref. [31].
As the result, electrical conductivity in Ref. [31] should be
translated into electric resistivity � in our case; the finding
of �� �2 in Ref. [31] implies �� �2 in our situation [32].

The spontaneous intervalley coherence discussed above
is very similar to the interlayer coherence in the double-
layer � ¼ 1 QHE [6,33]. However, there are several im-
portant differences. (i) The parameter d=‘B (d is the inter-
layer separation) in the double-layer system is replaced by
a=‘B where a is the lattice spacing. For the current system
a=‘B � 1, a regime which has not been achieved in the
double-layer system. (ii) The intervalley coherent state we
propose is spin singlet rather than spin polarized. (From
this point of view, the � ¼ 1 bilayer QH system is similar
to the � ¼ �1 QHE in graphene rather than � ¼ 0.)
Although the (pseudospin) supercurrent cannot be directly
measured in the intervalley coherent state in graphene,
these two facts have advantage over double-layer QH
systems to observe the KT physics.

We stress that our proposal is motivated by the apparent
KT-divergent resistance and the highly resistive metallic
state at � ¼ 0 observed in Ref. [4]. The very basis of our
proposal should be subjected to further experimental scru-
tiny, by changing temperature, magnetic field, doping, and
mobility.
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