1. The first problem is about Dirac's γ matrices.
(a) Verify $\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i\left(g^{\lambda \mu} S^{\kappa \nu}-g^{\lambda \nu} S^{\kappa \mu}-g^{\kappa \mu} S^{\lambda \nu}+g^{\kappa \nu} S^{\lambda \mu}\right)$.
(b) Verify $M^{-1}(L) \gamma^{\mu} M(L)=L^{\mu}{ }_{\nu} \gamma^{\nu}$ for $L=\exp (\theta)$ (i.e., $L^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}+\theta_{\nu}^{\mu}+\frac{1}{2} \theta^{\mu}{ }_{\lambda} \theta_{\nu}^{\lambda}+\cdots$) and $M(L)=\exp \left(-\frac{i}{2} \theta_{\alpha \beta} S^{\alpha \beta}\right)$
(c) Calculate $\left\{\gamma^{\rho}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right\},\left[\gamma^{\rho}, \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$ and $\left[S^{\rho \sigma}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$.
(d) Show that $\gamma^{\alpha} \gamma_{\alpha}=4, \gamma^{\alpha} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu}, \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 g^{\mu \nu}$ and $\gamma^{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$. Hint: use $\gamma^{\alpha} \gamma^{\nu}=2 g^{\nu \alpha}-\gamma^{\nu} \gamma^{\alpha}$ repeatedly.
(e) Consider the electron's spinor field $\Psi(x)$ in an electomagnetic background. Show that the gauge-covariant Dirac equation $\left(i \gamma^{\mu} D_{\mu}+m\right) \Psi(x)=0$ implies $\left(m^{2}+D^{2}+q F_{\mu \nu} S^{\mu \nu}\right) \Psi(x)=0$.
2. The second problem is about the Lorentz group and its generators $\hat{J}^{\mu \nu}$. In 3-index notations, $\hat{J}^{i j}=\epsilon^{i j \ell} \hat{J}^{\ell}$ generate ordinary rotations while $\hat{J}^{0 i}=-\hat{J}^{i 0}=\hat{K}^{i}$ generate the Lorentz boosts. Let

$$
\begin{equation*}
\hat{\mathbf{J}}_{ \pm}=\frac{1}{2}(\hat{\mathbf{J}} \pm i \hat{\mathbf{K}}) \tag{1}
\end{equation*}
$$

(a) Show that the $\hat{\mathbf{J}}_{+}$and the $\hat{\mathbf{J}}_{-}$commute with each other and that each satisfies the commutations relations of an angular momentum, $\left[\hat{J}_{ \pm}^{k}, \hat{J}_{ \pm}^{\ell}\right]=i \epsilon^{k \ell m} \hat{J}_{ \pm}^{m}$.

The "angular momentum" $\hat{\mathbf{J}}_{+}$is non-hermitian and hence its finite irreducible representations are non-unitary analytic continuations of the spin- j representations of a hermitian $\hat{\mathbf{J}}$. The same is true for the $\hat{\mathbf{J}}_{-}=\hat{\mathbf{J}}_{+}^{\dagger}$, so altogether, the finite irreducible representations of the Lorentz algebra are specified by two integer or half-integer 'spins' j_{+}and j_{-}.

The simplest non-trivial representations of the Lorentz algebra are the Weyl spinor ($j_{+}=$ $\left.\frac{1}{2}, j_{-}=0\right)-$ a doublet where $\hat{\mathbf{J}}$ acts as $\frac{1}{2} \vec{\sigma}$ and $\hat{\mathbf{K}}$ as $-\frac{i}{2} \vec{\sigma}$ and the congugate Weyl 'antispinor' $\left(j_{+}=0, j_{-}=\frac{1}{2}\right)$ where $\hat{\mathbf{J}}$ also acts as $\frac{1}{2} \vec{\sigma}$ but $\hat{\mathbf{K}}$ acts as $+\frac{i}{2} \vec{\sigma}$. Together the Weyl spinor and the Weyl antispinor comprise the Dirac spinor.
(b) Show that for any infinitesimal combination of a Lorentz boost \vec{b} and rotation $\vec{\theta} \equiv \theta \mathbf{n}$,

$$
\Psi^{\prime}\left(x^{\prime}\right)=\Psi(x)+\left(\begin{array}{cc}
-\frac{i}{2}(\vec{\theta}-i \vec{b}) \cdot \vec{\sigma} & 0 \tag{2}\\
0 & -\frac{i}{2}(\vec{\theta}+i \vec{b}) \cdot \vec{\sigma}
\end{array}\right) \Psi(x)
$$

which means that a Dirac spinor indeed decomposes into a Weyl spinor and a Weyl antispinor.

