
PHY–396 K/L. Problem set #22. Due April 18, 2001.

1. Consider a generic simple non-abelian Lie group G and its generators T a. The (quadratic)

Casimir operator C2 =
∑

a T
aT a commutes with all the generators and hence for any

irreducible representation (r) of the group, C2 restricted to (r) is simply a unit matrix

times a number C(r). In other words, if T a(r) is a matrix of the generator T a in the

representation (r), then
∑

a T
a
(r)T

a
(r) = C(r) × 1. For example, for the isospin group

SU(2), the irreps are characterized by the isospin I and C(I) = I(I + 1).

(a) By symmetry, for any complete representation (r) of the group,

tr(r)(T
aT b) ≡ tr

(
T a(r)T

b
(r)

)
= R(r)δab (1)

for some coefficient R(r). Show that for any irreducible representation,

R(r)

C(r)
=

dim(r)

dim(G)
. (2)

In particular, for the SU(2) group, this formula gives R(I) = 1
3I(I + 1)(2I + 1).

(b) Suppose the first three generators of G generate an SU(2) subgroup. Show that

if a representation (r) of G decomposes into several SU(2) multiplets of isospins

I1, I2, . . . , In, then

R(r) =
n∑
i=1

1
3Ii(Ii + 1)(2Ii + 1). (3)

(c) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

on the first two components of a complex N -vector. The fundamental representation

(N) of the SU(N) decomposes into one doublet and (N − 2) singlets of the SU(2)

subgroup, hence

R(N) = 1
2 and C(N) =

N2 − 1

2N
. (4)

The adjoint representation of the SU(N) group consists of traceless hermitian N×N
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matrices Φ k
j which transform according to

Φ′ = UΦU † i.e., Φ′ kj = U i
j Φ `

i U
∗k
` , (5)

thus (adj) + (1) = (N)× (N) (where the singlet (1) corresponds to the missing trace

part of Φ k
j ).

Show that the adjoint representation of the SU(N) decomposes into one SU(2)

triplet, 2(N − 2) doublets and (N − 2)2 singlets and hence

R(adj) = C(adj) ≡ C(G) = N. (6)

(d) The symmetric and the anti-symmetric 2–index tensors from irreducible represen-

tations of the SU(N) group. Find out the decomposition of these irreps under an

SU(2) ⊂ SU(N) and calculate their respective R factors.

2. For a field Φa(x) in the adjoint representation of an SU(N) gauge symmetry, the covariant

derivative

DµΦa(x) = ∂µΦa(x) − iAcµ(x)[T cadj]
abΦb(x) (7)

can be written in matrix notations as

DµΦ(x) = ∂µΦ(x) − i[Aµ(x),Φ(x)]. (8)

(a) Verify the covariance of this derivative.

(b) Show that [Dµ,Dν ]Φ = −i[Fµν ,Φ].

The non-abelian gauge field tension F aµν(x) itself transforms in the adjoint representation

of the gauge group, hence DλFµν = ∂λFµν − i[Aλ, Fµν ], etc., etc.
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(c) Prove the non-abelian Bianchi identity

DλFµν + DµFνλ + DνFλµ = 0. (9)

Now consider the classical Yang–Mills theory of the non-abelian gauge field Aµ(x) gov-

erned by the Lagrangian

LYM =
−1

2g2
tr
(
FµνF

µν
)
. (10)

(d) Show that δFµν(x) = DµδAν(x) − DνδAµ(x) and use this observation to write the

classical YM field equations of motion as DµFµν = 0.

Next, let us add the fermionic fields and have

L =
−1

2g2
tr
(
FµνF

µν
)

+ Ψ(i 6D −m)Ψ. (11)

(e) Show that in this case the classical YM field equations of motion become

DµFµν = −g2Jν (12)

where

Jaν = Ψγν
λa

2
Ψ. (13)

Together, eqs. (9) and (12) serve as the non-abelian analogue of the Maxwell equa-

tions.

(f) Show that eq. (12) requires the fermionic current Jν to be covariantly conserved,

DνJν = 0.

(g) Use Dirac equations for the fermionic fields to verify that the current (13) is indeed

covariantly conserved.

(h) Finally, consider the second variation of the Yang-Mills action expanded around some

non-trivial solution Aµ(x) of the YM equations and show that

δ2

[∫
d4xLYM

]
=

1

g2

∫
d4x

[
tr
(
δAµD2δAµ

)
+ tr

(
(DµδA

µ)2
)

+ 4i tr (FµνδA
µδAν)

]
.
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