
PHY–396 K. Problem set #3. Due September 23, 2003.

1. The first exercise is about first-quantized v. second-quantized forms of one-body and two-body

operators acting on identical bosons. In class, we wrote the wave function of an N–particle

state |α1, . . . , αN 〉 =
∣∣{nβ}〉 as

φα1,...,αN (x1, . . . ,xN ) =

√∏
β nβ!

N !

∑
distinct permutations

(α̃1,...,α̃N ) of (α1,...,αN )

φα̃1(x1) · · ·φα̃N (xN ), (1)

and we defined the annihilation operators âα according to

âα
∣∣{nβ}〉 =

√
nα
∣∣{n′β = nβ − δαβ}

〉
. (2)

(a) Consider an N–particle state |N,Ψ〉 with a completely generic totally-symmetric wave

function Ψ(x1, . . . ,xN ). Show that the (N − 1)–particle state |(N − 1),Ψ′〉 = âγ |N,Ψ〉
has wave function

Ψ′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
γ(xN ) Ψ(x1, . . . ,xN−1,xN ). (3)

Hint: First verify this formula for Ψ of the form (1), and then generalize to arbitrary (but

totally-symmetric) Ψ by linearity.

Now consider a one-body operator R̂1. In the first-quantized formalism R̂tot acts onN–particle

states according to

R̂
(1)
tot =

N∑
i=1

R̂1(i
th

particle) (4)

while in the second-quantized formalism it becomes

R̂
(2)
tot =

∑
α,β

〈α| R̂1 |β〉 â†αâβ . (5)

(b) Use eq. (3) to verify that for any two N–particle states 〈N,Ψ1| and |N,Ψ2〉

〈N,Ψ1| R̂(1)
tot |N,Ψ2〉 = 〈N,Ψ1| R̂(2)

tot |N,Ψ2〉 . (6)

Hint: Use R̂1 =
∑

α,β |α〉 〈α| R̂1 |β〉 〈β|.
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Next, consider a two-body operator Ŝ2 which acts in the first-quantized formalism according

to

Ŝ
(1)
tot = 1

2

∑
i6=j

Ŝ2(i
th

and j
th

particles) (7)

and in the second-quantized formalism according to

Ŝ
(2)
tot =

∑
α,β,γ,δ

〈α| ⊗ 〈β| Ŝ2 |γ〉 ⊗ |δ〉 â†αâ
†
β âγ âδ . (8)

(c) Again, show that for any two N–particle states 〈N,Ψ1| and |N,Ψ2〉

〈N,Ψ1| Ŝ(1)
tot |N,Ψ2〉 = 〈N,Ψ1| Ŝ(2)

tot |N,Ψ2〉 . (9)

(d) Finally, let Â1 be a one-body operator, let B̂2 and Ĉ2 be two-body operators, and let

Â, B̂ and Ĉ be the corresponding second-quantized operators defined similar to eqs. (5)

and (8).

Show that if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
then Ĉ = [Â, B̂]

Hint: First, calculate the commutator [â†αâ
†
β âγ âδ, â

†
µâν ].

2. The second problem is about coherent states of harmonic oscillators and free quantum fields.

Let us start with a harmonic oscillator Ĥ = h̄ωâ†â.

(a) For any complex number ξ we define a coherent state |ξ〉 def
= exp

(
ξâ† − ξ∗â

)
|0〉. Show

that

|ξ〉 = e−|ξ|
2/2 eξâ

†
|0〉 and â |ξ〉 = ξ |ξ〉 . (10)

(b) Calculate the uncertainties ∆q and ∆p for a coherent state |ξ〉 and verify their minimality:

∆q∆p = 1
2 h̄. Also, verify δn =

√
n̄ where n̄

def
= 〈n̂〉 = |ξ|2.

Hint: use â |ξ〉 = ξ |ξ〉 and 〈ξ| â† = ξ∗ 〈ξ|.

(c) Show that for ξ(t) = ξ0e
−eωt the coherent state |ξ(t)〉 satisfies the time-dependent

Schrödinger equation ih̄ d
dt |ξ(t)〉 = Ĥ |ξ(t)〉.
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(d) The coherent states are not quite orthogonal to each other. Calculate their overlap 〈η|ξ〉.

Now consider coherent states of multi-oscillator systems and hence quantum fields. In partic-

ular, let us focus on the creation and annihilation fields Ψ̂†(x) and Ψ̂(x) for non-relativistic

spinless bosons.

(e) Generalize (a) and construct coherent states |Φ〉 which satisfy

Ψ̂(x) |Φ〉 = Φ(x) |Φ〉 (11)

for any given classical complex field Φ(x).

(f) Show that for any such coherent state, ∆N =
√
N̄ where

N̄
def
= 〈Φ| N̂ |Φ〉 =

∫
dx |Φ(x)|2. (12)

(g) Let

Ĥ =

∫
dx

(
h̄2

2M
∇Ψ̂† · ∇Ψ̂ + V (x)Ψ̂†Ψ̂

)

and show that for any classical field configuration Φ(x, t) that satisfies the classical field

equation

ih̄
∂

∂t
Φ(x, t) =

(
− h̄2

2M
∇2 + V (x)

)
Φ(x, t),

the time-dependent coherent state |Φ〉 satisfies the true Schrödinger equation

ih̄
∂

∂t
|Φ〉 = Ĥ |Φ〉 . (13)

(h) Finally, show that the quantum overlap | 〈Φ1|Φ2〉 |2 between two different coherent states

is exponentially small for any macroscopic difference δΦ(x) = Φ1(x)−Φ2(x) between the

two field configurations.
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