PHY-396 K. Problem set #6. Due October 23, 2000.

1. The first problem is about Dirac’s v matrices.
(a) Verify [Sﬂ)‘, S”V} — Z'(g)\usm/ _ g)\VS/i,u _ gnusAy + gmjsz\u)'

(b) Verify M~Y(L)y*M(L) = L'v" for L = exp(f) (i.e., L', = &4 + 0, + 30/\0%, + - -+)
and M (L) = exp(—%@aﬂSaﬁ)

(c) Calculate {v*,y*H4 "}, 72, vy y#4¥] and [SP7, v AyHqY].

(d) Show that ¥*ya = 4, 77" Va = =27", 177" 70 = 49" and Yy 9" ye = =29/
Hint: use y*v" = 2¢"* — 4¥~* repeatedly.

(e) Consider the electron’s spinor field ¥(x) in an electomagnetic background. Show that
the gauge-covariant Dirac equation (z’y“Du + m)\I/(x) = 0 implies
(m? + D% + qF,, S*) ¥ (z) = 0.

2. The second problem is about the Lorentz group and its generators Jt Tn 3-index nota-
tions, JU = ¢t Jt generate ordinary rotations while JUi = Ji0 = [ generate the Lorentz

boosts. Let

J. = 13 £ iK). (1)

(a) Show that the J, and the J_ commute with each other and that each satisfies the

commutations relations of an angular momentum, [J§, J{] = ieFm 7

The “angular momentum” J + is non-hermitian and hence its finite irreducible representa-
tions are non-unitary analytic continuations of the spin—j representations of a hermitian
J. The same is true for the J_ = J E_, so altogether, the finite irreducible representations

of the Lorentz algebra are specified by two integer or half-integer ‘spins’ j; and j_.

The simplest non-trivial representations of the Lorentz algebra are the Weyl spinor (j1 =

%, j— = 0) — a doublet where J acts as %5 and K as —%5 and the congugate Weyl ‘anti-

spinor’ (j+ =0,j_ = %) where J also acts as %5 but K acts as —I—%&. Together the Weyl

spinor and the Weyl antispinor comprise the Dirac spinor.



(b) Show that for any infinitesimal combination of a Lorentz boost b and rotation 6 = 6n,

o —i(—ib)- & 0
Vi) = U(x) + e | Y(), (2)
0 —5(0 +1b) - o
which means that a Dirac spinor indeed decomposes into a Weyl spinor and a Weyl
antispinor.
Finite Lorentz transformations act on Weyl spinors as complex, unimodular (det = 1)

but non-unitary two-by-two matrices. The group SL(2,C) of such matrices is actually
isomorphic to the Spin(3,1) — the double cover of the continuous Lorentz group. (This
is similar to Spin(3) = SU(2).) Any (j+,j—) representation of the Spin(3,1) becomes in

the SL(2,C) terms a tensor ® ,» totally symmetric in its 2j4 un-dotted in-

al...a<2j+),fl1~--d(2j_
dices a1, ..., a(y;,) and separately totally symmetric in its 2j dotted indices a1, ..., 4(2;_),

transforming according to

/ Corrbr . prbein preb prrbeis o
CI)al...a(gj_F),dL‘.d(gj_) - Ua1 a(254) Uc'n Ud(zj,) ¢b1...b(2j+)7blv..b(2]’7) : (3)
The vector representation of the Lorentz group has j+ = j_ = % To cast the action of the

Lorentz group in SL(2, C) terms (3), consider X#o, =T — X - 3. (Here 0 = 1 while o',

02 and o3 are the Pauli matrices.) Let

My = M
X"o, = LF,

U)X e, = U(Xta,)UT. (4)

(c) Show that for any SL(2,C) matrix U, eq. (4) indeed defines a Lorentz transform.
(Hint: prove and use det(X*o,) = X% = X, XH).
Also verify the group law, L(UsUy) = L(Uz)L(Uy).

(d) Verify explicitly that for U = exp(—%fn-&), L(U) is a rotation by angle § around axis
n while for U = exp(—%rn . &), L(U) is a boost of rapidity r (8 = tanhr, v = coshr)

in the direction n.



3. Finally, consider the relation between Lorentz transformations of the fields and of the
particles. In mechanics (classical or quantum), one must distinguish between two opposite
kinds of rotations, namely coordinate-frame rotations of bodies and body-frame rotations
of coordinate systems. For the Lorentz transformations of fields and particles, there is a

similar distinction between the particle-frame and field-frame Lorentz transforms.

For example, consider a real (hermitian) scalar quantum field

A 3 . .
ba) = [0 g [ a) + i) 5)

(2m)3 \/2E, P°=Ep

(where a(p) stands for the ap(t = 0) and ditto for the af(p)). A field-frame Lorentz

transform L acts on this field according to

A

d'(z") = DI(L) (") D(L) = d(x = L2 (6)

while the corresponding particle-frame transform acts precisely in reverse:

~

D(L) ®(z)D'(L) = ®(Lax). (7)

In both cases f)(L) = exp(%@aﬁj af ) is a unitary operator representing the lorentz trans-

form L in the Fock space of the quantum field theory.

(a) Show that (7) implies

D(L) (V207 a(p)) DN (L) = +/2(Lp)®a(Lp),
D(L)(v2r0al (p))DT(L) = y/2(Lp)°al(Lp),
and hence (8)

D(L)|p) = |Lp),
D(L) |p1,p2) = |Lp1, Lpa)

(Thus particle-frame Lorentz transform.)



Now consider a generic quantum field

1 d3 fzpm ipx 7
b = [ g X [T A + i F )], 0)

where e =% f,(p, s) and e*P%h,(p, s) are independent plane-wave solutions of the free field
equation for the ¢,, whatever that might be. We assume complex (i.e., non-hermitian)

do(x); otherwise we would have bf(p, s) = af(p, s) and h,(p, s) = f(p, ).

The field ¢q(z) transforms according to some representation M,(L) of the Lorentz sym-

metry, thus
$n(z') = DI(L)ga(a)) D(L) =D ML) dy(z = L") (10)
in the field frame and

D(L) da(x) DN(L) =D ML) gy(Lax) (11)

in the particle frame.

(b) Verify that formula (11) is consistent with the group Law for the Lorentz symmetry,
D(LaL1) = D(La) D(Ly).

(c) A particle-frame Lorentz transform should act on particle — or antiparticle — quantum

numbers according to

,ZA)(L) |p7:t73> = Z 0578’(L7p) }vaj:73/> : (12)

5/

Show that egs. (11) and (12) are consistent with each other if and only if

Lp7 ZZ M L p) fb(p7 )7
Lp, ZZ M ss L p>hb(p7 )



