
PHY–396 K. Problem set #7. Due October 30, 2000.

1. Consider the matrix γ5
def
= iγ0γ1γ2γ3.

(a) Show that γ5 anticommutes with each of the γµ matrices, γ5γµ = −γµγ5.

(b) Show that γ5 is hermitian and that (γ5)2 = 1.

(c) Show that γ5 = (−i/24)εκλµνγ
κγλγµγν and γ[κγλγµγν] = −iεκλµν γ5.

(Sign convention: ε0123 = +1, ε0123 = −1.)

(d) Show that γ[λγµγν] = iεκλµν γκγ
5.

(e) Show that any 4 × 4 matrix Γ is a unique linear combination of the following 16

matrices: 1, γµ, γ[µγν], γ5γµ and γ5.

Under continuous Lorentz symmetries, Dirac spinor fields Ψ(x) transform according to

Ψ′(x′) = M(L)Ψ(x = L−1x′) where M
(
L = eθ

)
) = exp

(
− i

2θαβS
αβ
)
. Consider the trans-

formation rules for the independent bilinears ΨΓΨ, namely (cf. (e))

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψγ[µγν]Ψ, Aµ = Ψγ5γµΨ and P = Ψγ5Ψ.

(1)

(f) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors and the Tµν as an antisymmetric tensor.

2. Under the parity symmetry P : (x, t) 7→ (−x, t), Dirac spinor fields transform according to

P̂ Ψ̂(x, t) P̂ ≡ Ψ̂′(x, t) = ±γ0 Ψ̂(−x, t) (2)

where the overall sign depends on the so-called intrinsic parity of a particular Dirac field.

Note: P̂ here is a unitary operator in the fermionic Fock space; by nature of the parity

symmetry, P̂2 = 1.

(a) Verify the covariance of the Dirac equation under this symmetry.

(b) Find the transformation rules of the bilinears (1) under parity and show that while S

is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.
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3. In theories involving both bosons and fermions, one often has to combine commutation and

anti-commutation relations of various operators, depending on the overall statistics of the

operators involved. For that purpose, it is useful to define a ‘mixed’ commutator bracket

[Â, B̂} def
= ÂB̂ − (−1)ABB̂Â (3)

where (−1)AB is −1 if both Â and B̂ have overall Fermi statistics (i.e., each comprises

an odd number of fermionic creation/annihilation operators — the number of bosonic

creation/annihilation operators does not matter) and +1 in all other cases.

(a) Verify the Leibniz rule for the mixed brackets: [Â, B̂Ĉ} = [Â, B̂}Ĉ + (−1)ABB̂[Â, Ĉ}
and write down a similar rule for the [ÂB̂, Ĉ}.

(b) Similarly, express [ÂB̂, ĈD̂} in terms of appropriate mixed brackets of Â or B̂ with Ĉ

or D̂.

(c) Prove the ‘mixed’ Jacobi identity

(−1)CA[Â, [B̂, Ĉ}} + (−1)AB[B̂, [Ĉ, Â}} + (−1)BC [Ĉ, [Â, B̂}} = 0. (4)

In other words (and notations),

[B̂1, [B̂2, B̂3]] + [B̂2, [B̂3, B̂1]] + [B̂3, [B̂1, B̂2]] = 0,

[B̂1, [B̂2, F̂ ]] + [B̂2, [F̂ , B̂1]] + [F̂ , [B̂1, B̂2]] = 0,

{F̂1, [F̂2, B̂]} − {F̂2, [B̂, F̂1]} + [B̂, {F̂1, F̂2}] = 0,

[F̂1, {F̂2, F̂3}] + [F̂2, {F̂3, F̂1}] + [F̂3, {F̂1, F̂2}] = 0,

(5)

where ‘B’ and ‘F ’ indicate the overall statistics of the operator involved.

4. Finally, an exercise in fermionic creation and annihilation operators and their anticommu-

tation relations,

{âα, âβ} = {â†α, â
†
β} = 0, {âα, â

†
β} = δα,β . (6)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].
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(b) Consider two one-body operators Â1 and B̂1 and let Ĉ1 be their commutator, Ĉ1 =

[Â1, B̂1]. Let Â be the second-quantized forms of Âtot,

Â =
∑
α,β

〈α| Â1 |β〉 â†αâβ , (7)

and ditto for the second-quantized B̂ and Ĉ.

Verify that [Â, B̂] = Ĉ.

(c) Calculate the commutator [â†µâν , â
†
αâ
†
β âγ âδ].

(d) The second quantized form of a two-body additive operator

B̂tot = 1
2

∑
i6=j

B̂2(i
th

and j
th

particles)

acting on identical fermions is

B̂ = 1
2

∑
α,β,γ,δ

〈α⊗ β| B̂2 |γ ⊗ δ〉 â†αâ
†
β âδâγ . (8)

This expression is similar to its bosonic counterpart, but note the reversed order of

the annihilation operators âδ and âγ .

Consider a one-body operator Â1 and two-body operator B̂2 and Ĉ2 where Ĉ2 =[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
. Show that the respective second-quantized operators in

the fermionic Fock space satisfy Ĉ = [Â, B̂].

3


