Theses

The Helimak is a good model of interchange turbulence with magnetic curvature and dimensionless parameters similar to those of the outer region of a tokamak.

The turbulence and radial particle transport can be reduced by application of radial bias.

The bias changes flow velocities, but turbulence reduction is not associated with increased velocity shear.

A numerical experiment shows the same features.

There is no indication of zonal flows.
Outline

1. Description of device, plasma parameters, and characteristics of turbulence

2. Results for reduction of turbulence by biasing

3. Relations between turbulence reduction, velocity shear, radial correlation lengths, and decorrelation rates

4. Comparisons with simulations and tests for zonal flows
$R = \text{Major radius (Tokamak minor radius)}$

$z = \text{Vertical (Tokamak poloidal direction)}$

$\phi = \text{Angle (Tokamak toroidal angle)}$
Helimak Dimensions and Parameters

A Sheared Cylindrical Slab

\[<R> = 1.1 \text{ m} \quad \Delta R = 1 \text{ m} \quad h = 2 \text{ m} \]

\[B_T = 0.1 \text{ T} \quad B_v \leq 0.01 \text{ T} \quad \text{Pulse} \leq 30 \text{ s} \]

Plasma source and heating: 6 kW ECH - @ 2.45 GHz

\[n \leq 10^{17} \text{ m}^{-3} \]

\[T_e \sim 10 \text{ eV} \]

Argon, Helium, Neon, Xenon

\[v = 4 \times 10^4 \text{ m/s (Argon)} \quad V_{\text{drift}} = 100 \text{ m/s} \]

\[V_{\text{diamagnetic}} \sim 10^3 \text{ m/s} \quad \nu_{\text{drift-wave}} \sim 1 \text{ kHz} \]

Connection length: 10 m < L < 2000 m \quad \tau_p (\text{parallel loss}) > 1 \text{ ms} \]

Probe arrays in end plates provide vertical and full radial profiles.
Dimensionless Parameters

Transverse scales: ρ_s/L 0.2

$\rho^* = \rho_s/a$ 1/50

L_{corr}/a 0.05

Drift drive v_B/c_s 0.2

β 6×10^{-5}

Collisionality L_c/λ_{ee} 0.1

Turbulence level $\Delta n/n$ 0.4

Parallel size L_c (m) 50
Typical Density, Temperature, and Floating Potential Profiles

![Graph showing typical density, temperature, and floating potential profiles with curves for density, temperature, and floating potential, marked with ECH Resonance and Uniform density gradient region.]
General Features of Power Spectra $P(\omega)$
Based on 100,000+ spectra from all observable conditions

1. At high frequency, $P(\omega) \propto \omega^{-k}$, $2 < k \leq 5$

2. Absolutely nothing else!

- Examine individual spectra
- Optional inertial range, $P(\omega) = \text{constant at low } \omega$
- Optional peak at finite ω
- Optional intermediate power law, $P(\omega) \propto \omega^{-s}$, $s < k$
- Great variation in power law exponents
- Never a good fit to an exponential

- Inertial range
- Peak in ω
- $k \sim -5$ (2 decades)
Power Spectra $P(\omega)$

- No inertial range
- No middle range
- Power law, 2+ decades, various k

- Exponential fits limited, ~1 decade
- Wide τ range
- Lorentzian (tail) $\tau \ll$ Autocorr τ
Levels increase slightly with connection length.

Levels decrease at higher collisionality for all connection lengths (50-200 m).
Turbulence Levels

Levels increase slightly with power (density).

Equilibrium density increases strongly (almost linearly) with power.
No Mass Effect -- Ar, He, H similar

Neither density nor floating potential fluctuations vary with ion mass

No ρ^* or ρ_s/L_n dependence
V_z (Poloidal) Flows -- Zonal Flows?

Theory and simulations ➔ Turbulence “interchange-like”:
Zero frequency, non-propagating in plasma frame ➔
Apparent propagation indication of flow

V_z inferred from density fluctuations at probe pairs $\Delta z = 0.04$ m at top and bottom for various R: Cross-correlation and cross-phase over 10s sample, and cross-correlation over sequence of 1 ms sub-samples.

Zonal Flows -- Essential Characteristics

- Flow “m=0; $\omega=0$” Same at top and bottom
- May vanish over 10s ($\sim 10^5 \tau_{\text{decorrelation}}$)
- Should be clear and slowly varying in sequence of 1 ms subsamples ($\sim 10 \tau_{\text{decorrelation}}$)
Density gradient region

- Clear mean flow -- well-defined delay time Δt, consistent top/bottom
- No secular variation
- Small, fast random variations about mean -- local turbulence
Near Density Peak \((R = 1 \text{ m})\)

No mean flow; only local turbulent fluctuations. Fast, random variations in delay times; top and bottom independent.
Near Density Peak \((R = 0.9 \text{ m})\)

Some clustering at \(\Delta t = 0\) \((V_z \sim 0)\), but mostly fast-changing, random turbulent variations with top and bottom independent.
Near Density Peak \((R = 0.9 \text{ m}, + \text{Bias}) \)

Some clustering at \(V_z \sim 1000 \text{ m/s} \), but methods and top/bottom differ somewhat, and substantial fast, random scatter.

