PHY-396 K. Problem set #4. Due September 30, 2003.

. When an ezact symmetry of a quantum field theory is spontaneously broken down, it gives
rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry
was only approximate to begin with, the would-be Goldstone bosons are no longer exactly
massless but only relatively light. The best-known examples of such pseudo-Goldstone
bosons are the pi-mesons 7+ and 7¥, which are indeed much lighter then other hadrons.
The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate
chiral isospin symmetry SU(2)r, x SU(2) = Spin(4) which would be exact if the two lightest
quark flavors v and d were exactly massless; in reality, the current quark masses m, and
mg do not exactly vanish but are small enough to be treated as a perturbation. Exact or
approximate, the chiral isospin symmetry is spontaneously broken down to the ordinary
isospin symmetry SU(2) = Spin(3), and the 3 generators of the broken Spin(4)/Spin(3)

give rise to 3 (pseudo) Goldstone bosons 7+ and 7.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the
spontaneously broken chiral symmetry in terms of a simpler effective theory such as the
linear sigma model. This model has 4 real scalar fields; in terms of the unbroken isospin
symmetry, we have an isosinglet o(z) and an isotriplet 7(x) comprising 7!(z), 7%(x) and

m(z) (or equivalently, 7°(z) = 73(z) and 7% (z) = (7!(z) £ir*(z))/v2). The Lagrangian
L= 30w + J0m? ~ S +a2- ) + o m

is invariant under the SO(4) rotations of the four fields, except for the last term which we
take to be very small. (In QCD 5 ~ %fmd <W\IJ> which is indeed very small because the
uw and d quarks are very light.)

In class, we discussed this theory for § = 0 and showed that it has SO(4) spontaneously
broken to SO(3) and hence 3 massless Goldstone bosons. In this exercise, we let § > 0

but 8 < Af3 to show how this leads to massive but light pions.

(a) Show that the scalar potential of the linear sigma model with 5 > 0 has a unique



(b)

minimum at

B

(m =0 and (o) = [+ 35 + 0(8%). (2)

Expand the fields around this minimum and show that the pions are light while the o

particle is much heavier. Specifically, M2 =~ (8/f) while M2 ~ \f?.

T

2. Our second exercise is about the Bogolyubov transform. Let ap and ap be annihilation

and creation operators satisfying the bosonic commutation relations, and let

Z)p = cosh(tp)a, + sinh(tp)dT_p, l;;r) = cosh(tp)d;r) + sinh(tp)a_, (3)

for some arbitrary real parameters t, = t_p.

(a)

(b)

Show that the I;p and the IA);[, satisfy the same bosonic commutation relations as the ap

and the dI).

Consider a Hamiltonian of the form
0= Apabiy + 53 By (apa_p + ahal ) (4)
P

where Ap, = A_j, and Bp = B_p. Show that as long as | Bp| < Ap Vp, this Hamiltonian
can be “diagonalized” by means of a Bogolyubov transform (3). That is, for a suitable

choice of the ¢, parameters,
H = prlgi,l;p + const where wp = /A2 — B3, (5)
P

In particular, for the liquid helium,

p’ p? [ p?
Ap = BYYi + noA(p) and Bp = noA(p) = wp = (| (——i—no)\(p)).

3. The rest of this homework is about a charged relativistic scalar field ®(x). A conserved

charge implies a complex field with a U(1) symmetry ®(x) +— e®(z) which gives rise to



a conserved Noether current

JH = i®*orDd — i(0HD")D. (7)
For simplicity, let the ® field be free, thus

L = 9'®* 9,0 — m? o, (8)

In the Hamiltonian formalism, we trade the time derivatives dy®(x) and dy®*(z) for the
canonically conjugate fields I1*(x) and II(x). (Note that for complex fields I1(x) is canon-
ically conjugate to the ®*(x) while II*(x) is canonically conjugate to the ®(x).) Canon-
ical quantization of this system yields non-hermitian quantum fields ®(z) # ®f(z) and

I1(x) # IIf () and the Hamiltonian operator

i = [ax (T4 VetV 1 m? 61d). (9)

(a) Derive the Hamiltonian (9) and write down the equal-time commutation relations

between the quantum fields ®(x), ®f(x), II(x) and IIf(x).

