
PHY–396 K. Problem set #2. Due September 16, 2003.

1. Consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (1)

(in c = h̄ = 1 units) where Fµν
def
= ∂µAν−∂νAµ and the current Jµ(x) is a fixed source for the

Aµ(x) field. Note that because of the mass term, the Lagrangian (1) is not gauge invariant.

(a) Derive the Euler–Lagrange field equations for the massive vector field Aµ(x).

(b) Show that this field equation does not require current conservation; however, if the current

happens to satisfy ∂µJ
µ = 0, then the field Aµ(x) satisfies

∂µA
µ = 0 and (∂2 +m2)Aµ = Jµ. (2)

Next, consider the Hamiltonian formalism for the massive vector field. Our first step in

deriving this formalism is to identify the canonically conjugate “momentum” fields.

(c) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not have

a canonical conjugate! Consequently,

H = −
∫
d3x Ȧ(x) · E(x) − L. (3)

(d) Show that in terms of the A, E and A0 fields and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(4)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.
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Specifically, we have

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂∇A0

∣∣∣∣
x

= 0. (5)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

,
∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

. (6)

(e) Write down the explicit form of all these equations.

(f) Finally, verify that the equations you have just written down are equivalent to the Euler–

Lagrange equations you derived in question (a).

2. Later in this class, we shall learn how to construct the quantum electromagnetic fields Ê(x, t)

and B̂(x, t) out of creation and annihilation operators in the photonic Fock space. For the

moment, let us simply take it for granted that they obey the time-independent Maxwell eqs.

∇ · Ê(x, t) = ∇ · B̂(x, t) = 0 (7)

(we assume free EM fields, i.e. no electric charges or currents). In the Heisenberg picture, the

quantum EM fields also obey the time-dependent Maxwell equations

∂B̂

∂t
= −∇× Ê ,

∂Ê

∂t
= +∇× B̂ ,

(8)

which follow from the free electromagnetic Hamiltonian

ĤEM =

∫
d3x

(
1
2Ê

2 + 1
2B̂

2
)

(9)

and the equal-time commutation relations[
Êi(x, t), Êj(x

′, t′ = t)
]

= ???,[
B̂i(x, t), B̂j(x

′, t′ = t)
]

= ???,[
Êi(x, t), B̂j(x

′, t′ = t)
]

= ???.

Such commutation relations for the electromagnetic fields are completely determined by the

consistency of eqs. (8) with the Hamiltonian (9), so write them down. Make sure your
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answer is consistent with the transversality of the fields, i.e., with the time-independent

Maxwell equations (7).

3. Finally, an exercise in using the bosonic commutation relations

[âα, âβ] = [â†α, â
†
β] = 0, [âα, â

†
β] = δα,β . (10)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].

I shall explain in class that the Hilbert space of the creation and annihilation operators â†α and

âβ is the Fock space of (any number of) identical bosonic particles. In this space, operators

of the type

Â =
∑
α,β

〈α| Â1 |β〉 â†αâβ (11)

describe net quantities which may be measured one particle at a time and then totaled up for

all particles which happen to be present: On the subspace of N -particle states,

Â
∣∣∣
N

=
N∑
i=1

Â1(i
the

particle) . (12)

where Â1 is a one-particle operator (such as momentum or kinetic energy or angular mo-

mentum) and 〈α| Â1 |β〉 in eq. (11) are its matrix elements in the one-particle Hilbert space.

Later in class I shall explain the physical meaning of all kinds of Fock-space operators, but

for the moment all you need is the rule (11) which constructs a Fock-space operator Â for any

one-particle operator Â1.

(b) Consider three one-particle operators Â1, B̂1 and Ĉ1 and the corresponding Fock-space

operators

Â =
∑
α,β

〈α| Â1 |β〉 â†αâβ , B̂ =
∑
α,β

〈α| B̂1 |β〉 â†αâβ , Ĉ =
∑
α,β

〈α| Ĉ1 |β〉 â†αâβ .

(13)

Show that if Ĉ1 = [Â1, B̂1] then Ĉ = [Â, B̂].

3