Strong turbulent modification of mean flow.
General Flow Characteristics

- In the density gradient region (R ≥ 1.2 m), well-defined mean bulk flows $<V_z(R)> \sim 1000$ m/s, consistent top/bottom by all measures with no secular or shot-to-shot variation and small, fast random variations about mean in the sub-samples.

- Near the density maximum (R < 1.2 m), flows less well-defined. Most often, no mean flow, no top-bottom consistency, and random fast variation in sub-sample times -- flows are local turbulent motion.

- Never a characteristic zonal flow -- a clear flow but with secular or shot-to-shot variation. All flows are mean equilibrium bulk flows.
Field lines terminate on isolated end plates

Biasing one set (set 2 for data shown) with respect to others biases annulus of field lines, imposes radial electric field, current

Other plates and vessel grounded
Simple Phenomenology

$I_{\text{sat}}(t) \propto n(t)$ -- from probes across radial profile

Negative Bias Transition at \(~-20\) V
Bias-Driven Turbulence Reduction

- Applying bias above a threshold reduces the turbulence level.

- The reductions occur across much of the profile.

- The changes occur without hysteresis.

- Reductions occur for both positive and negative bias in argon, helium, and hydrogen over a range of collisionality and connection length.

Bias experiments are limited to $L_c \geq 40 \text{ m}$. (Short connection length requires field lines with high pitch. Not all field lines terminate on the bias plates for high pitch. Reductions are generally observed even in these cases, but the interpretation is uncertain.)
Profile Changes with Bias

Positive, Negative, Zero Bias

- Temperature ~ constant; density changes modest
- Potential change at plate as expected
- Effects extend outward from plate, esp. negative bias

$+20 \text{ V}$

-35 V
Density Fluctuations

- Reduced across plate
- Effect extends outward for negative bias
Turbulence Reduction -- Density
Reduction = \(\Delta n/n(\text{Bias})/\Delta n/n(\text{Grnd}) \)

Suppression completed by -20 V
\(L_\parallel = 50 \text{ m} \)
Turbulence Reduction: Positive Bias

Weak dependence on connection length

Reducions weaker at highest collisionality, otherwise little effect
Turbulence Reduction: Negative Bias

Less reduction for long connection lengths, $L_{||} \geq 200$ m. Optimum depends on location.

Weaker reduction at higher collisionality for connection lengths from 50-200 m.
Turbulence Reduction: Power

Effect disappears at low power (density)

Positive Bias
- 2 kW
- 1 kW
- 4 kW
- 6 kW

Negative Bias
- 1 kW
- 2 kW
- 4 kW
- 6 kW
Similar Turbulence Reductions in H and He

Hydrogen at short $L_{\|}$ and low collisionality similar to Argon, but parameter range limited.

Helium at short $L_{\|}$ and low collisionality similar to Argon, but parameter range of effect more limited.
Change in radial correlation length generally follows change in turbulence level
\[L_{||} = 40 \text{ m} \]
Measured Flow Velocity
Ion Doppler Velocity for Argon -- The Plasma Ion

Spline fits with data points for 0 bias case
$L_{||} = 40 \text{ m}$
Shear increases greatest for $+ \text{ bias} > +10$ V
Shear not greatly increased for $- \text{ bias}$ until -20 V
Shear often not at locations needed
Applicability of Flow Shear Model*

Flow shear will stabilize fluid turbulence under minimal, very general conditions, which are met in these experiments. Mechanism is local and can be tested at all locations in the plasma.

- The system is two-dimensional, e.g. a magnetized plasma.
- The turbulence remains in the shear flow long enough to be affected. Here, the parallel loss rate (<500 s$^{-1}$) is much less than the shearing rate, even less at longer connection lengths.
- The shearing rate exceeds the instability linear growth rate. Here, the turbulence decorrelation rate (inverse autocorrelation time) represents the growth rate and is often less than the shearing rate.

Decorrelation Rate vs. Shearing Rate
(All radii, all bias voltages)

Shear often sufficient to stabilize turbulence in theory, but all combinations actually observed
Test of Turbulence Reduction by Flow Shear

A local model that links flow shear, radial correlation length, and fluctuation amplitude at each position: shear shortens correlation length, which reduces drive available. Experimentally, each linkage pair can be examined separately. In theory, all couplings logically connected, but experimentally, the observations are independent (and subject to independent errors). Couplings examined:

- Shear vs. Turbulent amplitude
- Shear vs. Correlation length
- Turbulent amplitude vs. Correlation length
- Amplitude reduction vs. Change in length
No evidence for a general physical relation
Turbulence reductions even at low shear
High turbulence may persist at high shear
Shear vs. Radial Correlation Length

- No evidence for a physical relation
- No trace of inverse trend
Density Fluctuations vs. Radial Correlation Length

Trend correct, but large scatter and modest significance
Turbulence Reduction vs. Change in Length

Change in radial correlation length roughly correlated with change in turbulence level

$R^2 = 0.57$
Why is the Helimak Different?

