PHY-396 K. Problem set #8. Due November 13, 2000.

1. First, a little exercise about Weyl spinors. As discussed in class, a Dirac spinor field ¥(x)

is physically equivalent to two left-handed Weyl spinor fields x(x) and ¢(x). In Weyl basis,
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a ow that i terms of the Weyl spinor fields, the Dirac Lagrangian becomes
(a) Sh hat i f the Weyl spi fields, the Di Lagrangian b
L = U(in'o, —m)¥ = ix'olox + iplo"dup + m(soTUQX + ¢T02x*> (2)

(up to a total derivative). Note that x(x), p(z), x*(z) and ¢*(x) are fermionic fields,
so in the classical limit they anticommute with each other rather than commute. Thus,

¢ 'o?x = +x '02¢ even though the ¢ matrix is antisymmetric.

(b) Verify that each term in the Lagrangian (2) is separately invariant (up to a total
derivative) under the combined Parity + Charge Conjugation symmetry CP.

2. The rest of this homework concerns Dirac spinor fields and their discrete symmetries. We

begin with the charge-conjugation properties of Dirac bilinears U,

(a) Show that CAﬁI‘\i/(? = @pc\i; where ['¢ = 7072FT7072.

Hint: Mind the anticommutativity of the fermionic fields.

(b) Calculate I'“ for all 16 independent matrices I' and find out which Dirac bilinears are

C—even and which are C—odd.

(c¢) Consider a bound state of a fermion and an antifermion, e.g. a positronium state or
a neutral meson. As argued in class, the parity of such bound state is P = —(—1)".
Show that the C-parity of this state is C' = (—=1)%(—1)* and use this fact to explain
why the decay mode and the lifetime of a 1S positronium state depend on its spin.

Hint: afbl = —bfal.



3. The time-reversal symmetry involves an anti-linear, anti-unitary operator 7 that invert

directions of all particle momenta and spins,”
T |particle type, p,s) = (phase) [same particle type, —p, —s) . (3)

The phase factor here here combines an arbitrary but fixed overall phase n with a phase

2Ms

factor inherent in spin reversal: SR |ms) = i“" |—ms) in the S, eigenbasis, or more

generally,

SRI¢) = PS¢ ™S |g)*. (4)

In particular, for spin % particles, SR €) = 02 ]€)”, in agreement with the rule £_s = o9&}
we used in class. Note however that reversing the spin twice results in a rotation by 2,
37\32 = e 2miSy = (—1)%%, which is trivial for integral spins but changes the overall sign of
the spin state for half-integral spins. Consequently, the time-reversal operator in the Fock

space satisfies

72 = (=1)¥ = rotation by 2. (5)
In this exercise, we consider time-reversal of the Dirac spinor field. First, we need a lemma:

P2yt (—p, —ms) = —iy Y u(+p, +ms), P2t (—p, —myg) = —iy 3 u(+p, +ms).
(6)
(a) Prove this lemma.

In terms of electronic and positronic creation and annihilation operators, eq. (3) means

where the spin-independent phase factors +i make for a consistent time-reversal of the

Dirac spinor field.

* Please see J. J. Sakurai Modern Quantum Mechanics, §4.4 for a discussion of time reversal in general and
spin reversal in particular.



(b) Use lemma (6) and eqs. (7) to show that

A A

TUx, )T = +41930(x, —t). (8)

(c¢) Next, consider the Dirac bilinears UV and show that TUTYT—! = T where
Ft — 7371F*7173‘
(d) Calculate I' for all 16 independent matrices I' and find out which Dirac bilinears are

T—even and which are 7—odd.

(e) Verify the T—invariance of the Dirac action.

. Finally, consider the combined CPT symmetry of the Dirac field and verify that for any
bilinear operator O(x) = U (z)I'¥(x),

AAA A

CPT @(l’) [6757—]71 _ OT(—I) > (_1)#L0rentz indices in (f) (9)

Actually, eq. (9) holds for any physically measurable operator O(z) in any legitimate
quantum field theory — this is the famous CPT theorem — but the exercise is limited to

the Dirac bilinear operators only.



