1. Consider the field-strength renormalization in the $\lambda \Phi^{4}$ theory. As discussed in class, the $\frac{1}{2} \delta_{Z}\left(\partial_{\mu} \Phi\right)^{2}$ counterterm does not show up at the one-loop level of the renormalized perturbation theory because the one-loop diagram yields a momentum-independent $\Sigma_{1 \text { loop }}$ amplitude. At the two-loop level however, there is a momentum-dependent 1PI diagram, namely

and hence the second-order $\delta_{Z}^{(2)} \neq 0$.
Your task is to evaluate this two-loop diagram and to calculate the counterterm $\delta_{Z}^{(2)}$.
This is a difficult calculation, so proceed with care. I suggest you first combine the three propagators using Feynman parameters and shift the two independent loop momenta to rewrite the loop integral as

$$
\begin{equation*}
\iiint d x d y d z \delta(x+y+z-1) \iint \frac{d^{4} \ell_{1}}{(2 \pi)^{4}} \frac{d^{4} \ell_{2}}{(2 \pi)^{4}} \frac{2}{\left[\alpha \ell_{1}^{2}+\beta \ell_{2}^{2}+\gamma p^{2}-m^{2}+i 0\right]^{3}} \tag{1}
\end{equation*}
$$

for some ( $x, y, z$ )-dependent coefficients $\alpha, \beta, \gamma$. Second, Wick-rotate $\ell_{1}$ and $\ell_{2}$ into the Euclidean space, dimensionally regularize to $d<4$ and evaluate the momentum integrals. Third, for the purpose of calculating the $\delta_{Z}$ counterterm, take the derivative $d \Sigma / d p^{2}$ before integrating over Feynman parameters or taking the $d \rightarrow 4$ limit. Fourth, do take the $d \rightarrow 4$ limit and write the counterterm as

$$
\begin{equation*}
\delta_{Z}^{(2)}=\iiint d x d y d z \delta(x+y+z-1) F(x, y, z) \times\left\{\frac{1}{\epsilon}+\text { const }+\log G(x, y, z)\right\} \tag{2}
\end{equation*}
$$

for some rational functions $F$ and $G$ of the Feynman parameters.

Finally, the simplest way of evaluating the integral (2) over the Feynman parameters is to use Mathematica. To help it along, replace the $(x, y, z)$ variables to $(w, \xi)$ according to $x=\xi w, y=(1-\xi) w, z=1-w$, then integrate over the $w$ variable first and over the $\xi$ second. Here is a couple of integrals I did this way you might find useful:

$$
\begin{align*}
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}}=\frac{1}{2} \\
& \iiint d x d y d z \delta(x+y+z-1) \times \frac{x y z}{(x y+x z+y z)^{3}} \log \frac{(x y+x z+y z)^{3}}{(x y+x z+y z-x y z)^{2}}=-\frac{3}{4} . \tag{3}
\end{align*}
$$

2. Now consider the renormalization in the Yukawa theory. Specifically, solve problem 10.2 of the Peskin \& Schroeder textbook.
