
PHY–396 K. Problem set #4. Due October 9, 2000.

1. In homework#2 we developed Hamiltonian formalism for a massive vector field Aµ(x). Upon

quantization, the 3–vector field A(x) and its canonical conjugate −E(x) become quantum

fields subject to equal-time commutation relations

[Âi(x), Âj(y)] = 0, [Êi(x), Êj(y)] = 0, [Âi(x), Êj(y)] = −iδijδ(3)(x− y) (1)

(h̄ = 1, c = 1 units) governed by the free Hamiltonian

Ĥ =

∫
d3x

(
1
2Ê

2 +
(∇ · Ê)2

2m2
+ 1

2(∇× Â)2 + 1
2m

2Â2

)
(2)

(we assume Jµ = 0). For the non-dynamical A0 field, its time-independent equation of motion

becomes an operatorial identity

Â0(x) = −∇ · Ê(x)

m2
. (3)

The purpose of the present exercise is to expand fields in terms of creation and annihilation

operators â†k,λ and âk,λ where λ labels three different polarization states of a vector particle

(spin = 1). Generally, bases for polarization states correspond to k–dependent complex bases

eλ(k) for ordinary 3–vectors,

eλ(k) · e∗λ′(k) = δλ,λ′ (4)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik × ,

namely

ik× eλ(k) = λ|k|eλ(k), λ = −1, 0,+1. (5)

By convention, the overall phases of the helicity eigenvectors are chosen such that

e0(k) =
k

|k|
e∗λ(k) = (−1)λe−λ(k), eλ(−k) = −e∗λ(+k). (6)
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Combining Fourier transform with a basis decomposition, we have

Â(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Âk,λ , Âk,λ =

∫
d3x e−ikxe∗λ(k) · Â(x) (7)

and ditto for the Ê(x) fields and its Êk,λ modes.

(a) Show that Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ, and derive the equal-time commutation

relations for the Âk,λ and Êk,λ operators.

(b) Show that

Ĥ =

∫
d3k

(2π)3

∑
λ

(
Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ

)
(8)

where ωk =
√
k2 +m2 and Ck,λ = 1 + δλ,0(k

2/m2).

(c) Define creation and annihilation operators according to

âk,λ =

√
ωk

2Ck,λ
Âk,λ − i

√
Ck,λ

2ωk
Êk,λ , â†k,λ =

√
ωk

2Ck,λ
Â†k,λ + i

√
Ck,λ

2ωk
Ê†k,λ (9)

and verify that they satisfy bosonic commutation relations (at equal times).

(d) Show that

Ĥ =

∫
d3k

(2π)3

∑
λ

ωk â
†
k,λâk,λ + const. (10)

(e) Next, consider the time dependence of the free vector field and show that

Â(x, t) =

∫
d3k

(2π)3
1√
2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

.

(11)

(f) Write down a similar formula for the Â0(x, t) (use eq. (3)). Together with the previous

2



result, you should get

Âµ(x) =

∫
d3k

(2π)3
1√
2ωk

∑
λ

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+ωk

(12)

where

fµ(k, λ) =

{(
0, eλ(k)

)
for λ = ±1,(

|k|
m ,

ωk

m
k
|k|

)
for λ = 0.

(13)

Please note that the 4–vectors fµ(k, λ) are nothing but purely-spatial vectors eλ(k)

Lorentz-boosted into the moving particle’s frame. In particular, for all (k, λ), fµf∗µ = −1

and fµkµ = 0.

(g) Finally, verify that the vector field (12) satisfies the free equations of motion ∂µÂ
µ(x) = 0

and (∂2 +m2)Âµ(x) = 0.

2. Now consider the Feynman propagator for the massive vector field.

(a) First, a lemma: Show that

∑
λ

fµ(k, λ)fν∗(k, λ) = −gµν +
kµkν

m2
. (14)

(b) Next, show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(15)

(c) Finally, the Feynman propagator: Show that

GµνF ≡ 〈0|TÂµ(x)Âν(y) |0〉 =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
ie−ik(x−y)

k2 −m2 + i0

=

(
−gµν − ∂µ∂ν

m2

)
DF (x− y).

(16)
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3. The last exercise is about superfluid Helium. For µ = λn > 0, we expect a ground state with a

non-zero expectation values of the creation/annihilations fields, 〈Ψ̂〉 =
√
n, up to an arbitrary

phase. Let us therefore define shifted fields Ψ̃(x) = Ψ̂(x)−
√
n and Ψ̃†(x) = Ψ̂†(x)−

√
n and

expand the Hamiltonian (or rather Ĥ − µN̂) into powers of shifted fields.

