1. First, a little exercise about Weyl spinors. As discussed in class, a Dirac spinor field $\Psi(x)$ is physically equivalent to two left-handed Weyl spinor fields $\chi(x)$ and $\varphi(x)$. In Weyl basis,

$$\Psi(x) \equiv \begin{pmatrix} \psi_L(x) \\ \psi_R(x) \end{pmatrix} = \begin{pmatrix} \chi(x) \\ -\sigma^2 \varphi^*(x) \end{pmatrix}.$$
(1)

(a) Show that in terms of the Weyl spinor fields, the Dirac Lagrangian becomes

$$\mathcal{L} \equiv \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi = i\chi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\chi + i\varphi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\varphi + m\left(\varphi^{\top}\sigma^{2}\chi + \varphi^{\dagger}\sigma^{2}\chi^{*}\right)$$
(2)

(up to a total derivative). Note that $\chi(x)$, $\varphi(x)$, $\chi^*(x)$ and $\varphi^*(x)$ are *fermionic* fields, so in the classical limit they *anticommute* with each other rather than commute. Thus, $\varphi^{\top}\sigma^2\chi = +\chi^{\top}\sigma^2\varphi$ even though the σ^2 matrix is antisymmetric.

- (b) Verify that each term in the Lagrangian (2) is separately invariant (up to a total derivative) under the combined Parity + Charge Conjugation symmetry \widehat{CP} .
- 2. The rest of this homework concerns Dirac spinor fields and their discrete symmetries. We begin with the charge-conjugation properties of Dirac bilinears $\hat{\overline{\Psi}}\Gamma\hat{\Psi}$.
 - (a) Show that $\hat{C}\overline{\Psi}\Gamma\hat{\Psi}\hat{C} = \overline{\Psi}\Gamma^c\hat{\Psi}$ where $\Gamma^c = \gamma^0\gamma^2\Gamma^{\top}\gamma^0\gamma^2$. Hint: Mind the anticommutativity of the fermionic fields.
 - (b) Calculate Γ^c for all 16 independent matrices Γ and find out which Dirac bilinears are C-even and which are C-odd.
 - (c) Consider a bound state of a fermion and an antifermion, *e.g.* a positronium state or a neutral meson. As argued in class, the parity of such bound state is $P = -(-1)^L$. Show that the C-parity of this state is $C = (-1)^S (-1)^L$ and use this fact to explain why the decay mode and the lifetime of a 1S positronium state depend on its spin. Hint: $\hat{a}^{\dagger}\hat{b}^{\dagger} = -\hat{b}^{\dagger}\hat{a}^{\dagger}$.

3. The time-reversal symmetry involves an anti-linear, anti-unitary operator $\hat{\mathcal{T}}$ that invert directions of all particle momenta and spins,^{*}

$$\hat{\mathcal{T}}$$
 |particle type, $\mathbf{p}, s \rangle = (\text{phase})$ |same particle type, $-\mathbf{p}, -s \rangle$. (3)

The phase factor here here combines an arbitrary but fixed overall phase η with a phase factor inherent in spin reversal: $\widehat{SR} |m_s\rangle = i^{2m_s} |-m_s\rangle$ in the \hat{S}_z eigenbasis, or more generally,

$$\widehat{\mathcal{SR}}|\xi\rangle = i^{2S} e^{-\pi i \hat{S}_y} |\xi\rangle^*.$$
(4)

In particular, for spin $\frac{1}{2}$ particles, $\widehat{SR} |\xi\rangle = \sigma_2 |\xi\rangle^*$, in agreement with the rule $\xi_{-s} = \sigma_2 \xi_s^*$ we used in class. Note however that reversing the spin twice results in a rotation by 2π , $\widehat{SR}^2 = e^{-2\pi i \hat{S}_y} = (-1)^{2S}$, which is trivial for integral spins but changes the overall sign of the spin state for half-integral spins. Consequently, the time-reversal operator in the Fock space satisfies

$$\hat{\mathcal{T}}^2 = (-1)^F \equiv \text{ rotation by } 2\pi.$$
 (5)

In this exercise, we consider time-reversal of the Dirac spinor field. First, we need a lemma:

$$i^{2m_s}u^*(-\mathbf{p}, -m_s) = -i\gamma^1\gamma^3u(+\mathbf{p}, +m_s), \qquad i^{2m_s}v^*(-\mathbf{p}, -m_s) = -i\gamma^1\gamma^3v(+\mathbf{p}, +m_s).$$
(6)

(a) Prove this lemma.

