1. Consider a generic simple non-abelian Lie group G and its generators T^{a}. The (quadratic) Casimir operator $C_{2}=\sum_{a} T^{a} T^{a}$ commutes with all the generators and hence for any irreducible representation (r) of the group, C_{2} restricted to (r) is simply a unit matrix times a number $C(r)$. In other words, if $T_{(r)}^{a}$ is a matrix of the generator T^{a} in the representation (r), then $\sum_{a} T_{(r)}^{a} T_{(r)}^{a}=C(r) \times 1$. For example, for the isospin group $S U(2)$, the irreps are characterized by the isospin I and $C(I)=I(I+1)$.
(a) By symmetry, for any complete representation (r) of the group,

$$
\begin{equation*}
\operatorname{tr}_{(r)}\left(T^{a} T^{b}\right) \equiv \operatorname{tr}\left(T_{(r)}^{a} T_{(r)}^{b}\right)=R(r) \delta^{a b} \tag{1}
\end{equation*}
$$

for some coefficient $R(r)$. Show that for any irreducible representation,

$$
\begin{equation*}
\frac{R(r)}{C(r)}=\frac{\operatorname{dim}(r)}{\operatorname{dim}(G)} \tag{2}
\end{equation*}
$$

In particular, for the $S U(2)$ group, this formula gives $R(I)=\frac{1}{3} I(I+1)(2 I+1)$.
(b) Suppose the first three generators of G generate an $S U(2)$ subgroup. Show that if a representation (r) of G decomposes into several $S U(2)$ multiplets of isospins $I_{1}, I_{2}, \ldots, I_{n}$, then

$$
\begin{equation*}
R(r)=\sum_{i=1}^{n} \frac{1}{3} I_{i}\left(I_{i}+1\right)\left(2 I_{i}+1\right) . \tag{3}
\end{equation*}
$$

(c) Now consider the $S U(N)$ group with an obvious $S U(2)$ subgroup of matrices acting on the first two components of a complex N-vector. The fundamental representation (N) of the $S U(N)$ decomposes into one doublet and $(N-2)$ singlets of the $S U(2)$ subgroup, hence

$$
\begin{equation*}
R(N)=\frac{1}{2} \quad \text { and } \quad C(N)=\frac{N^{2}-1}{2 N} \tag{4}
\end{equation*}
$$

The adjoint representation of the $S U(N)$ group consists of traceless hermitian $N \times N$
matrices Φ_{j}^{k} which transform according to

$$
\begin{equation*}
\Phi^{\prime}=U \Phi U^{\dagger} \quad \text { i.e., } \quad \Phi_{j}^{\prime k}=U_{j}^{i} \Phi_{i}^{\ell} U_{\ell}^{* k} \tag{5}
\end{equation*}
$$

thus $(\operatorname{adj})+(1)=(N) \times(\bar{N})$ (where the singlet (1) corresponds to the missing trace part of $\left.\Phi_{j}^{k}\right)$.

Show that the adjoint representation of the $S U(N)$ decomposes into one $S U(2)$ triplet, $2(N-2)$ doublets and $(N-2)^{2}$ singlets and hence

$$
\begin{equation*}
R(\operatorname{adj})=C(\operatorname{adj}) \equiv C(G)=N \tag{6}
\end{equation*}
$$

(d) The symmetric and the anti-symmetric 2-index tensors from irreducible representations of the $S U(N)$ group. Find out the decomposition of these irreps under an $S U(2) \subset S U(N)$ and calculate their respective R factors.
2. For a field $\Phi^{a}(x)$ in the adjoint representation of an $S U(N)$ gauge symmetry, the covariant derivative

$$
\begin{equation*}
D_{\mu} \Phi^{a}(x)=\partial_{\mu} \Phi^{a}(x)-i A_{\mu}^{c}(x)\left[T_{\mathrm{adj}}^{c}\right]^{a b} \Phi^{b}(x) \tag{7}
\end{equation*}
$$

can be written in matrix notations as

$$
\begin{equation*}
D_{\mu} \Phi(x)=\partial_{\mu} \Phi(x)-i\left[A_{\mu}(x), \Phi(x)\right] . \tag{8}
\end{equation*}
$$

(a) Verify the covariance of this derivative.
(b) Show that $\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right] \Phi=-i\left[F_{\mu \nu}, \Phi\right]$.

The non-abelian gauge field tension $F_{\mu \nu}^{a}(x)$ itself transforms in the adjoint representation of the gauge group, hence $D_{\lambda} F_{\mu \nu}=\partial_{\lambda} F_{\mu \nu}-i\left[A_{\lambda}, F_{\mu \nu}\right]$, etc., etc.
(c) Prove the non-abelian Bianchi identity

$$
\begin{equation*}
D_{\lambda} F_{\mu \nu}+D_{\mu} F_{\nu \lambda}+D_{\nu} F_{\lambda \mu}=0 \tag{9}
\end{equation*}
$$

Now consider the classical Yang-Mills theory of the non-abelian gauge field $A^{\mu}(x)$ governed by the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{YM}}=\frac{-1}{2 g^{2}} \operatorname{tr}\left(F_{\mu \nu} F^{\mu \nu}\right) \tag{10}
\end{equation*}
$$

(d) Show that $\delta F^{\mu \nu}(x)=D^{\mu} \delta A^{\nu}(x)-D^{\nu} \delta A^{\mu}(x)$ and use this observation to write the classical YM field equations of motion as $D^{\mu} F_{\mu \nu}=0$.

Next, let us add the fermionic fields and have

$$
\begin{equation*}
\mathcal{L}=\frac{-1}{2 g^{2}} \operatorname{tr}\left(F_{\mu \nu} F^{\mu \nu}\right)+\bar{\Psi}(i \not D-m) \Psi \tag{11}
\end{equation*}
$$

(e) Show that in this case the classical YM field equations of motion become

$$
\begin{equation*}
D^{\mu} F_{\mu \nu}=-g^{2} J_{\nu} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\nu}^{a}=\bar{\Psi} \gamma_{\nu} \frac{\lambda^{a}}{2} \Psi . \tag{13}
\end{equation*}
$$

Together, eqs. (9) and (12) serve as the non-abelian analogue of the Maxwell equations.
(f) Show that eq. (12) requires the fermionic current J_{ν} to be covariantly conserved, $D^{\nu} J_{\nu}=0$.
(g) Use Dirac equations for the fermionic fields to verify that the current (13) is indeed covariantly conserved.
(h) Finally, consider the second variation of the Yang-Mills action expanded around some non-trivial solution $A^{\mu}(x)$ of the YM equations and show that
$\delta_{2}\left[\int d^{4} x \mathcal{L}_{\mathrm{YM}}\right]=\frac{1}{g^{2}} \int d^{4} x\left[\operatorname{tr}\left(\delta A^{\mu} D^{2} \delta A_{\mu}\right)+\operatorname{tr}\left(\left(D_{\mu} \delta A^{\mu}\right)^{2}\right)+4 i \operatorname{tr}\left(F_{\mu \nu} \delta A^{\mu} \delta A^{\nu}\right)\right]$.

