
PHY–396 K. Problem set #8. Due November 13, 2000.

1. First, a little exercise about Weyl spinors. As discussed in class, a Dirac spinor field Ψ(x)

is physically equivalent to two left-handed Weyl spinor fields χ(x) and ϕ(x). In Weyl basis,

Ψ(x) ≡

(
ψL(x)

ψR(x)

)
=

(
χ(x)

−σ2ϕ∗(x)

)
. (1)

(a) Show that in terms of the Weyl spinor fields, the Dirac Lagrangian becomes

L ≡ Ψ(iγµ∂µ −m)Ψ = iχ†σ̄µ∂µχ + iϕ†σ̄µ∂µϕ + m
(
ϕ>σ2χ + ϕ†σ2χ∗

)
(2)

(up to a total derivative). Note that χ(x), ϕ(x), χ∗(x) and ϕ∗(x) are fermionic fields,

so in the classical limit they anticommute with each other rather than commute. Thus,

ϕ>σ2χ = +χ>σ2ϕ even though the σ2 matrix is antisymmetric.

(b) Verify that each term in the Lagrangian (2) is separately invariant (up to a total

derivative) under the combined Parity + Charge Conjugation symmetry ĈP .

2. The rest of this homework concerns Dirac spinor fields and their discrete symmetries. We

begin with the charge-conjugation properties of Dirac bilinears Ψ̂ΓΨ̂.

(a) Show that ĈΨ̂ΓΨ̂Ĉ = Ψ̂ΓcΨ̂ where Γc = γ0γ2Γ>γ0γ2.

Hint: Mind the anticommutativity of the fermionic fields.

(b) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

(c) Consider a bound state of a fermion and an antifermion, e.g. a positronium state or

a neutral meson. As argued in class, the parity of such bound state is P = −(−1)L.

Show that the C-parity of this state is C = (−1)S(−1)L and use this fact to explain

why the decay mode and the lifetime of a 1S positronium state depend on its spin.

Hint: â†b̂† = −b̂†â†.
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3. The time-reversal symmetry involves an anti-linear, anti-unitary operator T̂ that invert

directions of all particle momenta and spins,
?

T̂ |particle type,p, s〉 = (phase) |same particle type,−p,−s〉 . (3)

The phase factor here here combines an arbitrary but fixed overall phase η with a phase

factor inherent in spin reversal: ŜR |ms〉 = i2ms |−ms〉 in the Ŝz eigenbasis, or more

generally,

ŜR |ξ〉 = i2Se−πiŜy |ξ〉∗ . (4)

In particular, for spin 1
2 particles, ŜR |ξ〉 = σ2 |ξ〉∗, in agreement with the rule ξ−s = σ2ξ

∗
s

we used in class. Note however that reversing the spin twice results in a rotation by 2π,

ŜR
2

= e−2πiŜy = (−1)2S , which is trivial for integral spins but changes the overall sign of

the spin state for half-integral spins. Consequently, the time-reversal operator in the Fock

space satisfies

T̂ 2 = (−1)F ≡ rotation by 2π. (5)

In this exercise, we consider time-reversal of the Dirac spinor field. First, we need a lemma:

i2msu∗(−p,−ms) = −iγ1γ3u(+p,+ms), i2msv∗(−p,−ms) = −iγ1γ3v(+p,+ms).

(6)

(a) Prove this lemma.

In terms of electronic and positronic creation and annihilation operators, eq. (3) means

T̂ â†(p,ms)T̂ −1 = (∓i) i2ms â†(−p,−ms),

T̂ b̂†(p,ms)T̂ −1 = (±i) i2ms b̂†(−p,−ms),

T̂ â(p,ms)T̂ −1 = (±i) i2ms â(−p,−ms),

T̂ b̂(p,ms)T̂ −1 = (∓i) i2ms b̂(−p,−ms),

(7)

where the spin-independent phase factors ±i make for a consistent time-reversal of the

Dirac spinor field.

? Please see J. J. Sakurai Modern Quantum Mechanics, §4.4 for a discussion of time reversal in general and
spin reversal in particular.
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(b) Use lemma (6) and eqs. (7) to show that

T̂ Ψ̂(x, t)T̂ −1 = ±γ1γ3 Ψ(x,−t). (8)

(c) Next, consider the Dirac bilinears Ψ̂ΓΨ̂ and show that T̂ Ψ̂ΓΨ̂T̂ −1 = Ψ̂ΓtΨ̂ where

Γt = γ3γ1Γ∗γ1γ3.

(d) Calculate Γt for all 16 independent matrices Γ and find out which Dirac bilinears are

T –even and which are T –odd.

(e) Verify the T –invariance of the Dirac action.

4. Finally, consider the combined ĈP̂T̂ symmetry of the Dirac field and verify that for any

bilinear operator Ô(x) = Ψ̂(x)ΓΨ̂(x),

ĈP̂T̂ Ô(x) [ĈP̂T̂ ]−1 = Ô†(−x)× (−1)#Lorentz indices in Ô. (9)

Actually, eq. (9) holds for any physically measurable operator Ô(x) in any legitimate

quantum field theory — this is the famous CPT theorem — but the exercise is limited to

the Dirac bilinear operators only.
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