In terms of electronic and positronic creation and annihilation operators, eq. (3) means

$$\hat{\mathcal{T}}\hat{a}^{\dagger}(\mathbf{p}, m_{s})\hat{\mathcal{T}}^{-1} = (\mp i) i^{2m_{s}} \hat{a}^{\dagger}(-\mathbf{p}, -m_{s}),$$

$$\hat{\mathcal{T}}\hat{b}^{\dagger}(\mathbf{p}, m_{s})\hat{\mathcal{T}}^{-1} = (\pm i) i^{2m_{s}} \hat{b}^{\dagger}(-\mathbf{p}, -m_{s}),$$

$$\hat{\mathcal{T}}\hat{a}(\mathbf{p}, m_{s})\hat{\mathcal{T}}^{-1} = (\pm i) i^{2m_{s}} \hat{a}(-\mathbf{p}, -m_{s}),$$

$$\hat{\mathcal{T}}\hat{b}(\mathbf{p}, m_{s})\hat{\mathcal{T}}^{-1} = (\mp i) i^{2m_{s}} \hat{b}(-\mathbf{p}, -m_{s}),$$
(7)

where the spin-independent phase factors $\pm i$ make for a consistent time-reversal of the Dirac spinor field.

[★] Please see J. J. Sakurai *Modern Quantum Mechanics*, §4.4 for a discussion of time reversal in general and spin reversal in particular.

(b) Use lemma (6) and eqs. (7) to show that

$$\hat{\mathcal{T}}\hat{\Psi}(\mathbf{x},t)\hat{\mathcal{T}}^{-1} = \pm \gamma^1 \gamma^3 \Psi(\mathbf{x},-t).$$
(8)

- (c) Next, consider the Dirac bilinears $\hat{\overline{\Psi}}\Gamma\hat{\Psi}$ and show that $\hat{\mathcal{T}}\hat{\overline{\Psi}}\Gamma\hat{\Psi}\hat{\mathcal{T}}^{-1} = \hat{\overline{\Psi}}\Gamma^t\hat{\Psi}$ where $\Gamma^t = \gamma^3\gamma^1\Gamma^*\gamma^1\gamma^3$.
- (d) Calculate Γ^t for all 16 independent matrices Γ and find out which Dirac bilinears are \mathcal{T} -even and which are \mathcal{T} -odd.
- (e) Verify the \mathcal{T} -invariance of the Dirac action.
- 4. Finally, consider the combined $\hat{C}\hat{\mathcal{P}}\hat{\mathcal{T}}$ symmetry of the Dirac field and verify that for any bilinear operator $\hat{\mathcal{O}}(x) = \hat{\overline{\Psi}}(x)\Gamma\hat{\Psi}(x)$,

$$\hat{\mathcal{C}}\hat{\mathcal{P}}\hat{\mathcal{T}}\,\hat{\mathcal{O}}(x)\,[\hat{\mathcal{C}}\hat{\mathcal{P}}\hat{\mathcal{T}}]^{-1} = \hat{\mathcal{O}}^{\dagger}(-x)\times(-1)^{\#\text{Lorentz indices in }\hat{\mathcal{O}}}.$$
(9)

Actually, eq. (9) holds for any physically measurable operator $\hat{\mathcal{O}}(x)$ in any legitimate quantum field theory — this is the famous CPT theorem — but the exercise is limited to the Dirac bilinear operators only.