1. First, a little exercise about Weyl spinors. As discussed in class, a Dirac spinor field $\Psi(x)$ is physically equivalent to two left-handed Weyl spinor fields $\chi(x)$ and $\varphi(x)$. In Weyl basis,

$$
\begin{equation*}
\Psi(x) \equiv\binom{\psi_{L}(x)}{\psi_{R}(x)}=\binom{\chi(x)}{-\sigma^{2} \varphi^{*}(x)} . \tag{1}
\end{equation*}
$$

(a) Show that in terms of the Weyl spinor fields, the Dirac Lagrangian becomes

$$
\begin{equation*}
\mathcal{L} \equiv \bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi=i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \varphi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \varphi+m\left(\varphi^{\top} \sigma^{2} \chi+\varphi^{\dagger} \sigma^{2} \chi^{*}\right) \tag{2}
\end{equation*}
$$

(up to a total derivative). Note that $\chi(x), \varphi(x), \chi^{*}(x)$ and $\varphi^{*}(x)$ are fermionic fields, so in the classical limit they anticommute with each other rather than commute. Thus, $\varphi^{\top} \sigma^{2} \chi=+\chi^{\top} \sigma^{2} \varphi$ even though the σ^{2} matrix is antisymmetric.
(b) Verify that each term in the Lagrangian (2) is separately invariant (up to a total derivative) under the combined Parity + Charge Conjugation symmetry $\widehat{\mathcal{C P}}$.
2. The rest of this homework concerns Dirac spinor fields and their discrete symmetries. We begin with the charge-conjugation properties of Dirac bilinears $\hat{\bar{\Psi}} \Gamma \hat{\Psi}$.
(a) Show that $\hat{\mathcal{C}} \hat{\bar{\Psi}} \Gamma \hat{\Psi} \hat{\mathcal{C}}=\hat{\bar{\Psi}} \Gamma^{c} \hat{\Psi}$ where $\Gamma^{c}=\gamma^{0} \gamma^{2} \Gamma^{\top} \gamma^{0} \gamma^{2}$.

Hint: Mind the anticommutativity of the fermionic fields.
(b) Calculate Γ^{c} for all 16 independent matrices Γ and find out which Dirac bilinears are \mathcal{C}-even and which are \mathcal{C}-odd.
(c) Consider a bound state of a fermion and an antifermion, e.g. a positronium state or a neutral meson. As argued in class, the parity of such bound state is $P=-(-1)^{L}$. Show that the C-parity of this state is $C=(-1)^{S}(-1)^{L}$ and use this fact to explain why the decay mode and the lifetime of a 1 S positronium state depend on its spin. Hint: $\hat{a}^{\dagger} \hat{b}^{\dagger}=-\hat{b}^{\dagger} \hat{a}^{\dagger}$.
3. The time-reversal symmetry involves an anti-linear, anti-unitary operator $\hat{\mathcal{T}}$ that invert directions of all particle momenta and spins, ${ }^{\star}$

$$
\begin{equation*}
\hat{\mathcal{T}} \mid \text { particle type, } \mathbf{p}, s\rangle=\text { (phase) } \mid \text { same particle type },-\mathbf{p},-s\rangle . \tag{3}
\end{equation*}
$$

The phase factor here here combines an arbitrary but fixed overall phase η with a phase factor inherent in spin reversal: $\widehat{\mathcal{S R}}\left|m_{s}\right\rangle=i^{2 m_{s}}\left|-m_{s}\right\rangle$ in the \hat{S}_{z} eigenbasis, or more generally,

$$
\begin{equation*}
\widehat{\mathcal{S R}}|\xi\rangle=i^{2 S} e^{-\pi i \hat{S}_{y}}|\xi\rangle^{*} \tag{4}
\end{equation*}
$$

In particular, for spin $\frac{1}{2}$ particles, $\widehat{\mathcal{S R}}|\xi\rangle=\sigma_{2}|\xi\rangle^{*}$, in agreement with the rule $\xi_{-s}=\sigma_{2} \xi_{s}^{*}$ we used in class. Note however that reversing the spin twice results in a rotation by 2π, $\widehat{\mathcal{S R}}^{2}=e^{-2 \pi i \hat{S}_{y}}=(-1)^{2 S}$, which is trivial for integral spins but changes the overall sign of the spin state for half-integral spins. Consequently, the time-reversal operator in the Fock space satisfies

$$
\begin{equation*}
\hat{\mathcal{T}}^{2}=(-1)^{F} \equiv \text { rotation by } 2 \pi \tag{5}
\end{equation*}
$$

