
PHY–396 K. Problem set #5. Due October 16, 2000.

1. According to Noeter theorem, a system of several classical fields φa has stress-energy tensor

TµνNoeter =
∑
a

∂L
∂(∂µφa)

∂νφa − gµν L. (1)

Actually, to assure the symmetry of the stress-energy tensor, Tµν = T νµ (which is necessary

for the angular momentum conservation), one sometimes has to add a total divergence,

Tµν = TµνNoeter + ∂λK[λµ]ν , (2)

where K[λµ]ν is some 3–index Lorentz tensor antisymmetric in its first two indices.

(a) Show that regardless of the specific form of K[λµ]ν(φ, ∂φ),

∂µT
µν = ∂µT

µν
Noether = (hopefully) = 0

Pµnet ≡
∫
d3xT 0µ =

∫
d3xT 0µ

Noether .
(3)

For the scalar fields, real or complex, TµνNoeter is properly symmetric and one simply has

Tµν = TµνNoeter. Unfortunately, the situation is more complicated for the vector, tensor or

spinor fields. To illustrate the problem, consider the free electromagnetic fields described

by the Lagrangian

L(Aµ, ∂νAµ) = −1
4 FµνF

µν (4)

where Aµ is a real vector field and Fµν ≡ ∂µAν − ∂νAµ.

(b) Write down TµνNoeter for the free electromagnetic fields and show that it is neither

symmetric nor gauge invariant.

(c) The properly symmetric — and also gauge invariant — stress-energy tensor for the

free electromagnetism is

TµνEM = −FµλF νλ + 1
4 g

µν FκλF
κλ. (5)

Show that this expression indeed has form (2) for some K[λµ]ν .
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(d) Write down the components of the stress-energy tensor (5) in non-relativistic nota-

tions and make sure you have the familiar electromagnetic energy density, momentum

density and pressure.

2. Now consider electromagnetic fields coupled to some charged “matter” fields which carry

an EM current Jµ.

(a) Use Maxwell equations to show that

∂µT
µν
EM = −F νλJλ . (6)

Eq. (6) suggests that any system of charged “matter” fields should have its stress-energy

tensor Tµνmat obeying

∂µT
µν
mat = +F νλJ

λ
EM . (7)

Consequently, the combined stress-energy tensor TµνEM +Tµνmat should be divergence-less and

thus lead to a conserved total energy and momentum.

Generally, testing eq. (7) for any particular system of charged “matter” fields makes use of

fields’ equations of ‘motion’ and also of the fact that the covariant derivatives Dµ do not

commute with each other. Instead, when acting upon a field Φq of charge q, one has

(DµDν −DνDµ)Φq = iq Fµν Φq (8)

(in c = h̄ = 1 units).

(b) Verify eq. (8).

Now consider a specific example of EM coupled to a charged scalar field, with a combined

Lagrangian density

L = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν . (9)

(c) Calculate the Noether stress-energy tensor for this field system and show that

Tµνnet ≡ TµνNoeter + ∂λK[λµ]ν = TµνEM + Tµνmat (10)

where K[λµ]ν is the same function of EM fields as in the free EM case (c), TµνEM is
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exactly as in eq. (5) and

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
(11)

Hint: In the presence of an electric current Jµ, the ∂λK[λµ]ν correction to the electro-

magnetic stress-energy tensor contains an extra JµAν term. This term is important

for obtaining a gauge-invariant stress-energy tensor (11) for the scalar field.

(d) Use the scalar field’s equations of motion and eq. (8) to verify eq. (7).

3. Finally, let us quantize the (free) electromagnetic fields. Unlike the massive vector fields

studied in previous homeworks, the Hamiltonian formalism for the massless EM fields

suffers from redundancies associated with the gauge transformations. To ameliorate this

problem, we would like to separate the gauge-invarian transverse polarizations of the vector

field from the gauge-dependent longitudinal and scalar polarizations. The separation is

best done in terms of the Fourier-transformed fields using the helicity basis defined in the

previous homework.

(a) Show that in terms of the Ak,λ(t) and A0
k modes of the classical fields, the free EM

Lagrangian becomes

L ≡
∫
d3xL = L⊥ + L‖ (12)

where

L⊥ =

∫
d3k

(2π)3

∑
λ=±1

(
1

2
Ȧ∗k,λȦk,λ −

k2

2
A∗k,λAk,λ

)
. (13)

and

L‖ =

∫
d3k

(2π)3
1
2

∣∣∣Ȧk,0 + ikA0
k

∣∣∣2 . (14)

(b) Show that the transverse (λ = ±1) modes Ak,λ are gauge invariant while the longitu-

dinal and scalar modes transform according to

Ak,0(t) → Ak,0(t) + ikΛk(t), A0
k(t) → A0

k(t) − Λ̇k(t) (15)

for arbitrary, independent Λk(t).
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(c) Write down the Hamiltonian H⊥ for the transverse modes and their canonical conju-

gates. Quantize the transverse modes and write down the commutation relations for

the transverse Âk,λ and Êk,λ.

(d) Construct the creation and annihilation operators for the transverse modes and show

that

Ĥ⊥ =

∫
d3k

(2π)3

∑
λ=±1

ωkâ
†
k,λâk,λ + const (16)

with ωk = k ≡ |k|. The massless particles created by the â†k,λ operators and annihilated

by the âk,λ are called photons.

As to the longitudinal and scalar modes Ak,0 and A0
k, they make for rather redundant

dynamical variables in light of gauge transforms (15). The Hamiltonian formalism abhors

such redundancy, so we need to fix a gauge. Let us therefore impose the so-called transverse

gauge condition Ak,0 ≡ 0 — or equivalently ∇ ·A(x, t) = 0.

(e) Show that in the transverse gauge, the scalar modes satisfy time-independent equations

of motion k2A0
k = 0.

Also show that for EM fields coupled to an electric current Jµ, the scalar modes

satisfy k2A0
k(t) = −J0

k(t), or in the field language, the scalar potential A0(x, t) is the

instantaneous Coulomb potential for the charge density J0(x, t).

For that reason, the transverse gauge is also known as the Coulomb gauge.

Utimately, for the free EM fields, the longitudinal sector contains no dynamics and thus

cab be simply thrown out of the quantum theory. Consequently, the free quantum EM

theory is the theory of photons with transverse polarizations only, λ = ±1.

(f) Finally, assemble the time-dependend free quantum EM fields Âµ(x) as

Âµ(x) =

∫
d3k

(2π)3
1√
2|k|

∑
λ=±1

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+|k|

(17)

where in the transverse gauge f0(k, λ) ≡ 0 and f(k, λ) = eλ(k).
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