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Complex Numbers and Algebra ©

The real numbers are complete for the operations addition, subtraction, multiplication, and

division, or more suggestively, for the operations of addition and multiplication and their inverses.

Complete simply means that the operation may be performed on any two real numbers and results in a

real number.  In contrast, real numbers are complete for powers, xn, but not for the inverse operation;

e.g. there is no real number for which x2 = -1.  This lack is of more than formal interest, for it implies

that polynomial equations may lack solutions, and we are often interested in finding solutions to such

equations.  Complex numbers have the virtue of being complete for addition, multiplication, and

powers, and their inverses.  In this sense, they are a natural extension of real numbers, just as real

numbers are an extension of integers.  (The term imaginary is unfortunate; complex numbers are just

as physically significant as vectors or any other mathematical construct which describes the universe.)

Complex numbers are based on the introduction of an i for which i2 ≡ -1.  Complex numbers have

the form z = x + iy, with x and y real and Re(z) ≡ x,  Im(z) ≡ y.  Addition and subtraction follow the

obvious rules for real and imaginary parts separately.  Multiplication follows by simple expansion:

z1z2 = (x1 + iy1)(x2 + iy2) = x1y1 - x1y2 +i(x1y2 + x2y1).  Complex conjugation is a useful operation

with z* ≡ x - iy, and division can then be written as z1/z2 = z1z2*/z2z2* = [x1y1 + x1y2 +i(-x1y2 +

x2y1)]/(x2x2 + y2y2), a number in the standard form for z in terms of real arithmetic.  Note that any

equation of the general form  z1 = z2 is actually a pair of equations  x1 = x2 and y1 = y2.

Since the real and imaginary parts of z are independent, it can be useful to regard a complex

number as a two-dimensional vector in the x-y plane. (They are not truly vectors, for multiplication

and division are not defined for vectors, but the dot product is related to z1z2*.)  In particular, an

alternative to the representation z = x + iy is in terms of the amplitude |z|2 ≡ x2 + y2 = zz* and phase

tan φ = y/x, the magnitude and direction for the vector.  However, the expression for the phase must

be used with care, for the phase must span the full range 0 to 2π to cover the plane, not just the

principal part of arctan.  (This is easily done on many computers, which include a library function

tan-1(y,x) of two variables to specify the full range.)  Much of the utility of complex numbers arises

from certain features of this representation.

The function ex, like many advanced functions, is defined as a power series, from which its other

properties are adduced.  From that definition,

eiθ = ∑
n=0

∞
    

1
n!  (iθ)n    =     ∑

n=0

∞
    

1
(2n)!  (-1)n(θ)2n     +   i ∑

n=0

∞
     

1
(2n+1)!  (-1)n(θ)2n+1

 =  cos θ  + i sin θ

based on the series definitions of those functions.  One representation is therefore z = |z|eiθ , which is

particularly convenient for multiplication and division.  As an illustration, consider the trivial statement
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that ei(θ1 +θ2) =  eiθ1 eiθ2 and compare it with the complicated trigonometric identities that result from

examining the real and imaginary parts.  This is the easiest way to derive the trigonometric sum

formulas, but given a complicated expression of sines and cosines, simplifications may be far less

apparent than if the complex exponential notation had been used.

Exercise:  By writing cos θ = ( eiθ + e-iθ)/2,  derive the identity for cos α cos β.

In particular, a time dependence ept will have the same (factorable) time dependence in all

derivatives, making manipulations much easier than sines or cosines, which mix for odd derivatives.

This often simplifies and generalizes the solution of differential equations.

Formalities:  Although the exponential and trigonometric functions are introduced independent of

calculus, the most compact, complete treatment of all properties uses calculus and the series definitions

given above.  The usual derivative properties follow immediate from the series:   d(ex)/dx = ex;

d(sin θ)/dθ = cos θ; d(cos θ)/dθ = -sin θ.  The fact that ex is a good notation for the function defined

by the series, i.e. that exey = e(x+y), requires some thought, but application of the binomial formula for

(x+y)n to the series expansion for  e(x+y) will show equality.  With these results, it is clear that |eiθ | =

1, sin2θ + cos2θ = 1, and sine and cosine have their usual role in a right triangle x,y,|z|.  What remains

to be established is the "scale" of θ, whether θ corresponds to radian measure.  However, if one

considers the unit circle for which x = cos θ, y = sin θ, sin2θ + cos2θ = 1 implies ds2 = dθ2, the

usual radian measure, and π is defined by the the requirement that ei2π = 1.  This is not an especially

useful definition for evaluation of π, but we now have sufficient properties to define tan θ and hence

tan-1 θ, from which one can take derivatives and form a Taylor series:  π/4 = tan-1 1 = 1 - 1/3 + 1/5 -

1/7 + 1/9 ...... for example.    Although this is not the manner in which these functions are normally

defined or introduced, it is the easiest way retrospectively to establish all their properties.

