
PHY–396 K. Problem set #1. Due September 18, 2000.

1. Bosonic creation and annihilation operators â†α and âα were defined in class in terms of

their respective matrix elements in the occupation-number basis of the bosonic Fock space

FB:

〈
{n′β}β

∣∣ â†α ∣∣{nβ}β〉 =

{√
nα + 1 provided all n′β = nβ + δα,β and

0 otherwise;〈
{n′β}β

∣∣ âα ∣∣{nβ}β〉 =

{√
nα provided all n′β = nβ − δα,β and

0 otherwise.

(1)

This exercise is about the way these operators acts on coordinate-space wave functions of

multi-particle states.

(a) Consider an N–boson state of the form |(α1, α2, . . . , αN )〉 =
∣∣{nβ}β〉. Show that the

coordinate-space wave function of this state has form

Ψ(x1,x2, . . . ,xN ) =
1√

N !
∏
β nβ!

∑
ϕα1(xν1)ϕα2(xν2) · · · ϕαN (xνN ) (2)

where the sum is over all N ! permutations xν1 ,xν2 , . . . ,xνN of the particle positions

x1,x2, . . . ,xN . (In other words, ν1, ν2, . . . , νN are summations indices running over all

N ! permutations of the integers 1, 2, . . . , N .)

Hint: permuting the positions is equivalent to permuting the 1-particle wave functions

ϕα1 , . . . , ϕαN , but watch for coincident terms on the right hand side of eq. (2).

(b) Now consider a generic N–particle state |N,Ψ〉 ∈ HBN with a generic wave function

Ψ(x1,x2, . . . ,xN ); more precisely, Ψ(x1,x2, . . . ,xN ) must be totally symmetric with

respect to the N positions x1, . . . ,xN but otherwise, it is completely generic.

Show that a creation operator â†α acting on this state produces an (N + 1) particle
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state |N + 1,Ψ′〉 ∈ HBN+1 with a totally symmetric wave function

Ψ′(x1,x2, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

ϕα(xi) Ψ(x1, . . . , 6xi, . . . ,xN+1)

def
=

1√
N + 1

[
ϕα(x1) Ψ(x2, . . . ,xN+1) + ϕα(x2) Ψ(x1,x3 . . . ,xN+1) + · · ·

+ ϕα(xN ) Ψ(x1, . . . ,xN−1,xN+1) + ϕα(xN+1) Ψ(x1, . . . ,xN )
]
.

(3)

Note that while Ψ is a function of N positions, Ψ′ is a function of N + 1 positions.

In particular, for N = 0, Ψ is simply a complex number but Ψ′ is a 1-particle wave

function, Ψ′(x1) = ϕα(x1)×Ψ.

Hint: First prove (3) for the wave-functions Ψ of the form (2) — and do not forget

to verify the normalization of the resulting Ψ′ — then use the fact that the states

|(α1, α2, . . . , αN )〉 constitute a basis of the HBN .

(c) Next, consider the annihilation operators âα and show that the wave function Ψ′′ of

the N − 1 particle state |N − 1,Ψ′′〉 = âα |N,Ψ〉 ∈ HBN−1 can be written as

Ψ′′(x1, . . . ,xN−1) =
√
N

∫
dxN ϕ

∗
α(xN ) Ψ(x1, . . . ,xN−1,xN ). (4)

In particular, for N = 1, Ψ is a 1–particle wave function while Ψ′′ is a number,

Ψ′′ = 〈α|Ψ〉. For N = 0, formula (4) degenerates to Ψ′′ = 0 (since
√

(N = 0) = 0),

which agrees with âα |0〉 = 0 (and hence âα |N = 0,Ψ〉 = 0 for any Ψ), although in

this case Ψ′′ is rather ill-defined as a function.

2. Formulæ (4) and (3) allow for straightforward translation between first-quantized and

second-quantized forms of various operators. In particular, consider an additive one-particle

operator of the form

Âtot(N particles) =
N∑
i=1

Â1(i
th particle). (5)
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As argued in class, the second-quantized form of such an operator is

Â =
∑
α,β

〈α| Â1 |β〉 â†αâβ . (6)

(a) Use formulæ (4) and (3) to explicitly calculate the wave function Ψ′(x1, . . . ,xN ) of the

N particle state |N,Ψ′〉 = Â |N,Ψ〉 (assume generic totally symmetric Ψ(x1, . . . ,xN ))

and show that in the first-quantized formalism, Âtot acting on Ψ yields exactly same

Ψ′.

Hint: Prove and use

Â1(i
th particle)Ψ(x1, . . . ,xi, . . . ,xN ) (7)

=
∑
α,β

〈α| Â1 |β〉 ϕα(xi)

∫
dx′i ϕ

∗
β(x′i) Ψ(x1, . . . ,x

′
i, . . . ,xN ).

Now consider an additive two-particle interaction operator such as

V̂tot = 1
2

∑
i6=j

V (x̂i − x̂j)

for some two-body potential V (xi − xj). More generally, one has a two-particle operator

Â2 involving positions or other quantum numbers of two particles and the total Â of an N

particle system is given by

Âtotal = 1
2

∑
i,j=1,...,N

i6=j

Â2(i
th and j th particles). (8)

The second quantized form of such an additive two-particle operator is given by

Â = 1
2

∑
α,β,γ,δ

〈α⊗ β| Â2 |γ ⊗ δ〉 â†αâ
†
β âγ âδ (9)

where 〈α⊗ β| and |γ ⊗ δ〉 are non-symmetrized two-distinct-particles states whose respec-

tive wave functions are simply ϕ∗α(x1)ϕ
∗
β(x2) and ϕγ(x1)ϕδ(x2).
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(b) Verify by an explicit wave-function calculation that the operators (8) and (9) indeed

produce identical results when acting on any N particle state |N,Ψ〉.

Note special cases of N = 0 or N = 1 where both (8) and (9) yield 0. For N ≥ 2, use

formulæ (4) and (3) and a suitable analog of eq. (7).

3. Finally, an exercise in using the bosonic commutation relations

[âα, âβ] = [â†α, â
†
β] = 0, [âα, â

†
β] = δα,β . (10)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].

(b) Consider to one-particle operators Â1 and B̂1 and let Ĉ1 be their commutator, Ĉ1 =

[Â1, B̂1]. Let Â, B̂ and Ĉ be the second-quantized forms of the respective additive

operators, cf. eq. (6).

Show that [Â, B̂] = Ĉ.

(c) Next, calculate the commutator [â†µâν , â
†
αâ
†
β âγ âδ].

(d) Finally, consider a one-particle operator Â1, a two-particle operator B̂2 and a two-

particle operator Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
. Show that in this case the second-

quantized Ĉ is again the commutator of the second-quantized Â with the second-

quantized B̂.
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