- Turbulence is interchange type -- very large amplitude and strongly nonlinear.
- Flow shear is a "self-fulfilling prophesy" in a tokamak -- a "flux-driven" system. The high thermal flux coupled with turbulence suppression steep gradients, high flow shear.
- The Helimak is not (radial) "flux-driven."

Turbulence and radial transport can vary independently across the profile to give a clear test of the local relation between flow shear and turbulence for a range of conditions.
Numerical Experiment

- Two-fluid, fully nonlinear 3-D calculation
- Helimak geometry: size, shape, magnetic pitch
- Physical particle and heat sources and losses
- Equilibrium density and temperature profiles comparable with experiment

Differences from experiment: No magnetic shear, reduced M_i/m_e, idealized sheath boundary conditions.

Ricci, Rogers, and Brunner, PRL 100, 225002 (2008)
Ricci and Rogers, Phys. Plasmas 16, 062303 (2009)
Li, Rogers, Ricci, Gentle, Phys. Plasmas 16, 082510 (2009)
Li, Rogers, Ricci, Gentle, Bhattacharjee, Phys.Rev.E 83, 056406 (2011)
Fields from 3-D Calculation

1 m X 2 m cross-section

Normal case
Strong z variations in \(n, T_e, \phi \)

Bias case (-V)
Weak z variations in \(n, T_e, \phi \)
Flow and Flow Shear -- Normal, ±Bias

Flow (V_z)
Flows modified, especially near plate boundary
(Bias values scaled to T_e)

Flow Shear
Shapes change, but significant increase only for + bias, the case of weaker suppression
Numerical and Physical Experiments Share:

- Equilibrium density, temperature, potential and flow profiles
- Fluctuation structure and propagation
- Turbulence suppression above a threshold value of bias of both signs
- No association of turbulence reduction with distinctive changes in flow shear

Note that these are two distinct “experiments”; just like two tokamaks, each has certain distinctive characteristics and behaviors.
Conclusions

The Helimak offers a simple, controlled example of turbulence reduction by biasing.

- The reductions occur for both positive and negative bias for parallel connection lengths from 40 m to 400 m.
- Neither turbulence levels nor reductions correlate with velocity shearing rate.
- There is no indication of zonal flows.
- The essential features also appear in a numerical simulation.
Relations Between Turbulent Fields

• No strict covariance, as in a simple linear theory, but all levels comparable.

• Density fluctuations “independent” of others.

• Temperature and potential most closely related, but temporal cross-correlation negative.
Gradient Region
Propagation with high coherency

- 750 m/s (Peak power)
- 1100 m/s
- $\Delta z=2\text{ cm}$
- $\Delta z=4\text{ cm}$
- $\Delta z=6\text{ cm}$
Correlation Lengths

Perpendicular correlation lengths comparable with scale lengths; small compared with plasma size.

Parallel correlation length comparable with connection lengths; waves coherent over L_\parallel.
Turbulence, Turbulence Suppression, and Velocity Shear in the Helimak

K.W. Gentle, W.L. Rowan
Institute of Fusion Studies
University of Texas, Austin

B. Li
Peking University
Radial Flows

Radial Cross-correlations: No indication of mean flows

Time delays from 1 ms sub-samples

Uniform distribution, random sequence \Rightarrow No flows
Turbulence, Turbulence Suppression, and Velocity Shear in the Helimak

K.W. Gentle, W.L. Rowan, University of Texas at Austin
B. Li, Peking University

The Helimak is an approximation to the infinite cylindrical slab with a size large compared with turbulence transverse scale lengths, but with open field lines of finite length. Radially-segmented isolated end plates allow application of radial electric fields that drive radial currents. Above a threshold in applied voltage (driven current), the fractional turbulent amplitude is greatly reduced. Reductions are observed for both positive and negative bias over a broad range of collisionality and parallel connection length. Concurrent measurements of the ion flow velocity profile are made by Doppler spectroscopy of the argon plasma ion. Turbulence reductions are broadly correlated with reductions in radial correlation length, but not with velocity flow shear. No evidence of zonal flows has been found. The turbulence -- density, potential, and temperature fluctuations, is compared with simulations from a two-fluid model for this geometry, which also show reduced turbulence with bias. Work supported by the Department of Energy OFES DE-FG02-04ER54766.

Type: Experimental
Category 5.1.0

Limit: 1300 characters

session BP8, (Poster Session I: Non-Neutral, Dusty, and Strongly Coupled Plasmas I; Non Linear Phenomena and Turbulence Experiment; Plasma Waves; Stellarator, General Tokamak, Transport and Turbulence Theory)
which will begin at 09:30 AM on Monday, 10/29/12 in room: Hall BC. BP8.00168
Poster board 8 ft W X 4 ft H (96” X 48”) 8 Slides wide by 5.6 high or 40 - 48 slides This presentation 4x5 + 4x6 = 44.