Finite Lorentz transformations act on Weyl spinors as complex, unimodular (det $=1$) but non-unitary two-by-two matrices. The group $S L(2, \mathbf{C})$ of such matrices is actually isomorphic to the $\operatorname{Spin}(3,1)$ - the double cover of the continuous Lorentz group. (This is similar to $\operatorname{Spin}(3) \cong S U(2)$.) Any $\left(j_{+}, j_{-}\right)$representation of the $\operatorname{Spin}(3,1)$ becomes in the $S L(2, \mathbf{C})$ terms a tensor $\Phi_{a_{1} \ldots a_{\left(2 j_{+}\right)}, \dot{a}_{1} \ldots \dot{a}_{\left(2 j_{-}\right)}}$, totally symmetric in its $2 j_{+}$un-dotted indices $a_{1}, \ldots, a_{\left(2 j_{+}\right)}$and separately totally symmetric in its $2 j_{-}$dotted indices $\dot{a}_{1}, \ldots, \dot{a}_{\left(2 j_{-}\right)}$, transforming according to

$$
\begin{equation*}
\Phi_{a_{1} \ldots a_{\left(2 j_{+}\right)}, \dot{a}_{1} \ldots \dot{a}_{\left(2 j_{-}\right)}}^{\prime}=U_{a_{1}}^{b_{1}} \cdots U_{a_{\left(2 j_{+}\right)}}^{b_{\left(2 j_{+}\right)}} U_{\dot{a}_{1}}^{* \dot{b}_{1}} \cdots U_{\dot{a}_{\left(2 j_{-}\right)}}^{* \dot{b}_{\left(2 j_{-}\right)}} \Phi_{b_{1} \ldots b_{\left(2 j_{+}\right)}, \dot{b}_{1} \ldots \dot{b}_{\left(2 j_{-}\right)}} \tag{3}
\end{equation*}
$$

The vector representation of the Lorentz group has $j_{+}=j_{-}=\frac{1}{2}$. To cast the action of the Lorentz group in $S L(2, \mathbf{C})$ terms (3), consider $X^{\mu} \sigma_{\mu}=T-\mathbf{X} \cdot \vec{\sigma}$. (Here $\sigma^{0}=1$ while σ^{1}, σ^{2} and σ^{3} are the Pauli matrices.) Let

$$
\begin{equation*}
X^{\prime \mu} \sigma_{\mu} \equiv L_{\nu}^{\mu}(U) X^{\nu} \sigma_{\mu}=U\left(X^{\mu} \sigma_{\mu}\right) U^{\dagger} \tag{4}
\end{equation*}
$$

(c) Show that for any $S L(2, \mathbf{C})$ matrix U, eq. (4) indeed defines a Lorentz transform. (Hint: prove and use $\operatorname{det}\left(X^{\mu} \sigma_{\mu}\right)=X^{2} \equiv X_{\mu} X^{\mu}$).
Also verify the group law, $L\left(U_{2} U_{1}\right)=L\left(U_{2}\right) L\left(U_{1}\right)$.
(d) Verify explicitly that for $U=\exp \left(-\frac{i}{2} \theta \mathbf{n} \cdot \vec{\sigma}\right), L(U)$ is a rotation by angle θ around axis \mathbf{n} while for $U=\exp \left(-\frac{1}{2} r \mathbf{n} \cdot \vec{\sigma}\right), L(U)$ is a boost of rapidity $r(\beta=\tanh r, \gamma=\cosh r)$ in the direction \mathbf{n}.
3. Finally, consider the relation between Lorentz transformations of the fields and of the particles. In mechanics (classical or quantum), one must distinguish between two opposite kinds of rotations, namely coordinate-frame rotations of bodies and body-frame rotations of coordinate systems. For the Lorentz transformations of fields and particles, there is a similar distinction between the particle-frame and field-frame Lorentz transforms.

For example, consider a real (hermitian) scalar quantum field

$$
\begin{equation*}
\hat{\Phi}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}}\left[e^{-i p x} \hat{a}(p)+e^{+i p x} \hat{a}^{\dagger}(p)\right]_{p^{0} \equiv E_{\mathbf{p}}} \tag{5}
\end{equation*}
$$

(where $\hat{a}(p)$ stands for the $\hat{a}_{\mathbf{p}}\left(t=0\right.$) and ditto for the $\hat{a}^{\dagger}(p)$). A field-frame Lorentz transform L acts on this field according to

$$
\begin{equation*}
\hat{\Phi}^{\prime}\left(x^{\prime}\right) \equiv \hat{\mathcal{D}}^{\dagger}(L) \hat{\Phi}\left(x^{\prime}\right) \hat{\mathcal{D}}(L)=\hat{\Phi}\left(x=L^{-1} x^{\prime}\right) \tag{6}
\end{equation*}
$$

while the corresponding particle-frame transform acts precisely in reverse:

$$
\begin{equation*}
\hat{\mathcal{D}}(L) \hat{\Phi}(x) \hat{\mathcal{D}}^{\dagger}(L)=\hat{\Phi}(L x) . \tag{7}
\end{equation*}
$$