Application to differential equations:  A common use of complex algebra is to simplify the

solution of differential equations, especially linear equations with constant (real) coefficients.  If the

equation(s) are regarded as complex and a complex solution x(t) is found, the real and imaginary parts

of x(t) are each solutions.  The general form x(t) = Aeiωt (with A being a complex constant in general)

will always reduce linear equations with constant coefficients to simple algebraic equations for A

and/or ω.  For example, the damped harmonic oscillator becomes by this process a simple quadratic

equation for the (complex) ω:

d2x
dt2

   + ωo2 x  + 
γ
m  

dx
dt   = 0       ⇒ (ωo2  - ω2 + iω 

γ
m )Aeiωt  = 0

An alternative formulation for the use of complex numbers and functions to solve real equations,

which is also applicable to nonlinear equations or equations with non-constant coefficients, is to write
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x(t) =  Aeiωt +  A*e-iωt, which is explicitly real.  [This is necessary  for nonlinear equations because,

for example, (Re z)2 ≠ Re(z2); one cannot extract the real part of x(t) simply by taking the real part of

the total equation.]    A solution of his form must have the property that when it is substituted into the

differential equation, the factor of eiωt  and the factor of e-iωt must each be zero; otherwise the

equation would not be satisfied for all times.  If this form is used in linear equations with constant

coefficients, those factors are simply the complex conjugates of one another, and the result is the same

as using the simple Aeiωt directly.  However, if the equation is nonlinear, a series

x(t) = ∑
n=0

∞
   ( Aneinωt  +  An*e-inωt   )

may be required.  A set of equations for the An will follow (to various orders n) from the requirement

that the factors of each independent time function (constant,  eiωt ,  e-iωt ,  ei2ωt  , etc.) be zero.  For

example, a nonlinear term x2 will generate terms ( A1eiωοt  +  A1*e-iωοt )2 =  A12ei2ωοt  + A1  A1* +

(A1*)2 e-i2ωοt ) from the lowest-order oscillatory solution, a combination of constant and second

harmonic terms.  Similarly, a cubic nonlinearity x3 [( A1eiωοt  +  A1*e-iωοt )3 ] will generate a

combination of ωo and 3ωo terms.

Exercises

1.  Plot each of the following complex numbers and their conjugates on the complex plane;  express
each in both z = x +iy and z = Aeiθ form:  1 + 2i,  -2 + i, -3 - 4i, 2 eiπ/3, 3 e-2iπ/3.

2.  For each of the following pairs of complex numbers A, B, compute the following quantities:
A + B*;  Re{A - B}; AA*; A*/B;  Im{B*B/A}:

a)  A = 2 + i;  B = 3 - 2i.
b)  A = -1 + 4i;  B = 2 eiπ/6.
c)  A = 3 e5iπ/6;  B = 5 e-5iπ/3

3.  One usually writes √
5

1 = 1, yet the equation x5 = 1 is a (simple) fifth-order polynomial equation,
for which one expects five roots.  By writing 1 = e2nπi, for any integer n, obtain five roots to the
equation, plot the roots in the complex plane, and write them in x + iy form.

4.  Consider the quadratic equation  x2 - 2x + c = 0.  For each of the following values of c, plot the
solutions in the complex plane:  -8, -3, 0, 1, 2, 5, 10.

5.  Prove that   sin 3θ = 3 sin θ - 4 sin3θ.  (Suggestion:   Express the right side in complex
exponentials, expand the expressions, and reduce them to the left hand side.)
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Three Ways to Skin a Cat

Consider the wave equation for a string driven at x = 0 and fixed at x = L:

∂2ψ
∂t2

  - c2 
∂2ψ
∂x2  = 0 Boundary conditions:    ψ(0,t) = Yo cos ωt ψ(L,t) = 0    and  k = 

ω
c

The solution may be obtained in several ways, each with certain advantages.  To illustrate the
possibilities, three paths are worked out here.

I.  Conventional real functions
This is a simple approach in that little more than conventional trigonometry is required, but it

requires some "insight" (smart guessing) and algebra to obtain solutions, and it does not generalize
well to more complicated cases, for example damped waves.  The general solution to the wave
equation with the ω time dependence and waves going both left and right is

 ψ(x,t) =  A cos(-kx + ωt + φa)   + B cos(kx + ωt + φb)

The boundary conditions require

Yo cos ωt = A cos(ωt + φa)   + B cos(ωt + φb)    and

0 = A cos(-kL + ωt + φa)   + B cos(kL + ωt + φb)

