
Note on QED Vertex Correction

As discussed in class, the one-loop correction to the tree-level QED vertex ū(p′)γµu(p)

is given by the following monster of an integral:

ū(p′) δ1Γ
µ(p, p′)u(p) = −2ie2

1∫∫∫
0

dx dy dz δ(x+ y + z − 1)

∫
d4`

(2π)4
ū(p′)N µ u(p)[
`2 −∆ + i0

]3 (1)

where

` = k + xp + yp′, (2)

∆ = (xp+ yp′)2 = (1− z)2m2 − xyq2, (3)

N µ = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν . (4)

In this note I simplify the numerator (4) in the context of the integral (1).

The first step is obvious: Let us get rid of the γν and γν factors using γν 6 aγν = −2 6 a,

γν 6a 6bγν = 4(ab) and γν 6a 6b 6cγν = −2 6c 6b 6a, thus

N µ = −2m2γµ + 4m(2k + p+ p′)µ − 2(6k+ 6p)γµ(6k+ 6p′). (5)

Next, we should re-express the right hand side here in terms of the Feynman’s loop momen-

tum ` rather than k using eq. (2); expanding the result in powers of `, we get quadratic,

linear and `–independent terms. However, the
∫
d4` integral in eq. (1) and the denominator

are both even with respect to ` → −`, so the numerator terms which are linear in ` would

not contribute to the integral because of their oddness. Disregarding these terms then gives

us

N µ ∼= −2m2γµ + 4m(p+ p′ − 2xp− 2yp′)µ

− 2 6`γµ6` − 2(6p− x 6p− y 6p′) γµ (6p′ − x 6p− y 6p′)

= −2m2γµ + 4mz (p+ p′)µ + 4m(x− y)qµ − 2 6`γµ6`

− 2 [z 6p′ + (x− 1) 6q] γµ [z 6p+ (1− y) 6q]

(6)

where the second equality makes judicious use of p′ − p = q and x+ y + z = 1.
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At this point, we can use the fact that the vertex correction Γµ — and hence the nu-

merator N µ is always sandwiched between ū(p′) and u(p). Consequently, on the last line of

eq. (6) we may replace the 6p′ in the first factor with m since ū(p′) 6p′ = ū(p′)m; likewise, in

the last factor, we replace the 6p with m since 6pu(p) = mu(p). Thus, the last line of eq. (6)

becomes

−2 [z 6p′ + (x− 1) 6q ] γµ [z 6p+ (1− y) 6q ]

∼= −2 [mz − (1− x) 6q ] γµ [mz + (1− y) 6q ]

= −2z2m2 γµ + 2(1− x)(1− y) 6qγµ6q

+ 2z(1− x)m 6qγµ − 2z(1− y)mγµ6q
∼= −2 [z2m2 + (1− x)(1− y)q2] γµ

+ 2z(y − x)mqµ + 2z(x+ y − 2)m× iσµνqν

(7)

where the last equality (or rather equivalence in the context of eq. (1)) follows from

ū(p′) 6q u(p) = 0 ⇒ ū(p′)
[
6qγµ6q]u(p) = −q2 × ū′γµu

as well as

γµ 6q = qµ + iσµνqν , 6qγµ = qµ − iσµνqν .

Substituting eq. (7) into eq. (6) and making use of the Gordon identity, we arrive at

N µ ∼= − 2 6`γµ6` − 2
[
(1− 4z + z2)m2 + (1− x)(1− y)q2

]
× γµ

− 4z(1− z)m2 × iσµνqν
2m

+ 2(2− z)(x− y)mqµ.
(8)

Note that the last term here is odd under interchange x↔ y of the two Feynman parameters.

Since everything else in the integral (1) is symmetric with respect to this interchange, the

last term in eq. (8) integrates to zero and may be safely disregarded.

Finally, I would like to make use of the Lorentz symmetry of the integral (1) over the

loop momentum `. Because of this symmetry, the integral of a quadratic term `α`β should
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be proportional to the Lorentz invariant gαβ, hence in four spacetime dimensions,

`α`β ∼= 1
4`

2gαβ (9)

and therefore

6`γµ6` = `α`β × γαγµγβ ∼= 1
4`

2 × γαγµγα = −1
2`

2 γµ. (10)

Applying this equivalence to the first term in eq. (8) we arrive at

N µ ∼= [`2 − 2(1− 4z + z2)m2 − 2(1− x)(1− y)q2]× γµ − 4z(1− z)m2 × iσµνqν
2m

(11)

and at this point, I give up — it does not get any simpler than this.
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