1. The first exercise is about first-quantized v. second-quantized forms of one-body and two-body operators acting on identical bosons. In class, we wrote the wave function of an N-particle state $\left|\alpha_{1}, \ldots, \alpha_{N}\right\rangle=\left|\left\{n_{\beta}\right\}\right\rangle$ as

$$
\begin{equation*}
\phi_{\alpha_{1}, \ldots, \alpha_{N}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\sqrt{\frac{\prod_{\beta} n_{\beta}!}{N!}} \sum_{\substack{\text { distinct permutations } \\\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{N}\right) \text { of }\left(\alpha_{1}, \ldots, \alpha_{N}\right)}} \phi_{\tilde{\alpha}_{1}}\left(\mathbf{x}_{1}\right) \cdots \phi_{\tilde{\alpha}_{N}}\left(\mathbf{x}_{N}\right), \tag{1}
\end{equation*}
$$

and we defined the annihilation operators \hat{a}_{α} according to

$$
\begin{equation*}
\hat{a}_{\alpha}\left|\left\{n_{\beta}\right\}\right\rangle=\sqrt{n_{\alpha}}\left|\left\{n_{\beta}^{\prime}=n_{\beta}-\delta_{\alpha \beta}\right\}\right\rangle . \tag{2}
\end{equation*}
$$

(a) Consider an N-particle state $|N, \Psi\rangle$ with a completely generic totally-symmetric wave function $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$. Show that the $(N-1)$-particle state $\left|(N-1), \Psi^{\prime}\right\rangle=\hat{a}_{\gamma}|N, \Psi\rangle$ has wave function

$$
\begin{equation*}
\Psi^{\prime}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)=\sqrt{N} \int d^{3} \mathbf{x}_{N} \phi_{\gamma}^{*}\left(\mathbf{x}_{N}\right) \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}, \mathbf{x}_{N}\right) \tag{3}
\end{equation*}
$$

Hint: First verify this formula for Ψ of the form (1), and then generalize to arbitrary (but totally-symmetric) Ψ by linearity.

Now consider a one-body operator \hat{R}_{1}. In the first-quantized formalism $\hat{R}_{\text {tot }}$ acts on N-particle states according to

$$
\begin{equation*}
\hat{R}_{\mathrm{tot}}^{(1)}=\sum_{i=1}^{N} \hat{R}_{1}(i \underline{\text { th }} \text { particle }) \tag{4}
\end{equation*}
$$

while in the second-quantized formalism it becomes

$$
\begin{equation*}
\hat{R}_{\mathrm{tot}}^{(2)}=\sum_{\alpha, \beta}\langle\alpha| \hat{R}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} . \tag{5}
\end{equation*}
$$

(b) Use eq. (3) to verify that for any two N-particle states $\left\langle N, \Psi_{1}\right|$ and $\left|N, \Psi_{2}\right\rangle$

$$
\begin{equation*}
\left\langle N, \Psi_{1}\right| \hat{R}_{\mathrm{tot}}^{(1)}\left|N, \Psi_{2}\right\rangle=\left\langle N, \Psi_{1}\right| \hat{R}_{\mathrm{tot}}^{(2)}\left|N, \Psi_{2}\right\rangle . \tag{6}
\end{equation*}
$$

Hint: Use $\hat{R}_{1}=\sum_{\alpha, \beta}|\alpha\rangle\langle\alpha| \hat{R}_{1}|\beta\rangle\langle\beta|$.

Next, consider a two-body operator \hat{S}_{2} which acts in the first-quantized formalism according to

$$
\begin{equation*}
\hat{S}_{\text {tot }}^{(1)}=\frac{1}{2} \sum_{i \neq j} \hat{S}_{2}(i \underline{\text { th }} \text { and } j \underline{\text { th }} \text { particles }) \tag{7}
\end{equation*}
$$

and in the second-quantized formalism according to

$$
\begin{equation*}
\hat{S}_{\mathrm{tot}}^{(2)}=\sum_{\alpha, \beta, \gamma, \delta}\langle\alpha| \otimes\langle\beta| \hat{S}_{2}|\gamma\rangle \otimes|\delta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta} \tag{8}
\end{equation*}
$$

(c) Again, show that for any two N-particle states $\left\langle N, \Psi_{1}\right|$ and $\left|N, \Psi_{2}\right\rangle$

$$
\begin{equation*}
\left\langle N, \Psi_{1}\right| \hat{S}_{\text {tot }}^{(1)}\left|N, \Psi_{2}\right\rangle=\left\langle N, \Psi_{1}\right| \hat{S}_{\text {tot }}^{(2)}\left|N, \Psi_{2}\right\rangle . \tag{9}
\end{equation*}
$$

