
PHY–396 K. Problem set #6. Due October 23, 2000.

1. The first problem is about Dirac’s γ matrices.

(a) Verify
[
Sκλ, Sµν

]
= i
(
gλµSκν − gλνSκµ − gκµSλν + gκνSλµ

)
.

(b) Verify M−1(L)γµM(L) = Lµνγ
ν for L = exp(θ) (i.e., Lµν = δµν + θµν + 1

2θ
µ
λθ
λ
ν + · · ·)

and M(L) = exp
(
− i

2θαβS
αβ
)

(c) Calculate {γρ, γλγµγν}, [γρ, γκγλγµγν ] and [Sρσ, γλγµγν ].

(d) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν and γαγλγµγνγα = −2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

(e) Consider the electron’s spinor field Ψ(x) in an electomagnetic background. Show that

the gauge-covariant Dirac equation
(
iγµDµ +m

)
Ψ(x) = 0 implies(

m2 +D2 + qFµνS
µν
)
Ψ(x) = 0.

2. The second problem is about the Lorentz group and its generators Ĵµν . In 3–index nota-

tions, Ĵ ij = εij`Ĵ` generate ordinary rotations while Ĵ0i = −Ĵ i0 = K̂i generate the Lorentz

boosts. Let

Ĵ± = 1
2

(
Ĵ ± iK̂

)
. (1)

(a) Show that the Ĵ+ and the Ĵ− commute with each other and that each satisfies the

commutations relations of an angular momentum, [Ĵk±, Ĵ
`
±] = iεk`mĴm± .

The “angular momentum” Ĵ+ is non-hermitian and hence its finite irreducible representa-

tions are non-unitary analytic continuations of the spin–j representations of a hermitian

Ĵ. The same is true for the Ĵ− = Ĵ†+, so altogether, the finite irreducible representations

of the Lorentz algebra are specified by two integer or half-integer ‘spins’ j+ and j−.

The simplest non-trivial representations of the Lorentz algebra are the Weyl spinor (j+ =

1
2 , j− = 0) — a doublet where Ĵ acts as 1

2~σ and K̂ as − i
2~σ and the congugate Weyl ‘anti-

spinor’ (j+ = 0, j− = 1
2) where Ĵ also acts as 1

2~σ but K̂ acts as + i
2~σ. Together the Weyl

spinor and the Weyl antispinor comprise the Dirac spinor.
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(b) Show that for any infinitesimal combination of a Lorentz boost ~b and rotation ~θ ≡ θn,

Ψ′(x′) = Ψ(x) +

(
− i

2(~θ − i~b) · ~σ 0

0 − i
2(~θ + i~b) · ~σ

)
Ψ(x), (2)

which means that a Dirac spinor indeed decomposes into a Weyl spinor and a Weyl

antispinor.

Finite Lorentz transformations act on Weyl spinors as complex, unimodular (det = 1)

but non-unitary two-by-two matrices. The group SL(2,C) of such matrices is actually

isomorphic to the Spin(3, 1) — the double cover of the continuous Lorentz group. (This

is similar to Spin(3) ∼= SU(2).) Any (j+, j−) representation of the Spin(3, 1) becomes in

the SL(2,C) terms a tensor Φa1...a(2j+),ȧ1...ȧ(2j−)
, totally symmetric in its 2j+ un-dotted in-

dices a1, . . . , a(2j+) and separately totally symmetric in its 2j− dotted indices ȧ1, . . . , ȧ(2j−),

transforming according to

Φ′a1...a(2j+),ȧ1...ȧ(2j−)
= U b1

a1 · · ·U
b(2j+)

a(2j+)
U∗ ḃ1ȧ1

· · ·U∗ ḃ(2j−)

ȧ(2j−)
Φb1...b(2j+),ḃ1...ḃ(2j−)

. (3)

The vector representation of the Lorentz group has j+ = j− = 1
2 . To cast the action of the

Lorentz group in SL(2,C) terms (3), consider Xµσµ = T −X · ~σ. (Here σ0 = 1 while σ1,

σ2 and σ3 are the Pauli matrices.) Let

X ′µσµ ≡ Lµν(U)Xνσµ = U
(
Xµσµ

)
U †. (4)

(c) Show that for any SL(2,C) matrix U , eq. (4) indeed defines a Lorentz transform.

