PHY-396 K. Problem set #1. Due September 18, 2000.

1. Bosonic creation and annihilation operators d}; and a, were defined in class in terms of

their respective matrix elements in the occupation-number basis of the bosonic Fock space

FB.

Vneg +1  provided all nlﬁ =ng+ o3 and
0 otherwise; (1)

({nls}s|al, |[{ns}s) = {

V/ ided all i — ne — 6. » and
({nfs}s|ay [{ns}p) = { no  provided all n = ng — 0o, an

0 otherwise.

This exercise is about the way these operators acts on coordinate-space wave functions of

multi-particle states.

(a)

Consider an N-boson state of the form |(a1,a,...,an)) = |{ns}s). Show that the

coordinate-space wave function of this state has form

1

\IJX,X,...,X - a1 \ Xy a2\ Xy ) 0 Pan Xy 2

where the sum is over all N! permutations x,,,X,,,...,Xy, of the particle positions
X1,X2,...,XyN. (In other words, v1, s, ..., vy are summations indices running over all

N! permutations of the integers 1,2,..., N.)

Hint: permuting the positions is equivalent to permuting the 1-particle wave functions

Cays - - - Pan, but watch for coincident terms on the right hand side of eq. (2).

Now consider a generic N—particle state |N, W) € ’Hﬁ with a generic wave function
U(x1,X2,...,Xy); more precisely, U(xy,xX2,...,Xy) must be totally symmetric with

respect to the N positions x1,...,xy but otherwise, it is completely generic.

Show that a creation operator dL acting on this state produces an (N + 1) particle



state |N + 1, 0') € ’Hﬁ 41 With a totally symmetric wave function

N+1
1

U (x1,X9,...,X = — X)) W(x1,...,%i,...,X
( 1, X2 N—H) \/m; 9004( Z) ( 1 Xz N—l—l)

def 1

= \/ﬁ gpa(Xl) \I/(XQ, - ,XN_H) + gOa(Xg) \I/(Xl,Xg - ,XN_H) + .-

+ ©a(XN) Y (X1, -y XN-1,XN+1) T ©a(Xn+1) U(x1,...,XN)].

(3)

Note that while ¥ is a function of N positions, ¥’ is a function of N + 1 positions.
In particular, for N = 0, ¥ is simply a complex number but ¥’ is a 1-particle wave

function, ¥'(x1) = @a(x1) X V.

Hint: First prove (3) for the wave-functions ¥ of the form (2) — and do not forget
to verify the normalization of the resulting ¥’ — then use the fact that the states

(a1, @9, ..., an)) constitute a basis of the HE.

(¢) Next, consider the annihilation operators G, and show that the wave function " of

the N — 1 particle state |N — 1, U") = G, |N, W) € HE | can be written as
\I/”(Xl, cee ,XN,1) = \/N dXN QOZ(XN) \I/(Xl, cee ,XNfl,XN). (4)

In particular, for N = 1, ¥ is a l-particle wave function while ¥” is a number,
V" = (a|W). For N = 0, formula (4) degenerates to ¥’ = 0 (since /(N =0) = 0),
which agrees with aq [0) = 0 (and hence ao |N = 0,¥) = 0 for any V), although in

this case W” is rather ill-defined as a function.

2. Formulee (4) and (3) allow for straightforward translation between first-quantized and
second-quantized forms of various operators. In particular, consider an additive one-particle

operator of the form

N
fltot(N particles) = Z Al(im particle). (5)
i=1



As argued in class, the second-quantized form of such an operator is

A =) (o] Ar]B) alay. (6)
a?/B
(a) Use formulee (4) and (3) to explicitly calculate the wave function ¥/(x1,...,xy) of the

N particle state | N, ¥’) = A|N,¥) (assume generic totally symmetric ¥(x1, ..., xy))
and show that in the first-quantized formalism, Agq acting on ¥ yields exactly same
v’

Hint: Prove and use

A1 (i particle)¥(xy, ..., X4, ..., Xy) (7)
= {al A]8) %(Xi)/dxé Ph(x;) (X1, XG, LX),
a7ﬂ

Now consider an additive two-particle interaction operator such as
Viet = 53 V(i — %)
i#]

for some two-body potential V' (x; — x;). More generally, one has a two-particle operator
A, involving positions or other quantum numbers of two particles and the total Aofan N

particle system is given by

Agotal = % Z zzlz(im and j® particles). (8)

The second quantized form of such an additive two-particle operator is given by

A

A =13 (e®pld|ye0) alaba,a, (9)

awB?’Y:é

DNO|—

where (a ® ] and |y ® ) are non-symmetrized two-distinct-particles states whose respec-

tive wave functions are simply @7, (x1)pj(x2) and o (x1)ps(x2).



(b) Verify by an explicit wave-function calculation that the operators (8) and (9) indeed

produce identical results when acting on any N particle state |V, U).

Note special cases of N =0 or N =1 where both (8) and (9) yield 0. For N > 2, use
formulae (4) and (3) and a suitable analog of eq. (7).

3. Finally, an exercise in using the bosonic commutation relations

~ ~

[aaaaﬁ] = [aT aﬁ] = 0, [&avaﬁ] = 501,/3' (10)

(a) Calculate the commutators [&&%,&L], [&L%’%] and [diy&ﬁ,djydd].

(b) Consider to one-particle operators Al and Bl and let C’l be their commutator, él =
[A1, By]. Let A, B and C be the second-quantized forms of the respective additive
operators, cf. eq. (6).

A

Show that [A, B] = C.

(c) Next, calculate the commutator [aLdl,, A&d;d ag).

(d) Finally, consider a one-particle operator Aj, a two-particle operator B, and a two-
particle operator Cy = [(Al( sty 4 Al(QE)), 2]. Show that in this case the second-
quantized C is again the commutator of the second-quantized A with the second-

quantized B.



