
PHY–396 K. Problem set #3. Due October 2, 2000.

1. Consider coherent states of a harmonic oscillator.

(a) Show that for any complex number α,

|α〉 def
= exp

(
αâ† − α∗â

)
|0〉 = e−|α|

2/2 eαâ
†
|0〉 and â |α〉 = α |α〉 . (1)

(b) Calculate the uncertainties ∆q and ∆p for a coherent state |α〉 and verify their mini-

mality: ∆q∆p = 1
2 h̄. Also, verify δn =

√
n̄ where n̄

def
= 〈n̂〉 = |α|2.

Hint: use â |α〉 = α |α〉 and 〈α| â† = α∗ 〈α|.

(c) Show that for any initial coherent state |α0〉,

|ψ(t)〉 ≡ e−iωt/2
∣∣α = α0e

−iωt〉 (2)

satisfies the time-dependent Schrödinger equation.

(d) The coherent states are not quite orthogonal to each other. Calculate their overlap.

Now consider coherent states of multi-oscillator systems and hence quantum fields. In par-

ticular, let us focus on creation and annihilation fields Ψ̂†(x) and Ψ̂(x) for non-relativistic

spinless bosons.

(e) Generalize (a) and construct coherent states |Φ〉 which satisfy

Ψ̂(x) |Φ〉 = Φ(x) |Φ〉 (3)

for any given classical complex field Φ(x).

(f) Show that for any such coherent state, ∆N =
√
N̄ where

N̄
def
= 〈Φ| N̂ |Φ〉 =

∫
dx |Φ(x)|2. (4)

(g) Let

Ĥ =

∫
dx

(
h̄2

2M
∇Ψ̂† · ∇Ψ̂ + v(x)Ψ̂†Ψ̂

)
and show that for any classical field configuration Φ(x, t) that satisfies the classical
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field equation

ih̄
∂

∂t
Φ(x, t) =

(
− h̄2

2M
∇2 + V (x)

)
Φ(x, t),

the time-dependent coherent state |Φ〉 satisfies the true Schrödinger equation

ih̄
∂

∂t
|Φ〉 = Ĥ |Φ〉 . (5)

(h) Finally, show that the quantum overlap | 〈Φ1|Φ2〉 |2 between two different coherent

states is exponentially small for any macroscopic difference δΦ(x) = Φ1(x) − Φ2(x)

between the two field configurations.

2. Consider a complex relativistic field Φ(x) with a Lagrangian density

L = ∂µΦ∗ ∂µΦ − m2 Φ∗Φ − 1
4λ
(
Φ∗Φ

)2
. (6)

This Lagrangian has a symmetry Φ(x) 7→ eiθΦ(x). According to Noether theorem (which

we shall study later in class), this symmetry gives rise to a conserved current

Jµ = iΦ∗∂µΦ − i(∂µΦ∗)Φ. (7)

(a) Write down classical field equations for Φ(x) and Φ∗(x) (treat them as independent

fields!) and verify that indeed ∂µJ
µ = 0.

Canonical quantization of the complex field yields non-hermitian quantum fields

Φ̂(x) 6= Φ̂†(x) and Π̂(x) 6= Π̂†(x) and the Hamiltonian

Ĥ =

∫
d3x

(
Π̂†Π̂ + ∇Φ̂† · ∇Φ̂ + m2 Φ̂†Φ̂ + 1

4λ Φ̂†Φ̂†Φ̂Φ̂
)
. (8)

(b) Derive the Hamiltonian (8) and write down the equal-time commutation relations

between the quantum fields Φ̂(x), Φ̂†(x), Π̂(x) and Π̂†(x).
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Because of the non-hermiticity of the quantum fields Φ̂(x) 6= Φ̂†(x) and Π̂(x) 6= Π̂†(x),

their respective plane-wave modes Φ̂p, Φ̂†p, Π̂p and Π̂†p are completely independent of each

other i.e., Φ̂†p 6= Φ̂−p and Π̂†p 6= Π̂−p. Let us therefore define:

âp
def
=

EpΦ̂p + iΠ̂†−p√
2Ep

, â†p
def
=

EpΦ̂†p − iΠ̂−p√
2Ep

,

b̂p
def
=

EpΦ̂†−p + iΠ̂p√
2Ep

, b̂†p
def
=

EpΦ̂−p − iΠ̂†p√
2Ep

,

(9)

where

Ep
def
=
√

p2 +m2 . (10)

(c) Verify the bosonic commutation relations (at equal times) between the annihilation

operators âp and b̂p and the corresponding creation operators â†p and b̂†p.

(d) Now, let us turn off the interactions (i.e., set λ = 0). Show that the Hamiltonian of

free charged fields is

Ĥfree
def
=

∫
d3x

(
Π̂†Π̂ + ∇Φ̂† · ∇Φ̂ + m2 Φ̂†Φ̂

)
=

∫
d3p

(2π)3
Ep

(
â†pâp + b̂†pb̂p

)
+ const.

(11)

(e) Next, consider the electric charge operator Q̂ =
∫
d3x Ĵ0(x). Show that for the system

at hand

Q̂ =

∫
d3x

(
i
2

{
Π̂†, Φ̂†

}
− i

2

{
Π̂, Φ̂

})
=

∫
d3p

(2π)3

(
â†pâp − b̂†pb̂p

)
. (12)

Actually, the classical formula (7) for the current Jµ(x) determines eq. (12) only up

to ordering of the non-commuting operators Π̂(x) and Φ̂(x) (and likewise of the Π̂†(x)

and Φ̂†(x)). The anti-commutators in eq. (12) provide a solution to this ordering

ambiguity, but any other ordering would be just as legitimate.
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The net effect of changing operator ordering in Ĵ0 amounts to changing the total charge

Q̂ by an infinite constant (prove this!). The specific ordering in eq. (12) provides for

the neutrality of the vacuum state.

Finally, consider the stress-energy tensor for the complex field Φ(x). Classically, Noether

theorem gives

Tµν = ∂µΦ∗ ∂νΦ + ∂µΦ ∂νΦ∗ − gµνL. (13)

Quantization of this formula is straightforward (modulo ordering ambiguity); for example,

Ĥ ≡ T̂ 00 is precisely the integrand on the right hand side of eq. (8).

(f) Consider the total mechanical momentum operator of the fields P̂ imech =
∫
d3x T̂ 0i(x)

and show that in terms of creation and annihilation operators

P̂mech =

∫
d3p

(2π)3
p
(
â†pâp + b̂†pb̂p

)
(14)

Physically, eqs. (14), (11) and (12) show that a complex field Φ(x) describes both a particle

and its antiparticle; they have exactly the same rest mass m but exactly opposite charges

±1.
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