(a) Show that

Ĥ − µN̂ = const + Ĥ2 + Ĥint

where (in h̄ = 1 units)

Ĥ2 =

∫
d3x

{
1

2M
∇Ψ̃† · ∇Ψ̃ +

λn

2

(
Ψ̃†Ψ̃† + 2Ψ̃†Ψ̃ + Ψ̃Ψ̃

)}
(17)

while Ĥint comprises cubic and quartic terms with respect to the shifted fields.

(b) Fourier-transform the shifted fields into shifted creation/annihilation operators ã†k = â†k−
(2π)3

√
n δ(3)(k) and ãk = âk − (2π)3

√
n δ(3)(k), then perform a canonical transform

b̂k = cosh(tk) ãk + sinh(tk) ã†−k , b̂†k = cosh(tk) ã†k + sinh(tk) ã−k . (18)

Show that for any tk = t−k, the operators b̂k and b̂†k satisfy bosonic commutation relations.

(At equal times, of course).

(c) Show that for a suitable choice of tk,

Ĥ2 =

∫
d3k

(2π)3
ωkb̂
†
kb̂k + const (19)

where

ωk = |k|
√
λn

M
+

k2

4M2
. (20)

Please note that the ground state of the Ĥ2 is the state |Ω2〉 annihilated by all the b̂k operators.

To construct this ground state, we start with the coherent state |coh〉 — which is annihilated
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by all the shifted ãk — and then modify according to

|Ω2〉 = eF̂ |coh〉 , F̂ =

∫
d3k

(2π)3
tk
2

(
ãkã−k − ã

†
kã
†
−k

)
. (21)

(∗) Optional exercise: Show that b̂k = eF̂ ãke
−F̂ , b̂†k = eF̂ ã†ke

−F̂ , and hence b̂k |Ω2〉 = 0 as

well as automatic bosonic commutation relations for the b̂k and b̂†k operators.

The excited states of the Ĥ2 Hamiltonian can be constructed by applying the b̂†k operators

to the ground state |Ω2〉. Thus, one can say that the b̂†k operators create quasiparticles and

the the b̂k operators annihilate them; from this point of view, the |Ω2〉 ground state is the

quasiparticle vacuum.

(d) Show that the net mechanical momentum of the superfluid Helium is

P̂ =

∫
d3k

(2π)3
k b̂†kb̂k , (22)

thus quasiparticles do have well-defined momenta k.

On the other hand, the quasiparticles do not have well-defined atomic numbers. This is related

to the spontaneous breakdown of the phase symmetry, which is generated by the atom number

operator N̂ . Physically, the quasiparticles interpolate between phonons in the superfluid (for

small k) and atoms knocked out of the Bose condensate (for large k) — note the appropriate

limits of the dispersion relation (20).

Actually, in the real helium with a finite-range interatomic potential V2(x−y), the dispersion

relation is a bit more complicated than eq. (20) — e.g., there is a so-called ‘roton dip’ at

intermediate values of the quasiparticle momenta k — but the small–k and the large–k limits

work exactly as in this exercise. In particular, there is a positive lower bound on quasi-particle

phase velocities, ∀k, ωk ≥ v0|k|. This fact plays a crucial role in superfluidity.

(e) Now consider the superfluid in a state of uniform motion with velocity v. Use Galilean

invariance to argue that quasiparticles in moving Helium are governed by the

Ĥ ′2 = Ĥ2 + v · P̂ =

∫
d3k

(2π)3
(ωk + vk) b̂†kb̂k . (23)

Therefore, as long as |v| < v0, all excitations have positive energies, hence there is no
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spontaneous decay of the flowing “ground” state and no energy dissipation! This is the

physical origin of superfluidity.

On the other hand, when the Helium flows too fast, |v| > v0, some quasiparticle modes

acquire negative energies, which leads to spontaneous quasiparticle production, hence

energy dissipation and loss of superfluidity.

The critical velocity v0 is governed by the dispersion relation for the quasiparticles: v0 =

min(ωk/k). For the superfluid, v0 > 0. In comparison, the ideal gas has ωk = k2/2m,

thus v0 = 0 and no superfluidity at any velocity.

Actually, under most experimental conditions, there is an additional mechanism for losing su-

perfluidity beyond a much smaller critical velocity than the v0 obtaining from the microscopic

theory. Specifically, turbulence leads to spontaneous generations of vortex rings, which move

much slower than the quasiparticles and hence quench superfluidity at much slower speeds.

In very thin capillaries however, the vortex rings do not form because of size limitations and

the superfluidity persists until the microscopic critical velocity v0.
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