1. When an exact symmetry of a quantum field theory is spontaneously broken down, it gives rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry was only approximate to begin with, the would-be Goldstone bosons are no longer exactly massless but only relatively light. The best-known examples of such pseudo-Goldstone bosons are the pi-mesons $\pi^{ \pm}$and π^{0}, which are indeed much lighter then other hadrons. The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate chiral isospin symmetry $S U(2)_{L} \times S U(2) \cong \operatorname{Spin}(4)$ which would be exact if the two lightest quark flavors u and d were exactly massless; in reality, the current quark masses m_{u} and m_{d} do not exactly vanish but are small enough to be treated as a perturbation. Exact or approximate, the chiral isospin symmetry is spontaneously broken down to the ordinary isospin symmetry $S U(2) \cong \operatorname{Spin}(3)$, and the 3 generators of the broken $\operatorname{Spin}(4) / \operatorname{Spin}(3)$ give rise to 3 (pseudo) Goldstone bosons $\pi^{ \pm}$and π^{0}.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the spontaneously broken chiral symmetry in terms of a simpler effective theory such as the linear sigma model. This model has 4 real scalar fields; in terms of the unbroken isospin symmetry, we have an isosinglet $\sigma(x)$ and an isotriplet $\underset{\sim}{\pi}(x)$ comprising $\pi^{1}(x), \pi^{2}(x)$ and $\pi^{3}(x)$ (or equivalently, $\pi^{0}(x) \equiv \pi^{3}(x)$ and $\left.\pi^{ \pm}(x) \equiv\left(\pi^{1}(x) \pm i \pi^{2}(x)\right) / \sqrt{2}\right)$. The Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-\frac{\lambda}{8}\left(\sigma^{2}+{\underset{\sim}{\pi}}^{2}-f^{2}\right)^{2}+\beta \sigma \tag{1}
\end{equation*}
$$

is invariant under the $S O(4)$ rotations of the four fields, except for the last term which we take to be very small. (In QCD $\beta \sim \frac{m_{u}+m_{d}}{2 f}\langle\bar{\Psi} \Psi\rangle$ which is indeed very small because the u and d quarks are very light.)

In class, we discussed this theory for $\beta=0$ and showed that it has $S O(4)$ spontaneously broken to $S O(3)$ and hence 3 massless Goldstone bosons. In this exercise, we let $\beta>0$ but $\beta \ll \lambda f^{3}$ to show how this leads to massive but light pions.
(a) Show that the scalar potential of the linear sigma model with $\beta>0$ has a unique
minimum at

$$
\begin{equation*}
\langle\pi\rangle=0 \quad \text { and } \quad\langle\sigma\rangle=f+\frac{\beta}{\lambda f^{2}}+O\left(\beta^{2}\right) . \tag{2}
\end{equation*}
$$

(b) Expand the fields around this minimum and show that the pions are light while the σ particle is much heavier. Specifically, $M_{\pi}^{2} \approx(\beta / f)$ while $M_{\sigma}^{2} \approx \lambda f^{2}$.
2. Our second exercise is about the Bogolyubov transform. Let $\hat{a}_{\mathbf{p}}$ and $\hat{a}_{\mathbf{p}}^{\dagger}$ be annihilation and creation operators satisfying the bosonic commutation relations, and let

$$
\begin{equation*}
\hat{b}_{\mathbf{p}}=\cosh \left(t_{\mathbf{p}}\right) \hat{a}_{\mathbf{p}}+\sinh \left(t_{\mathbf{p}}\right) \hat{a}_{-\mathbf{p}}^{\dagger}, \quad \hat{b}_{\mathbf{p}}^{\dagger}=\cosh \left(t_{\mathbf{p}}\right) \hat{a}_{\mathbf{p}}^{\dagger}+\sinh \left(t_{\mathbf{p}}\right) \hat{a}_{-\mathbf{p}} \tag{3}
\end{equation*}
$$

for some arbitrary real parameters $t_{\mathbf{p}}=t_{-\mathbf{p}}$.
(a) Show that the $\hat{b}_{\mathbf{p}}$ and the $\hat{b}_{\mathbf{p}}^{\dagger}$ satisfy the same bosonic commutation relations as the $\hat{a}_{\mathbf{p}}$ and the $\hat{a}_{\mathbf{p}}^{\dagger}$.
(b) Consider a Hamiltonian of the form

$$
\begin{equation*}
\hat{H}=\sum_{\mathbf{p}} A_{\mathbf{p}} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}+\frac{1}{2} \sum_{\mathbf{p}} B_{\mathbf{p}}\left(\hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}}+\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger}\right) \tag{4}
\end{equation*}
$$

where $A_{\mathbf{p}}=A_{-\mathbf{p}}$ and $B_{\mathbf{p}}=B_{-\mathbf{p}}$. Show that as long as $\left|B_{\mathbf{p}}\right|<A_{\mathbf{p}} \forall \mathbf{p}$, this Hamiltonian can be "diagonalized" by means of a Bogolyubov transform (3). That is, for a suitable choice of the $t_{\mathbf{p}}$ parameters,

$$
\begin{equation*}
\hat{H}=\sum_{\mathbf{p}} \omega_{\mathbf{p}} \hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}+\text { const } \quad \text { where } \omega_{\mathbf{p}}=\sqrt{A_{\mathbf{p}}^{2}-B_{\mathbf{p}}^{2}} \tag{5}
\end{equation*}
$$

