1. When an *exact* symmetry of a quantum field theory is spontaneously broken down, it gives rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry was only approximate to begin with, the would-be Goldstone bosons are no longer exactly massless but only relatively light. The best-known examples of such pseudo-Goldstone bosons are the pi-mesons π^{\pm} and π^{0} , which are indeed much lighter then other hadrons. The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate chiral isospin symmetry $SU(2)_L \times SU(2) \cong \text{Spin}(4)$ which would be exact if the two lightest quark flavors u and d were exactly massless; in reality, the current quark masses m_u and m_d do not exactly vanish but are small enough to be treated as a perturbation. Exact or approximate, the chiral isospin symmetry is spontaneously broken down to the ordinary isospin symmetry $SU(2) \cong \text{Spin}(3)$, and the 3 generators of the broken Spin(4)/Spin(3)give rise to 3 (pseudo) Goldstone bosons π^{\pm} and π^{0} .

QCD is a rather complicated theory, so it is often convenient to describe the physics of the spontaneously broken chiral symmetry in terms of a simpler effective theory such as the linear sigma model. This model has 4 real scalar fields; in terms of the unbroken isospin symmetry, we have an isosinglet $\sigma(x)$ and an isotriplet $\pi(x)$ comprising $\pi^1(x)$, $\pi^2(x)$ and $\pi^3(x)$ (or equivalently, $\pi^0(x) \equiv \pi^3(x)$ and $\pi^{\pm}(x) \equiv (\pi^1(x) \pm i\pi^2(x))/\sqrt{2}$). The Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 - \frac{\lambda}{8} \left(\sigma^2 + \pi^2 - f^2 \right)^2 + \beta \sigma$$
(1)

is invariant under the SO(4) rotations of the four fields, except for the last term which we take to be very small. (In QCD $\beta \sim \frac{m_u + m_d}{2f} \langle \overline{\Psi} \Psi \rangle$ which is indeed very small because the u and d quarks are very light.)

In class, we discussed this theory for $\beta = 0$ and showed that it has SO(4) spontaneously broken to SO(3) and hence 3 massless Goldstone bosons. In this exercise, we let $\beta > 0$ but $\beta \ll \lambda f^3$ to show how this leads to massive but light pions.

(a) Show that the scalar potential of the linear sigma model with $\beta > 0$ has a unique

minimum at

$$\langle \pi \rangle = 0 \text{ and } \langle \sigma \rangle = f + \frac{\beta}{\lambda f^2} + O(\beta^2).$$
 (2)

- (b) Expand the fields around this minimum and show that the pions are light while the σ particle is much heavier. Specifically, $M_{\pi}^2 \approx (\beta/f)$ while $M_{\sigma}^2 \approx \lambda f^2$.
- 2. Our second exercise is about the Bogolyubov transform. Let $\hat{a}_{\mathbf{p}}$ and $\hat{a}_{\mathbf{p}}^{\dagger}$ be annihilation and creation operators satisfying the bosonic commutation relations, and let

$$\hat{b}_{\mathbf{p}} = \cosh(t_{\mathbf{p}})\hat{a}_{\mathbf{p}} + \sinh(t_{\mathbf{p}})\hat{a}_{-\mathbf{p}}^{\dagger}, \quad \hat{b}_{\mathbf{p}}^{\dagger} = \cosh(t_{\mathbf{p}})\hat{a}_{\mathbf{p}}^{\dagger} + \sinh(t_{\mathbf{p}})\hat{a}_{-\mathbf{p}}$$
(3)

for some arbitrary real parameters $t_{\mathbf{p}} = t_{-\mathbf{p}}$.

- (a) Show that the $\hat{b}_{\mathbf{p}}$ and the $\hat{b}_{\mathbf{p}}^{\dagger}$ satisfy the same bosonic commutation relations as the $\hat{a}_{\mathbf{p}}$ and the $\hat{a}_{\mathbf{p}}^{\dagger}$.
- (b) Consider a Hamiltonian of the form

$$\hat{H} = \sum_{\mathbf{p}} A_{\mathbf{p}} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{1}{2} \sum_{\mathbf{p}} B_{\mathbf{p}} \left(\hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}} + \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger} \right)$$
(4)

where $A_{\mathbf{p}} = A_{-\mathbf{p}}$ and $B_{\mathbf{p}} = B_{-\mathbf{p}}$. Show that as long as $|B_{\mathbf{p}}| < A_{\mathbf{p}} \forall \mathbf{p}$, this Hamiltonian can be "diagonalized" by means of a Bogolyubov transform (3). That is, for a suitable choice of the $t_{\mathbf{p}}$ parameters,

$$\hat{H} = \sum_{\mathbf{p}} \omega_{\mathbf{p}} \hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}} + \text{ const} \quad \text{where } \omega_{\mathbf{p}} = \sqrt{A_{\mathbf{p}}^2 - B_{\mathbf{p}}^2}.$$
(5)

In particular, for the liquid helium,

$$A_{\mathbf{p}} = \frac{\mathbf{p}^2}{2M} + n_0 \lambda(\mathbf{p}) \quad \text{and} \quad B_{\mathbf{p}} = n_0 \lambda(\mathbf{p}) \implies \omega_{\mathbf{p}} = \sqrt{\frac{\mathbf{p}^2}{2M} \left(\frac{\mathbf{p}^2}{2M} + n_0 \lambda(\mathbf{p})\right)}.$$
(6)

3. The rest of this homework is about a charged relativistic scalar field $\Phi(x)$. A conserved charge implies a complex field with a U(1) symmetry $\Phi(x) \mapsto e^{i\theta} \Phi(x)$ which gives rise to

a conserved Noether current

$$J^{\mu} = i\Phi^*\partial^{\mu}\Phi - i(\partial^{\mu}\Phi^*)\Phi.$$
(7)

For simplicity, let the Φ field be free, thus

$$\mathcal{L} = \partial^{\mu} \Phi^* \partial_{\mu} \Phi - m^2 \Phi^* \Phi.$$
(8)

In the Hamiltonian formalism, we trade the time derivatives $\partial_0 \Phi(x)$ and $\partial_0 \Phi^*(x)$ for the canonically conjugate fields $\Pi^*(x)$ and $\Pi(x)$. (Note that for complex fields $\Pi(\mathbf{x})$ is canonically conjugate to the $\Phi^*(\mathbf{x})$ while $\Pi^*(\mathbf{x})$ is canonically conjugate to the $\Phi(\mathbf{x})$.) Canonical quantization of this system yields non-hermitian quantum fields $\hat{\Phi}(x) \neq \hat{\Phi}^{\dagger}(x)$ and $\hat{\Pi}(x) \neq \hat{\Pi}^{\dagger}(x)$ and the Hamiltonian operator

$$\hat{H} = \int d^3 \mathbf{x} \left(\hat{\Pi}^{\dagger} \hat{\Pi} + \nabla \hat{\Phi}^{\dagger} \cdot \nabla \hat{\Phi} + m^2 \hat{\Phi}^{\dagger} \hat{\Phi} \right).$$
(9)

(a) Derive the Hamiltonian (9) and write down the equal-time commutation relations between the quantum fields $\hat{\Phi}(\mathbf{x})$, $\hat{\Phi}^{\dagger}(\mathbf{x})$, $\hat{\Pi}(\mathbf{x})$ and $\hat{\Pi}^{\dagger}(\mathbf{x})$.

The plane-wave modes

$$\hat{\Phi}_{\mathbf{p}} = \int d^3 \mathbf{x} \, e^{-i\mathbf{p}\mathbf{x}} \, \hat{\Phi}(\mathbf{x}), \qquad \hat{\Pi}_{\mathbf{p}} = \int d^3 \mathbf{x} \, e^{-i\mathbf{p}\mathbf{x}} \, \hat{\Pi}(\mathbf{x}), \tag{10}$$

of non-hermitian fields are completely independent of each other, thus $\hat{\Phi}_{\mathbf{p}}^{\dagger} \neq \hat{\Phi}_{-\mathbf{p}}$ and $\hat{\Pi}_{\mathbf{p}}^{\dagger} \neq \hat{\Pi}_{-\mathbf{p}}$. Consequently, we have two independent species of creation and annihilation operators; in the relativistic normalization

$$\hat{a}_{\mathbf{p}} \stackrel{\text{def}}{=} E_{\mathbf{p}} \hat{\Phi}_{\mathbf{p}} + i \hat{\Pi}_{\mathbf{p}}, \qquad \hat{a}_{\mathbf{p}}^{\dagger} \stackrel{\text{def}}{=} E_{\mathbf{p}} \hat{\Phi}_{\mathbf{p}}^{\dagger} - i \hat{\Pi}_{\mathbf{p}}^{\dagger}, \qquad (11)$$

$$\hat{b}_{\mathbf{p}} \stackrel{\text{def}}{=} E_{\mathbf{p}} \hat{\Phi}_{-\mathbf{p}}^{\dagger} + i \hat{\Pi}_{-\mathbf{p}}^{\dagger}, \qquad \hat{b}_{\mathbf{p}}^{\dagger} \stackrel{\text{def}}{=} E_{\mathbf{p}} \hat{\Phi}_{-\mathbf{p}} - i \hat{\Pi}_{-\mathbf{p}},$$

where $E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$.

- (b) Verify the bosonic commutation relations (at equal times) between the annihilation operators $\hat{a}_{\mathbf{p}}$ and $\hat{b}_{\mathbf{p}}$ and the corresponding creation operators $\hat{a}_{\mathbf{p}}^{\dagger}$ and $\hat{b}_{\mathbf{p}}^{\dagger}$.
- (c) Show that the Hamiltonian of the free charged fields is

$$\hat{H} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 2E_{\mathbf{p}}} \left(E_{\mathbf{p}} \hat{a}^{\dagger}_{\mathbf{p}} \hat{a}_{\mathbf{p}} + E_{\mathbf{p}} \hat{b}^{\dagger}_{\mathbf{p}} \hat{b}_{\mathbf{p}} \right) + \text{ const.}$$
(12)

Next, consider the charge operator $\hat{Q} = \int d^3 \mathbf{x} \, \hat{J}_0(\mathbf{x})$.

(d) Show that for the system at hand

$$\hat{Q} = \int d^3 \mathbf{x} \left(\frac{i}{2} \{ \hat{\Pi}^{\dagger}, \hat{\Phi} \} - \frac{i}{2} \{ \hat{\Pi}, \hat{\Phi}^{\dagger} \} \right) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 \, 2E_{\mathbf{p}}} \left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} - \hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}} \right). \tag{13}$$

Actually, the classical formula (7) for the current $J_{\mu}(x)$ determines eq. (13) only up to ordering of the non-commuting operators $\hat{\Pi}(\mathbf{x})$ and $\hat{\Phi}^{\dagger}(\mathbf{x})$ (and likewise of the $\hat{\Pi}^{\dagger}(\mathbf{x})$ and $\hat{\Phi}(\mathbf{x})$). The anti-commutators in eq. (13) provide a solution to this ordering ambiguity, but any other ordering would be just as legitimate. The net effect of changing operator ordering in \hat{J}_0 amounts to changing the total charge \hat{Q} by an infinite constant (prove this!). The specific ordering in eq. (13) provides for the neutrality of the vacuum state.

Now consider the stress-energy tensor of the charged field. Classically, Noether theorem gives

$$T^{\mu\nu} = \partial^{\mu}\Phi^* \partial^{\nu}\Phi + \partial^{\mu}\Phi \partial^{\nu}\Phi^* - g^{\mu\nu}\mathcal{L}.$$
(14)

Quantization of this formula is straightforward (modulo ordering ambiguity); for example, $\hat{\mathcal{H}} \equiv \hat{T}^{00}$ is precisely the integrand on the right hand side of eq. (9).