Although these may appear to be two equations in four unknowns, the fact that each holds for all
values of t generates sufficient constraints.  However, they are complicated trigonometric equations.
Solution depends upon noting that only if |A| = |B| can one apply trigonometric addition formulas to
obtain useful relations.  In this case, it specifically clear that only if |A| = |B| can the sum of the cosine
terms in the last equation be zero for all times.  If the magnitudes were not equal, there would certainly
be oscillations in time.  Nevertheless, the weakness in this method of solution is that it depends on
being able to impose this sort of simplification on the problem.  It is not general.  Assuming A = B, the
first equation becomes

Yo cos ωt = 2A cos(ωt + 
φb + φa

2 )   cos(
φb - φa

2 )

Since the time variations must be the same on both sides of the equation -- for example, they must go
through zero at the same points,  φb + φa = 0. Then

A = 
Yo
 2  

1

cos(
φb - φa

2 )

The boundary condition at the fixed end requires

0 = cos(-kL + ωt + φa)   + cos(kL + ωt + φb) = cos(ωt + 
φb + φa

2 )  cos(kL +  
φb - φa

2 )

which can only be satisfied if the final cosine term is zero, that is
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φb - φa

2   =  -kL + 
π
2   φb - φa = -2kL + π

We now have two equations for the two phases  φb = -kL + π/2  and  φa = kL - π/2.  Putting these
values back into the general solution and the equation for A gives the full result

ψ(x,t) =  A {cos[k(L-x) + ωt + π/2]  + cos[k(x-L) + ωt + π/2] } A = 
Yo

 2 sinkL

It is a superposition of waves traveling to the left and right, and it has the expected resonances (the
amplitude becomes infinite) when kL =  nπ, the same condition as the string with both ends fixed.

II.  Solution using complex functions
In this case, the driving boundary condition is written as Re{Yoe-iωt} and the general wave

solution as

ψ(x,t) =  Re{  Aei(kx-ωt)  + B ei(-kx-ωt) }

(One could choose either e±iωt for the time dependence, but all terms must have the same choice, and
the general solution must include waves traveling both directions.)  The boundary condition at x = 0 is

Re{Yoe-iωt} =  Re{ Ae-iωt  + B e-iωt} ⇒ Yo = A + B

And the condition at x =L is

0 = Re{  Aei(kL-ωt)  + B ei(-kL-ωt) } = Re{  (AeikL + B e-ikL ) e-iωt}  ⇒    0 = AeikL + B e-ikL

B = -Ae2ikL Yo =  A(1 - e2ikL)

A = 
Yo

1 - e2ikL  =  
Yoe-ikL

e-ikL  - eikL  =  
Yoe-ikL

-2i sin kL

The full solution can then be written as

ψ(x,t) =  Re{ Yo
2   

i
sin kL [ei(kx-kL-ωt)  + ei(-kx+kL-ωt)]}

= 
Yo

2 sin kL  { sin[k(L-x)-ωt] - sin[k(x-L)-ωt]}

which clearly has the same amplitude and resonances as the result from section I , and can in fact be
converted to the same form using trig identities.  This version using complex functions is
computationally simpler and can be generalized.

III.  Alternate Complex Solution
This approach is very similar to the previous one.  It looks somewhat more complicated, but it

dispenses with the use of Re{} operations, which permits certain types of mathematical argument that
you will find important in future work.  For the moment, it is merely an alternative.  The boundary
condition at x = 0 is written

ψ(0,t) =  
Yo
2  {  eiωt + e-iωt}
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and the full general wave solution is

ψ(x,t) =  A1ei(kx-ωt)  + A2e-i(kx-ωt) + B1e-i(kx+ωt)  + B2ei(kx+ωt)

Applying the boundary conditions at x = 0 gives

  
Yo
2  {  eiωt + e-iωt}   =  A1e-iωt  + A2eiωt + B1e-iωt  + B2eiωt

This will be true only if the coefficients of each of the time dependencies match:

  
Yo
2   = A1 + B1

  
Yo
2   =  A2 + B2

The equation at x = L is

0 =  A1ei(kL-ωt)  + A2e-i(kL-ωt) + B1e-i(kL+ωt)  + B2ei(kL+ωt)

Again the coefficients of the eiωt and e-iωt terms must each be zero.

0 = A1eikL + B1 e-ikL  B1 =  -A1 e2ikL

0 = A2e-ikL + B2eikL  B2 =  -A2 e-2ikL

Combining these with the equations above for the A and B terms produces equations analogous to
those of section II  for A:

A1 = 
Yo/2

1 - e2ikL  =   
Yoe-ikL

-4i sin kL

A2 = 
Yo/2

1 - e-2ikL  =  
YoeikL

4i sin kL

If these expressions for the A's and B's are substituted back into the equation for ψ(x,t), the same sum
of sines will be obtained.  There are more terms to be summed than in section II, but they combine
appropriately to form a purely real result without further work.
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