PHY-396 K. Problem set #3. Due September 23, 2003.

. The first exercise is about first-quantized v. second-quantized forms of one-body and two-body

operators acting on identical bosons. In class, we wrote the wave function of an N—particle

state |ay,...,ay) = [{ng}) as

ng!
Par,.an (X1, .., XN) = \/va—,ﬂ Z Pa, (X1) - Pan (XN), (1)

distinct permutations
(6(1,...,&1\1) Of (al,...,OzN)

and we defined the annihilation operators a, according to
Qg ’{n5}> = /ng, ‘{nb =ng — 5a5}> ) (2)

(a) Consider an N-particle state [N, ¥) with a completely generic totally-symmetric wave
function W(xy,...,xy). Show that the (N — 1)-particle state |[(N — 1), V') = a., |N, ¥)

has wave function
\If/(Xl, Ce 7XN—1) = \/N dSXN QS:(XN) \D(Xl, Ce ,XN_l,XN). (3)

Hint: First verify this formula for ¥ of the form (1), and then generalize to arbitrary (but
totally-symmetric) ¥ by linearity.

Now consider a one-body operator Ry. In the first-quantized formalism Riot acts on N —particle

states according to
N
~ ~ th
R,Ecl)z = ZRl(i— particle) (4)
while in the second-quantized formalism it becomes

RE) = (al Ry |8) ahay. (5)
a?/B

(b) Use eq. (3) to verify that for any two N—particle states (N, U1| and | N, Ua)
N, RN, W) = (N, 0| RN, © 6
< ) 1| tot| ) 2) < ) 1| tot| ) 2)' ( )

Hint: Use Ry = 3", 5la) (o R1[8) (8].



Next, consider a two-body operator Sy which acts in the first-quantized formalism according

to

. . .th th
S’t(;g = %Z Sa(i— and j— particles) (7)
i#]

and in the second-quantized formalism according to

A 2 ~ . R R R
88 = 3 (al® (8152 1) @ 18) afata, as. @)
a?ﬂ?’y76

(¢) Again, show that for any two N—particle states (N, U1| and | N, Us)

(N0 | SE N, W) = (N, 0| SE N, W) (9)

(d) Finally, let A; be a one-body operator, let By and Cs be two-body operators, and let

A, B and C be the corresponding second-quantized operators defined similar to egs. (5)

and (8).
Show that if Cy = [(Al(ﬁ) + A1(2@)> ,Bz] then €' = [A, B]

Hint: First, calculate the commutator [d&&};%& 5 dey].

2. The second problem is about coherent states of harmonic oscillators and free quantum fields.
Let us start with a harmonic oscillator H = hwala.

(a) For any complex number & we define a coherent state |§) def exp(fdJr — £*a) [0). Show

that

€) = e F2e8T 0y and ale) = €le). (10)

(b) Calculate the uncertainties Ag and Ap for a coherent state |£) and verify their minimality:

AgAp = $h. Also, verify dn = /i where aof (ny = |€]2.

Hint: use a|¢) = & |¢) and (€] at = ¢ (¢].

(c) Show that for £(t) = e ! the coherent state |(t)) satisfies the time-dependent
Schrodinger equation ih4 |£(t)) = H |&(t)).



(d) The coherent states are not quite orthogonal to each other. Calculate their overlap (n|¢).

Now consider coherent states of multi-oscillator systems and hence quantum fields. In partic-
ular, let us focus on the creation and annihilation fields Wf(x) and ¥(x) for non-relativistic

spinless bosons.

(e) Generalize (a) and construct coherent states |®) which satisfy
U(x)[0) = (x)|P) (11)

for any given classical complex field ®(x).

(f) Show that for any such coherent state, AN = v'N where

N ¥ (@ N|0) :/dx|<1>(x)|2. (12)

(g) Let
. K2 N, s

and show that for any classical field configuration ®(x,¢) that satisfies the classical field

equation
) h?
zhaq)(x,t) = (—mv +V(X)> d(x,t),

the time-dependent coherent state |®) satisfies the true Schrodinger equation

0 .
ih=|2) = H|0). (13)

(h) Finally, show that the quantum overlap | (®1|®2) |? between two different coherent states
is exponentially small for any macroscopic difference §®(x) = ®;(x) — Po(x) between the

two field configurations.