(e) Show that the total mechanical momentum operator of the fields is

$$\hat{\mathbf{P}}_{\text{mech}} \stackrel{\text{def}}{=} \int d^3 \mathbf{x} \, \hat{T}^{0,\mathbf{i}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 \, 2E_{\mathbf{p}}} \, \mathbf{p} \left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} \, + \, \hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}} \right) \tag{15}$$

Physically, eqs. (15), (12) and (13) show that a complex field $\Phi(x)$ describes both a particle and its antiparticle; they have exactly the same rest mass m but exactly opposite charges ± 1 .

- 4. Finally, consider the time-dependence of the free charged fields $\hat{\Phi}(\mathbf{x},t)$ and $\hat{\Phi}^{\dagger}(\mathbf{x},t)$.
 - (a) Compare the Schrödinger and the Heisenberg pictures of the creation and annihilation operators (11) and show that for the free Hamiltonian (12),

$$\hat{a}_{\mathbf{p}}^{H}(t) = e^{-itE_{\mathbf{p}}}\hat{a}_{\mathbf{p}}^{S}, \quad \hat{b}_{\mathbf{p}}^{H}(t) = e^{-itE_{\mathbf{p}}}\hat{b}_{\mathbf{p}}^{S}, \quad \hat{a}_{\mathbf{p}}^{\dagger H}(t) = e^{+itE_{\mathbf{p}}}\hat{a}_{\mathbf{p}}^{\dagger S}, \quad \hat{b}_{\mathbf{p}}^{\dagger H}(t) = e^{+itE_{\mathbf{p}}}\hat{b}_{\mathbf{p}}^{\dagger S}.$$
(16)

(b) Now assemble the Heisenberg-picture quantum fields in terms of the operators (16) and show that in relativistic notations

$$\hat{\Phi}^{H}(x) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3} 2E_{\mathbf{p}}} \left(e^{-ipx} \, \hat{a}_{\mathbf{p}}^{S} + e^{+ipx} \, \hat{b}_{\mathbf{p}}^{\dagger S} \right)_{p^{0}=E_{\mathbf{p}}}, \\ \hat{\Phi}^{\dagger H}(x) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3} 2E_{\mathbf{p}}} \left(e^{-ipx} \, \hat{b}_{\mathbf{p}}^{S} + e^{+ipx} \, \hat{a}_{\mathbf{p}}^{\dagger S} \right)_{p^{0}=E_{\mathbf{p}}},$$
(17)

where $px \stackrel{\text{def}}{=} p^{\mu}x_{\mu} = E_{\mathbf{p}}t - \mathbf{px}.$

Eqs. (17) allow us to derive the commutation relations between the quantum fields at un-equal times.

- (c) Show that $[\hat{\Phi}^H(x), \hat{\Phi}^H(x')] = 0$ and $[\hat{\Phi}^{\dagger H}(x), \hat{\Phi}^{\dagger H}(x')] = 0$ even for un-equal times $x_0 \neq x'_0$.
- (d) Show that for un-equal times $x_0 \neq x'_0$,

$$\left[\hat{\Phi}^{H}(x), \hat{\Phi}^{\dagger H}(x')\right] = D(x - x') - D(x' - x)$$
(18)

where

$$D(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 2E_{\mathbf{p}}} e^{-ipx} |_{p^0 = E_{\mathbf{p}}}.$$
 (19)

In class, we shall see that D(x - x') is invariant under orthochronous Lorentz transformations. Consequently, for space-like (x - x'), D(x - x') = D(x' - x) and therefore $[\hat{\Phi}^{H}(x), \hat{\Phi}^{\dagger H}(x')] = 0.$ In general, for any consistent quantum field theory, for any measurable local operators $\hat{O}_1(x_1)$ and $\hat{O}_2(x_2)$ constructed from the quantum fields and their space or time derivatives at respective points x_1 and x_2 , the commutator $[\hat{O}_1(x_1), \hat{O}_2(x_2)]$ must vanish for any space-like interval $(x_1 - x_2)^2 < 0$.