In particular, for the liquid helium,

$$
\begin{equation*}
A_{\mathbf{p}}=\frac{\mathbf{p}^{2}}{2 M}+n_{0} \lambda(\mathbf{p}) \quad \text { and } \quad B_{\mathbf{p}}=n_{0} \lambda(\mathbf{p}) \quad \Longrightarrow \quad \omega_{\mathbf{p}}=\sqrt{\frac{\mathbf{p}^{2}}{2 M}\left(\frac{\mathbf{p}^{2}}{2 M}+n_{0} \lambda(\mathbf{p})\right)} \tag{6}
\end{equation*}
$$

3. The rest of this homework is about a charged relativistic scalar field $\Phi(x)$. A conserved charge implies a complex field with a $U(1)$ symmetry $\Phi(x) \mapsto e^{i \theta} \Phi(x)$ which gives rise to
a conserved Noether current

$$
\begin{equation*}
J^{\mu}=i \Phi^{*} \partial^{\mu} \Phi-i\left(\partial^{\mu} \Phi^{*}\right) \Phi \tag{7}
\end{equation*}
$$

For simplicity, let the Φ field be free, thus

$$
\begin{equation*}
\mathcal{L}=\partial^{\mu} \Phi^{*} \partial_{\mu} \Phi-m^{2} \Phi^{*} \Phi . \tag{8}
\end{equation*}
$$

In the Hamiltonian formalism, we trade the time derivatives $\partial_{0} \Phi(x)$ and $\partial_{0} \Phi^{*}(x)$ for the canonically conjugate fields $\Pi^{*}(x)$ and $\Pi(x)$. (Note that for complex fields $\Pi(\mathbf{x})$ is canonically conjugate to the $\Phi^{*}(\mathbf{x})$ while $\Pi^{*}(\mathbf{x})$ is canonically conjugate to the $\Phi(\mathbf{x})$.) Canonical quantization of this system yields non-hermitian quantum fields $\hat{\Phi}(x) \neq \hat{\Phi}^{\dagger}(x)$ and $\hat{\Pi}(x) \neq \hat{\Pi}^{\dagger}(x)$ and the Hamiltonian operator

$$
\begin{equation*}
\hat{H}=\int d^{3} \mathbf{x}\left(\hat{\Pi}^{\dagger} \hat{\Pi}+\nabla \hat{\Phi}^{\dagger} \cdot \nabla \hat{\Phi}+m^{2} \hat{\Phi}^{\dagger} \hat{\Phi}\right) \tag{9}
\end{equation*}
$$

(a) Derive the Hamiltonian (9) and write down the equal-time commutation relations between the quantum fields $\hat{\Phi}(\mathbf{x}), \hat{\Phi}^{\dagger}(\mathbf{x}), \hat{\Pi}(\mathbf{x})$ and $\hat{\Pi}^{\dagger}(\mathbf{x})$.

The plane-wave modes

$$
\begin{equation*}
\hat{\Phi}_{\mathbf{p}}=\int d^{3} \mathbf{x} e^{-i \mathbf{p} \mathbf{x}} \hat{\Phi}(\mathbf{x}), \quad \hat{\Pi}_{\mathbf{p}}=\int d^{3} \mathbf{x} e^{-i \mathbf{p x}} \hat{\Pi}(\mathbf{x}) \tag{10}
\end{equation*}
$$

of non-hermitian fields are completely independent of each other, thus $\hat{\Phi}_{\mathbf{p}}^{\dagger} \neq \hat{\Phi}_{-\mathbf{p}}$ and $\hat{\Pi}_{\mathbf{p}}^{\dagger} \neq \hat{\Pi}_{-\mathbf{p}}$. Consequently, we have two independent species of creation and annihilation operators; in the relativistic normalization

$$
\begin{array}{ll}
\hat{a}_{\mathbf{p}} \stackrel{\text { def }}{=} E_{\mathbf{p}} \hat{\Phi}_{\mathbf{p}}+i \hat{\Pi}_{\mathbf{p}}, & \hat{a}_{\mathbf{p}}^{\dagger} \stackrel{\text { def }}{=} E_{\mathbf{p}} \hat{\Phi}_{\mathbf{p}}^{\dagger}-i \hat{\Pi}_{\mathbf{p}}^{\dagger} \tag{11}\\
\hat{b}_{\mathbf{p}} \stackrel{\text { def }}{=} E_{\mathbf{p}} \hat{\Phi}_{-\mathbf{p}}^{\dagger}+i \hat{\Pi}_{-\mathbf{p}}^{\dagger}, & \hat{b}_{\mathbf{p}}^{\dagger} \stackrel{\text { def }}{=} E_{\mathbf{p}} \hat{\Phi}_{-\mathbf{p}}-i \hat{\Pi}_{-\mathbf{p}}
\end{array}
$$

where $E_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}}$.
(b) Verify the bosonic commutation relations (at equal times) between the annihilation operators $\hat{a}_{\mathbf{p}}$ and $\hat{b}_{\mathbf{p}}$ and the corresponding creation operators $\hat{a}_{\mathbf{p}}^{\dagger}$ and $\hat{b}_{\mathbf{p}}^{\dagger}$.
(c) