PHY-396 K/L. Problem set #22. Due April 18, 2001.

1. Consider a generic simple non-abelian Lie group G and its generators T%. The (quadratic)
Casimir operator Cy = ), T%T* commutes with all the generators and hence for any
irreducible representation (r) of the group, Cs restricted to (r) is simply a unit matrix
times a number C(r). In other words, if 1§, is a matrix of the generator T in the
representation (), then > T, 8«)T8~) = C(r) x 1. For example, for the isospin group
SU(2), the irreps are characterized by the isospin I and C(I) = I(I + 1).

(a) By symmetry, for any complete representation (r) of the group,
by (T°T?) =t (T(C;)Tg,)) — R(r)0® (1)

for some coefficient R(r). Show that for any irreducible representation,

R(r)  dim(r)
C(r)  dim(G)" 2)

In particular, for the SU(2) group, this formula gives R(I) = $I(I + 1)(21 + 1).

(b) Suppose the first three generators of G generate an SU(2) subgroup. Show that
if a representation (r) of G decomposes into several SU(2) multiplets of isospins

I, I,..., 1I,, then

n

R(r) = §Li(Li+1)(2L; +1). (3)
=1

(¢) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting
on the first two components of a complex N-vector. The fundamental representation
(N) of the SU(N) decomposes into one doublet and (N — 2) singlets of the SU(2)
subgroup, hence

N? -1

R(N) = 3 and C(N) = I (4)

The adjoint representation of the SU(N') group consists of traceless hermitian N x N



matrices @f which transform according to
o = UoUt e, O = URUY, (5)

thus (adj) 4 (1) = (N) x (N) (where the singlet (1) corresponds to the missing trace
part of @f).

Show that the adjoint representation of the SU(N) decomposes into one SU(2)
triplet, 2(N — 2) doublets and (N — 2)? singlets and hence

R(adj) = C(adj) = C(G) = N. (6)

(d) The symmetric and the anti-symmetric 2-index tensors from irreducible represen-
tations of the SU(N) group. Find out the decomposition of these irreps under an
SU(2) € SU(N) and calculate their respective R factors.

. For a field ®“(z) in the adjoint representation of an SU(N) gauge symmetry, the covariant

derivative

D (x) = 9,8 (x) — iAS ()T (@) (7)

can be written in matrix notations as

D,®(z) = 8,8(z) — i[A,(x), d()]. 8)

(a) Verify the covariance of this derivative.
(b) Show that [D,,D,|® = —i[F},,, ®].

The non-abelian gauge field tension F}j, (z) itself transforms in the adjoint representation

of the gauge group, hence DyF},, = O\F, — i[Ay, Fu), etc., elc.



(c) Prove the non-abelian Bianchi identity

D)\Fw, + DﬂFy)\ + DZ,F)\M = 0. (9)

Now consider the classical Yang—Mills theory of the non-abelian gauge field A*(x) gov-
erned by the Lagrangian

—1 y
Lym = 27 tr (F, F*). (10)

(d) Show that 0F* (x) = DFSAY(x) — DV A*(z) and use this observation to write the

classical YM field equations of motion as DHF},, = 0.

Next, let us add the fermionic fields and have

L = 2_—;2 tr(Fu F*) + W(ip —m)V. (11)

(e) Show that in this case the classical YM field equations of motion become

D'F = —g*J, (12)
where
_ )\
J¢ = \p%?\p, (13)

Together, egs. (9) and (12) serve as the non-abelian analogue of the Maxwell equa-

tions.

(f) Show that eq. (12) requires the fermionic current J, to be covariantly conserved,
DvJ, =0.

(g) Use Dirac equations for the fermionic fields to verify that the current (13) is indeed

covariantly conserved.

(h) Finally, consider the second variation of the Yang-Mills action expanded around some

non-trivial solution A#(x) of the YM equations and show that

d2 { /d‘{»chM] = 9—12 /d4x [tr (0A#D?5A,) + tr (Du6AM)?) + ditr (Fl0AFSAY)|.