(d) Finally, let \hat{A}_{1} be a one-body operator, let \hat{B}_{2} and \hat{C}_{2} be two-body operators, and let \hat{A}, \hat{B} and \hat{C} be the corresponding second-quantized operators defined similar to eqs. (5) and (8).
Show that if $\hat{C}_{2}=\left[\left(\hat{A}_{1}\left(1^{\text {st }}\right)+\hat{A}_{1}\left(2^{\text {nd }}\right)\right), \hat{B}_{2}\right]$ then $\hat{C}=[\hat{A}, \hat{B}]$
Hint: First, calculate the commutator $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}, \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}\right]$.
2. The second problem is about coherent states of harmonic oscillators and free quantum fields. Let us start with a harmonic oscillator $\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}$.
(a) For any complex number ξ we define a coherent state $|\xi\rangle \stackrel{\text { def }}{=} \exp \left(\xi \hat{a}^{\dagger}-\xi^{*} \hat{a}\right)|0\rangle$. Show that

$$
\begin{equation*}
|\xi\rangle=e^{-|\xi|^{2} / 2} e^{\xi \hat{a}^{\dagger}}|0\rangle \quad \text { and } \quad \hat{a}|\xi\rangle=\xi|\xi\rangle . \tag{10}
\end{equation*}
$$

(b) Calculate the uncertainties Δq and Δp for a coherent state $|\xi\rangle$ and verify their minimality: $\Delta q \Delta p=\frac{1}{2} \hbar$. Also, verify $\delta n=\sqrt{\bar{n}}$ where $\bar{n} \stackrel{\text { def }}{=}\langle\hat{n}\rangle=|\xi|^{2}$.

Hint: use $\hat{a}|\xi\rangle=\xi|\xi\rangle$ and $\langle\xi| \hat{a}^{\dagger}=\xi^{*}\langle\xi|$.
(c) Show that for $\xi(t)=\xi_{0} e^{-e \omega t}$ the coherent state $|\xi(t)\rangle$ satisfies the time-dependent Schrödinger equation $i \hbar \frac{d}{d t}|\xi(t)\rangle=\hat{H}|\xi(t)\rangle$.
(d) The coherent states are not quite orthogonal to each other. Calculate their overlap $\langle\eta \mid \xi\rangle$. Now consider coherent states of multi-oscillator systems and hence quantum fields. In particular, let us focus on the creation and annihilation fields $\hat{\Psi}^{\dagger}(\mathbf{x})$ and $\hat{\Psi}(\mathbf{x})$ for non-relativistic spinless bosons.
(e) Generalize (a) and construct coherent states $|\Phi\rangle$ which satisfy

$$
\begin{equation*}
\hat{\Psi}(\mathbf{x})|\Phi\rangle=\Phi(\mathbf{x})|\Phi\rangle \tag{11}
\end{equation*}
$$

for any given classical complex field $\Phi(\mathbf{x})$.
(f) Show that for any such coherent state, $\Delta N=\sqrt{\bar{N}}$ where

$$
\begin{equation*}
\bar{N} \stackrel{\text { def }}{=}\langle\Phi| \hat{N}|\Phi\rangle=\int d \mathbf{x}|\Phi(\mathbf{x})|^{2} \tag{12}
\end{equation*}
$$

(g) Let

$$
\hat{H}=\int d \mathbf{x}\left(\frac{\hbar^{2}}{2 M} \nabla \hat{\Psi}^{\dagger} \cdot \nabla \hat{\Psi}+V(\mathbf{x}) \hat{\Psi}^{\dagger} \hat{\Psi}\right)
$$

and show that for any classical field configuration $\Phi(\mathbf{x}, t)$ that satisfies the classical field equation

$$
i \hbar \frac{\partial}{\partial t} \Phi(\mathbf{x}, t)=\left(-\frac{\hbar^{2}}{2 M} \nabla^{2}+V(\mathbf{x})\right) \Phi(\mathbf{x}, t)
$$

the time-dependent coherent state $|\Phi\rangle$ satisfies the true Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\Phi\rangle=\hat{H}|\Phi\rangle \tag{13}
\end{equation*}
$$

(h) Finally, show that the quantum overlap $\left|\left\langle\Phi_{1} \mid \Phi_{2}\right\rangle\right|^{2}$ between two different coherent states is exponentially small for any macroscopic difference $\delta \Phi(\mathbf{x})=\Phi_{1}(\mathbf{x})-\Phi_{2}(\mathbf{x})$ between the two field configurations.