In both cases $\hat{\mathcal{D}}(L)=\exp \left(\frac{i}{2} \theta_{\alpha \beta} \hat{J}^{\alpha \beta}\right)$ is a unitary operator representing the lorentz transform L in the Fock space of the quantum field theory.
(a) Show that (7) implies

$$
\begin{aligned}
\hat{\mathcal{D}}(L)\left(\sqrt{2 p^{0}} \hat{a}(p)\right) \hat{\mathcal{D}}^{\dagger}(L) & =\sqrt{2(L p)^{0}} \hat{a}(L p), \\
\hat{\mathcal{D}}(L)\left(\sqrt{2 p^{0}} \hat{a}^{\dagger}(p)\right) \hat{\mathcal{D}}^{\dagger}(L) & =\sqrt{2(L p)^{0}} \hat{a}^{\dagger}(L p),
\end{aligned}
$$

and hence

$$
\begin{align*}
\hat{\mathcal{D}}(L)|p\rangle & =|L p\rangle, \tag{8}\\
\hat{\mathcal{D}}(L)\left|p_{1}, p_{2}\right\rangle & =\left|L p_{1}, L p_{2}\right\rangle,
\end{align*}
$$

(Thus particle-frame Lorentz transform.)

Now consider a generic quantum field

$$
\begin{equation*}
\hat{\phi}_{a}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \sum_{s}\left[e^{-i p x} f_{a}(p, s) \hat{a}(p, s)+e^{+i p x} h_{a}(p, s) \hat{b}^{\dagger}(p, s)\right]_{p^{0} \equiv E_{\mathbf{p}}} \tag{9}
\end{equation*}
$$

where $e^{-i p x} f_{a}(p, s)$ and $e^{+i p x} h_{a}(p, s)$ are independent plane-wave solutions of the free field equation for the ϕ_{a}, whatever that might be. We assume complex (i.e., non-hermitian) $\hat{\phi}_{a}(x)$; otherwise we would have $\hat{b}^{\dagger}(p, s)=\hat{a}^{\dagger}(p, s)$ and $h_{a}(p, s)=f_{a}^{*}(p, s)$.

The field $\hat{\phi}_{a}(x)$ transforms according to some representation $M_{a}{ }^{b}(L)$ of the Lorentz symmetry, thus

$$
\begin{equation*}
\hat{\phi}_{a}^{\prime}\left(x^{\prime}\right) \equiv \hat{\mathcal{D}}^{\dagger}(L) \hat{\phi}_{a}\left(x^{\prime}\right) \hat{\mathcal{D}}(L)=\sum_{b} M_{a}^{b}(L) \hat{\phi}_{b}\left(x=L^{-1} x^{\prime}\right) \tag{10}
\end{equation*}
$$

in the field frame and

$$
\begin{equation*}
\hat{\mathcal{D}}(L) \hat{\phi}_{a}(x) \hat{\mathcal{D}}^{\dagger}(L)=\sum_{b} M_{a}^{b}\left(L^{-1}\right) \hat{\phi}_{b}(L x) \tag{11}
\end{equation*}
$$

in the particle frame.
(b) Verify that formula (11) is consistent with the group Law for the Lorentz symmetry, $\hat{\mathcal{D}}\left(L_{2} L_{1}\right)=\hat{\mathcal{D}}\left(L_{2}\right) \hat{\mathcal{D}}\left(L_{1}\right)$.
(c) A particle-frame Lorentz transform should act on particle - or antiparticle - quantum numbers according to

$$
\begin{equation*}
\hat{\mathcal{D}}(L)|p, \pm, s\rangle=\sum_{s^{\prime}} C_{s, s^{\prime}}(L, p)\left|L p, \pm, s^{\prime}\right\rangle . \tag{12}
\end{equation*}
$$

Show that eqs. (11) and (12) are consistent with each other if and only if

$$
\begin{align*}
& f_{a}\left(L p, s^{\prime}\right)=\sum_{b} \sum_{s} M_{a}^{b}(L) C_{s, s^{\prime}}^{*}(L, p) f_{b}(p, s), \\
& h_{a}\left(L p, s^{\prime}\right)=\sum_{b} \sum_{s} M_{a}^{b}(L) C_{s, s^{\prime}}(L, p) h_{b}(p, s) . \tag{13}
\end{align*}
$$