In this exercise, we consider time-reversal of the Dirac spinor field. First, we need a lemma:

$$
\begin{equation*}
i^{2 m_{s}} u^{*}\left(-\mathbf{p},-m_{s}\right)=-i \gamma^{1} \gamma^{3} u\left(+\mathbf{p},+m_{s}\right), \quad i^{2 m_{s}} v^{*}\left(-\mathbf{p},-m_{s}\right)=-i \gamma^{1} \gamma^{3} v\left(+\mathbf{p},+m_{s}\right) \tag{6}
\end{equation*}
$$

(a) Prove this lemma.

In terms of electronic and positronic creation and annihilation operators, eq. (3) means

$$
\begin{align*}
& \hat{\mathcal{T}} \hat{a}^{\dagger}\left(\mathbf{p}, m_{s}\right) \hat{\mathcal{T}}^{-1}=(\mp i) i^{2 m_{s}} \hat{a}^{\dagger}\left(-\mathbf{p},-m_{s}\right), \\
& \hat{\mathcal{T}} \hat{b}^{\dagger}\left(\mathbf{p}, m_{s}\right) \hat{\mathcal{T}}^{-1}=(\pm i) i^{2 m_{s}} \hat{b}^{\dagger}\left(-\mathbf{p},-m_{s}\right), \\
& \hat{\mathcal{T}} \hat{a}\left(\mathbf{p}, m_{s}\right) \hat{\mathcal{T}}^{-1}=(\pm i) i^{2 m_{s}} \hat{a}\left(-\mathbf{p},-m_{s}\right), \tag{7}\\
& \hat{\mathcal{T}} \hat{b}\left(\mathbf{p}, m_{s}\right) \hat{\mathcal{T}}^{-1}=(\mp i) i^{2 m_{s}} \hat{b}\left(-\mathbf{p},-m_{s}\right),
\end{align*}
$$

where the spin-independent phase factors $\pm i$ make for a consistent time-reversal of the Dirac spinor field.
^ Please see J. J. Sakurai Modern Quantum Mechanics, $\S 4.4$ for a discussion of time reversal in general and spin reversal in particular.
(b) Use lemma (6) and eqs. (7) to show that

$$
\begin{equation*}
\hat{\mathcal{T}} \hat{\Psi}(\mathbf{x}, t) \hat{\mathcal{T}}^{-1}= \pm \gamma^{1} \gamma^{3} \Psi(\mathbf{x},-t) \tag{8}
\end{equation*}
$$

(c) Next, consider the Dirac bilinears $\hat{\bar{\Psi}} \Gamma \hat{\Psi}$ and show that $\hat{\mathcal{T}} \hat{\bar{\Psi}} \Gamma \hat{\Psi} \hat{\mathcal{T}}^{-1}=\hat{\bar{\Psi}} \Gamma^{t} \hat{\Psi}$ where $\Gamma^{t}=\gamma^{3} \gamma^{1} \Gamma^{*} \gamma^{1} \gamma^{3}$.
(d) Calculate Γ^{t} for all 16 independent matrices Γ and find out which Dirac bilinears are \mathcal{T}-even and which are \mathcal{T}-odd.
(e) Verify the \mathcal{T}-invariance of the Dirac action.
4. Finally, consider the combined $\hat{\mathcal{C}} \hat{\mathcal{P}} \hat{\mathcal{T}}$ symmetry of the Dirac field and verify that for any bilinear operator $\hat{\mathcal{O}}(x)=\hat{\bar{\Psi}}(x) \Gamma \hat{\Psi}(x)$,

$$
\begin{equation*}
\hat{\mathcal{C}} \hat{\mathcal{P}} \hat{\mathcal{T}} \hat{\mathcal{O}}(x)[\hat{\mathcal{C}} \hat{\mathcal{P}} \hat{\mathcal{T}}]^{-1}=\hat{\mathcal{O}}^{\dagger}(-x) \times(-1)^{\# \text { Lorentz indices in } \hat{\mathcal{O}}} . \tag{9}
\end{equation*}
$$

Actually, eq. (9) holds for any physically measurable operator $\hat{\mathcal{O}}(x)$ in any legitimate quantum field theory - this is the famous CPT theorem - but the exercise is limited to the Dirac bilinear operators only.