(Hint: prove and use det(Xµσµ) = X2 ≡ XµX
µ).

Also verify the group law, L(U2U1) = L(U2)L(U1).

(d) Verify explicitly that for U = exp
(
− i

2θn ·~σ
)
, L(U) is a rotation by angle θ around axis

n while for U = exp
(
−1

2rn · ~σ
)
, L(U) is a boost of rapidity r (β = tanh r, γ = cosh r)

in the direction n.
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3. Finally, consider the relation between Lorentz transformations of the fields and of the

particles. In mechanics (classical or quantum), one must distinguish between two opposite

kinds of rotations, namely coordinate-frame rotations of bodies and body-frame rotations

of coordinate systems. For the Lorentz transformations of fields and particles, there is a

similar distinction between the particle-frame and field-frame Lorentz transforms.

For example, consider a real (hermitian) scalar quantum field

Φ̂(x) =

∫
d3p

(2π)3
1√
2Ep

[
e−ipx â(p) + e+ipx â†(p)

]
p0≡Ep

(5)

(where â(p) stands for the âp(t = 0) and ditto for the â†(p)). A field-frame Lorentz

transform L acts on this field according to

Φ̂′(x′) ≡ D̂†(L) Φ̂(x′) D̂(L) = Φ̂(x = L−1x′) (6)

while the corresponding particle-frame transform acts precisely in reverse:

D̂(L) Φ̂(x) D̂†(L) = Φ̂(Lx). (7)

In both cases D̂(L) = exp
(
i
2θαβĴ

αβ
)

is a unitary operator representing the lorentz trans-

form L in the Fock space of the quantum field theory.

(a) Show that (7) implies

D̂(L)
(√

2p0 â(p)
)
D̂†(L) =

√
2(Lp)0 â(Lp),

D̂(L)
(√

2p0 â†(p)
)
D̂†(L) =

√
2(Lp)0 â†(Lp),

and hence

D̂(L) |p〉 = |Lp〉 ,

D̂(L) |p1, p2〉 = |Lp1, Lp2〉 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(8)

(Thus particle-frame Lorentz transform.)
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Now consider a generic quantum field

φ̂a(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

[
e−ipxfa(p, s) â(p, s) + e+ipxha(p, s) b̂

†(p, s)
]
p0≡Ep

(9)

where e−ipxfa(p, s) and e+ipxha(p, s) are independent plane-wave solutions of the free field

equation for the φa, whatever that might be. We assume complex (i.e., non-hermitian)

φ̂a(x); otherwise we would have b̂†(p, s) = â†(p, s) and ha(p, s) = f∗a (p, s).

The field φ̂a(x) transforms according to some representation M b
a (L) of the Lorentz sym-

metry, thus

φ̂′a(x
′) ≡ D̂†(L) φ̂a(x

′) D̂(L) =
∑
b

M b
a (L) φ̂b(x = L−1x′) (10)

in the field frame and

D̂(L) φ̂a(x) D̂†(L) =
∑
b

M b
a (L−1) φ̂b(Lx) (11)

in the particle frame.

(b) Verify that formula (11) is consistent with the group Law for the Lorentz symmetry,

D̂(L2L1) = D̂(L2)D̂(L1).

(c) A particle-frame Lorentz transform should act on particle — or antiparticle — quantum

numbers according to

D̂(L) |p,±, s〉 =
∑
s′

Cs,s′(L, p)
∣∣Lp,±, s′〉 . (12)

Show that eqs. (11) and (12) are consistent with each other if and only if

fa(Lp, s
′) =

∑
b

∑
s

M b
a (L)C∗s,s′(L, p) fb(p, s),

ha(Lp, s
′) =

∑
b

∑
s

M b
a (L)Cs,s′(L, p)hb(p, s).

(13)
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