1. Consider the matrix $\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(a) Show that γ^{5} anticommutes with each of the γ^{μ} matrices, $\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}$.
(b) Show that γ^{5} is hermitian and that $\left(\gamma^{5}\right)^{2}=1$.
(c) Show that $\gamma^{5}=(-i / 24) \epsilon_{\kappa \lambda \mu \nu} \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}$ and $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=-i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$.
(Sign convention: $\epsilon^{0123}=+1, \epsilon_{0123}=-1$.)
(d) Show that $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5}$.
(e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \gamma^{[\mu} \gamma^{\nu]}, \gamma^{5} \gamma^{\mu}$ and γ^{5}.

Under continuous Lorentz symmetries, Dirac spinor fields $\Psi(x)$ transform according to $\Psi^{\prime}\left(x^{\prime}\right)=M(L) \Psi\left(x=L^{-1} x^{\prime}\right)$ where $\left.M\left(L=e^{\theta}\right)\right)=\exp \left(-\frac{i}{2} \theta_{\alpha \beta} S^{\alpha \beta}\right)$. Consider the transformation rules for the independent bilinears $\bar{\Psi} \Gamma \Psi$, namely (cf. (e))

$$
\begin{equation*}
S=\bar{\Psi} \Psi, \quad V^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi, \quad T^{\mu \nu}=\bar{\Psi} \gamma^{[\mu} \gamma^{\nu]} \Psi, \quad A^{\mu}=\bar{\Psi} \gamma^{5} \gamma^{\mu} \Psi \quad \text { and } \quad P=\bar{\Psi} \gamma^{5} \Psi . \tag{1}
\end{equation*}
$$

(f) Show that under continuous Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors and the $T^{\mu \nu}$ as an antisymmetric tensor.
2. Under the parity symmetry $\mathcal{P}:(\mathbf{x}, t) \mapsto(-\mathbf{x}, t)$, Dirac spinor fields transform according to

$$
\begin{equation*}
\hat{\mathcal{P}} \hat{\Psi}(\mathbf{x}, t) \hat{\mathcal{P}} \equiv \hat{\Psi}^{\prime}(\mathbf{x}, t)= \pm \gamma^{0} \hat{\Psi}(-\mathbf{x}, t) \tag{2}
\end{equation*}
$$

where the overall sign depends on the so-called intrinsic parity of a particular Dirac field. Note: $\hat{\mathcal{P}}$ here is a unitary operator in the fermionic Fock space; by nature of the parity symmetry, $\hat{\mathcal{P}}^{2}=1$.
(a) Verify the covariance of the Dirac equation under this symmetry.
(b) Find the transformation rules of the bilinears (1) under parity and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.
3. In theories involving both bosons and fermions, one often has to combine commutation and anti-commutation relations of various operators, depending on the overall statistics of the operators involved. For that purpose, it is useful to define a 'mixed' commutator bracket

$$
\begin{equation*}
[\hat{A}, \hat{B}\} \stackrel{\text { def }}{=} \hat{A} \hat{B}-(-1)^{A B} \hat{B} \hat{A} \tag{3}
\end{equation*}
$$

where $(-1)^{A B}$ is -1 if both \hat{A} and \hat{B} have overall Fermi statistics (i.e., each comprises an odd number of fermionic creation/annihilation operators - the number of bosonic creation/annihilation operators does not matter) and +1 in all other cases.
(a) Verify the Leibniz rule for the mixed brackets: $[\hat{A}, \hat{B} \hat{C}\}=[\hat{A}, \hat{B}\} \hat{C}+(-1)^{A B} \hat{B}[\hat{A}, \hat{C}\}$ and write down a similar rule for the $\{\hat{A} \hat{B}, \hat{C}\}$.
(b) Similarly, express $[\hat{A} \hat{B}, \hat{C} \hat{D}\}$ in terms of appropriate mixed brackets of \hat{A} or \hat{B} with \hat{C} or \hat{D}.
(c) Prove the 'mixed' Jacobi identity

$$
\begin{equation*}
(-1)^{C A}[\hat{A},[\hat{B}, \hat{C}\}\}+(-1)^{A B}[\hat{B},[\hat{C}, \hat{A}\}\}+(-1)^{B C}[\hat{C},[\hat{A}, \hat{B}\}\}=0 \tag{4}
\end{equation*}
$$

