1. First, a reading assignment: $\S 16.5$ of the Peskin \& Schroeder textbook. Make sure you understand the calculation of the (infinite parts of) the counterterms δ_{1}, δ_{2} and δ_{3} in detail.
2. Next, another reading assignment: $\S 20.1$ of the Peskin \& Schroeder textbook, which introduces the Higgs mechanism. The abelian version of the Higgs mechanism - the photon becomes massive when a charged scalar field acquires a non-zero vacuum expectation value - was discussed in class in the Fall semester, but please refresh your memory. I will discuss the non-abelian version during the last week of this semester, but I'ld like you to read about it first so it wouldn't come as a shock. Pay attention to the Georgi-Glashow model and make sure you understand why - and how - two of the three gauge bosons become massive while the third remains massless.
3. Finally, an exercise: Consider the pseudoscalar Yukawa theory. In a previous homework (set\#18, problem 2), you (should) have calculated to one-loop order the infinite parts of all the counterterms in this theory. Let us now use the results of all this work to calculate the one-loop β-functions

$$
\begin{equation*}
\frac{\partial g(M)}{\partial \log M}=\beta_{g}(g, \lambda) \quad \text { and } \quad \frac{\partial \lambda(M)}{\partial \log M}=\beta_{\lambda}(g, \lambda) \tag{1}
\end{equation*}
$$

(a) Argue that for off-shell renormalization conditions at some renormalization scale $M \gg m_{f}, m_{s}$, each of the logarithmically divergent counterterms $\delta_{Z}^{\phi}, \delta_{Z}^{\psi}, \delta_{g}$ and δ_{λ} is

$$
\begin{equation*}
\delta=C \log \frac{\left(\Lambda_{\text {cutoff }}^{\mathrm{UV}}\right)^{2}}{M^{2}}+\text { finite } \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta=C\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{M^{2}}\right)+\text { finite } \tag{3}
\end{equation*}
$$

in dimensional regularization, where the coefficient C of the UV divergence has the same value for all renormalization schemes (on-shell or off-shell) and the 'finite' terms are not only finite but also M independent.
(b) Show that the bare and the renormalized couplings of the Yukawa theory are related to each other as

$$
\begin{equation*}
\lambda+\delta_{\lambda}=\lambda_{0} Z_{\phi}^{2}, \quad g+\delta_{g}=g_{0} Z_{\psi} \sqrt{Z_{\phi}} \tag{4}
\end{equation*}
$$

and use these relations to derive

$$
\begin{align*}
\beta_{\lambda} & =2\left(\lambda+\delta_{\lambda}\right) \frac{\partial \log Z_{\phi}}{\partial \log M}-\frac{\partial \delta_{\lambda}}{\partial \log M} \\
\beta_{g} & =\left(g+\delta_{g}\right)\left(\frac{\partial \log Z_{\psi}}{\partial \log M}+\frac{1}{2} \frac{\partial \log Z_{\phi}}{\partial \log M}\right)-\frac{\partial \delta_{g}}{\partial \log M} \tag{5}
\end{align*}
$$

At the one-loop level, these formulæ simplify to

$$
\begin{align*}
\beta_{\lambda} & =2 \lambda \frac{\partial \delta_{Z}^{\phi}}{\partial \log M}-\frac{\partial \delta_{\lambda}}{\partial \log M} \\
\beta_{g} & =g\left(\frac{\partial \delta_{Z}^{\psi}}{\partial \log M}+\frac{1}{2} \frac{\partial \delta_{Z}^{\phi}}{\partial \log M}\right)-\frac{\partial \delta_{g}}{\partial \log M} . \tag{6}
\end{align*}
$$

(c) Use the results of homework set \#18 to evaluate the right hand sides of eqs. (6) and write down the β-functions (1) as functions of the renormalized couplings g and λ.