The plane-wave modes
o, :/dgxe_ipri)(x), I, :/d?’xe_ipxﬂ(x), (10)
of non-hermitian fields are completely independent of each other, thus (ﬂ, #* (i)_p and

f[I, +# fI_p. Consequently, we have two independent species of creation and annihilation

operators; in the relativistic normalization

N def & R N def 2 s
ap = Ep®p + illp, af, = Epdf, — . (11)
Z)p def Epéfr_p + iﬂT_p, BL o Ep‘i)—p - iﬂ—v?

where Ep = /p? +m?.



(b) Verify the bosonic commutation relations (at equal times) between the annihilation

operators ap and I;p and the corresponding creation operators &I, and ISL

(c) Show that the Hamiltonian of the free charged fields is
A / ’p (E ila, + Ebib ) + const (12)
= [ ——— ala const.
(27m)3 2, p“p“p r’p’p

Next, consider the charge operator Q = f d3x jo(x).

(d) Show that for the system at hand

A A d3p i ~p A

[NS]EN

0 = [d*x (g{fﬂ,é} -

Actually, the classical formula (7) for the current J,(x) determines eq. (13) only up to
ordering of the non-commuting operators II(x) and ®f(x) (and likewise of the IIf(x) and
®(x)). The anti-commutators in eq. (13) provide a solution to this ordering ambiguity,
but any other ordering would be just as legitimate. The net effect of changing operator
ordering in .Jy amounts to changing the total charge @ by an infinite constant (prove this!).

The specific ordering in eq. (13) provides for the neutrality of the vacuum state.

Now consider the stress-energy tensor of the charged field. Classically, Noether theorem

gives

TH = 9RP* O'D + MDD — gL (14)
Quantization of this formula is straightforward (modulo ordering ambiguity); for example,
H = T is precisely the integrand on the right hand side of eq. (9).

(e) Show that the total mechanical momentum operator of the fields is
> def d3x TO4 d3p At A i,
Pmech = xT = m P <apap + ) p> (15)

Physically, egs. (15), (12) and (13) show that a complex field ®(x) describes both a par-
ticle and its antiparticle; they have exactly the same rest mass m but exactly opposite

charges +1.



4. Finally, consider the time-dependence of the free charged fields ®(x,¢) and ®f(x, ).

(a) Compare the Schrodinger and the Heisenberg pictures of the creation and annihilation

operators (11) and show that for the free Hamiltonian (12),

&g(t) _ e—itEpdS Z;H(t) _ e_itEplA)g ’ dTH(t) _ €+itEdeS : Z;TH(t) _ G—HtEpi)LS ‘

p p
(16)

(b) Now assemble the Heisenberg-picture quantum fields in terms of the operators (16)

and show that in relativistic notations

FH _ dgp —ipx »S +ipz 115
o (x) —< e ap + e by, :

27T)3 2Ep p’=Ep (17)
~ dgp N .
(I)TH — / < —ipT bS +ipx ATS)
(x) rp 2k, e p T e ay .

where px def pHry, = Ept — pX.

Egs. (17) allow us to derive the commutation relations between the quantum fields at

un-equal times.

(c) Show that [®H (z),®H (/)] = 0 and [®T (z), ®T# (2/)] = 0 even for un-equal times
Ty # x().

(d) Show that for un-equal times zg # (),
&H (), qﬂH(x')} = D(z—2') — D(a' — 1) (18)

where
d3p i
_ P iz
D(z) /(2ﬂ)3 2E, € ‘pOZEP . (19)

In class, we shall see that D(z — 2') is invariant under orthochronous Lorentz transfor-
mations. Consequently, for space-like (x — 2), D(z — 2') = D(2/ — x) and therefore
[ (x), @1 (2)] = 0.



In general, for any consistent quantum field theory, for any measurable local operators
O, (1) and OQ(IQ) constructed from the quantum fields and their space or time derivatives

at respective points 1 and x5, the commutator [O1 (1), Oa(z9)] must vanish for any space-

like interval (1 — z2)? < 0.