In other words (and notations),

$$
\begin{align*}
& {\left[\hat{B}_{1},\left[\hat{B}_{2}, \hat{B}_{3}\right]\right]+\left[\hat{B}_{2},\left[\hat{B}_{3}, \hat{B}_{1}\right]\right]+\left[\hat{B}_{3},\left[\hat{B}_{1}, \hat{B}_{2}\right]\right]=0} \\
& {\left[\hat{B}_{1},\left[\hat{B}_{2}, \hat{F}\right]\right]+\left[\hat{B}_{2},\left[\hat{F}, \hat{B}_{1}\right]\right]+\left[\hat{F},\left[\hat{B}_{1}, \hat{B}_{2}\right]\right]=0} \\
& \left\{\hat{F}_{1},\left[\hat{F}_{2}, \hat{B}\right]\right\}-\left\{\hat{F}_{2},\left[\hat{B}, \hat{F}_{1}\right]\right\}+\left[\hat{B},\left\{\hat{F}_{1}, \hat{F}_{2}\right\}\right]=0, \tag{5}\\
& {\left[\hat{F}_{1},\left\{\hat{F}_{2}, \hat{F}_{3}\right\}\right]+\left[\hat{F}_{2},\left\{\hat{F}_{3}, \hat{F}_{1}\right\}\right]+\left[\hat{F}_{3},\left\{\hat{F}_{1}, \hat{F}_{2}\right\}\right]=0,}
\end{align*}
$$

where ' B ' and ' F ' indicate the overall statistics of the operator involved.
4. Finally, an exercise in fermionic creation and annihilation operators and their anticommutation relations,

$$
\begin{equation*}
\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}\right\}=\left\{\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right\}=0, \quad\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right\}=\delta_{\alpha, \beta} \tag{6}
\end{equation*}
$$

(a) Calculate the commutators $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\delta}\right]$ and $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right]$.
(b) Consider two one-body operators \hat{A}_{1} and \hat{B}_{1} and let \hat{C}_{1} be their commutator, $\hat{C}_{1}=$ [$\left.\hat{A}_{1}, \hat{B}_{1}\right]$. Let \hat{A} be the second-quantized forms of $\hat{A}_{\text {tot }}$,

$$
\begin{equation*}
\hat{A}=\sum_{\alpha, \beta}\langle\alpha| \hat{A}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \tag{7}
\end{equation*}
$$

and ditto for the second-quantized \hat{B} and \hat{C}.
Verify that $[\hat{A}, \hat{B}]=\hat{C}$.
(c) Calculate the commutator $\left[\hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}, \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}\right]$.
(d) The second quantized form of a two-body additive operator

$$
\hat{B}_{\mathrm{tot}}=\frac{1}{2} \sum_{i \neq j} \hat{B}_{2}\left(i^{\text {th }} \text { and } j^{\text {th }} \text { particles }\right)
$$

acting on identical fermions is

$$
\begin{equation*}
\hat{B}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}\langle\alpha \otimes \beta| \hat{B}_{2}|\gamma \otimes \delta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\delta} \hat{a}_{\gamma} . \tag{8}
\end{equation*}
$$

This expression is similar to its bosonic counterpart, but note the reversed order of the annihilation operators \hat{a}_{δ} and \hat{a}_{γ}.

Consider a one-body operator \hat{A}_{1} and two-body operator \hat{B}_{2} and \hat{C}_{2} where $\hat{C}_{2}=$ $\left[\left(\hat{A}_{1}\left(1^{\text {st }}\right)+\hat{A}_{1}(2 \underline{\text { nd }})\right), \hat{B}_{2}\right]$. Show that the respective second-quantized operators in the fermionic Fock space satisfy $\hat{C}=[\hat{A}, \hat{B}]$.

