1. Consider the quark-antiquark pair production in Quantum ChromoDynamics (QCD). Specifically, let us focus on the $u \bar{u} \rightarrow d \bar{d}$ process so there is only one tree-level diagram contributing to this process. Draw this diagram and calculate the amplitude, then sum/average the $|\mathcal{M}|^{2}$ over both spins and colors of the final/initial particles and calculate the total cross section. For simplicity, you may neglect the quark masses.

Note that the $u \bar{u} \rightarrow d \bar{d}$ pair production in QCD is very similar to the $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$pair production in QED, so the only new aspect of this problem is summing over the colors.
2. Now consider a scalar analogue of QCD or more generally a theory of Yang-Mills fields A_{μ}^{a} and complex scalars Φ_{i} in some representation (r) of the Gauge group G.
(a) Write down the Lagrangian and the Feynman rules of this theory.

Next, consider the annihilation process $\Phi+\Phi^{*} \rightarrow 2$ gauge bosons. At the tree level, there are four Feynman diagrams contributing to this process.
(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge boson vanish, provided all other gauge bosons are transversely polarized. In other words,

$$
\begin{gathered}
\mathcal{M} \equiv e_{1}^{\mu_{1}} e_{2}^{\mu_{2}} \cdots e_{n}^{\mu_{n}} \mathcal{M}_{\mu_{1} \mu_{2} \cdots \mu_{n}}(\text { momenta })=0 \\
\text { when } e_{1}^{\mu} \propto k_{1}^{\mu} \quad \text { but } e_{2}^{\nu} k_{2 \nu}=\cdots=e_{n}^{\nu} k_{n \nu}=0
\end{gathered}
$$

(c) Verify this identity for the scalar annihilation amplitude.
3. Finally, let us calculate the annihilation cross-section in Scalar QCD. Generally, the treelevel annihilation amplitude ($c f$. the previous problem) can be written in the form

$$
\begin{equation*}
\mathcal{M}=F\left\{T^{a}, T^{b}\right\}_{j}^{i}+i G\left[T^{a}, T^{b}\right]_{j}^{i} \tag{1}
\end{equation*}
$$

where j is the 'color' index of the scalar particle belonging to some representation (r) of the gauge group G, i is the color index of the scalar anti-particle belonging to the conjugate
representation (\bar{r}), and a and b are the color indices of the gauge bosons belonging to the adjoint representation.
(a) Show that the annihilation amplitude indeed has form (1) and write down the coefficients F and G as explicit functions of the particles momenta and polarizations.
(b) Next, let us sum the $|\mathcal{M}|^{2}$ over the gauge boson's colors and average over the scalar colors. Show that

$$
\begin{equation*}
\frac{1}{\operatorname{dim}^{2}(r)} \sum_{i j} \sum_{a b}|\mathcal{M}|^{2}=\frac{C(r)}{\operatorname{dim}(r)} \times\left(4 C(r)|F|^{2}+C(\operatorname{adj})\left(|G|^{2}-|F|^{2}\right)\right) \tag{2}
\end{equation*}
$$

In particular, for scalars in the fundamental representation of the $S U(N)$ gauge group,

$$
\begin{equation*}
\frac{1}{N^{2}} \sum_{i j} \sum_{a b}|\mathcal{M}|^{2}=\frac{N^{2}-1}{2 N^{2}}\left(\frac{N^{2}-2}{N}|F|^{2}+N|G|^{2}\right) \tag{3}
\end{equation*}
$$

(c) Evaluate F and G in the center of mass frame. Take the gauge boson's polarization vectors $e_{1,2}^{\mu}$ to be purely spatial and transverse (to the vector particle's momenta).
(d) Finally, calculate the (polarized, partial) cross-section for the annihilation process.

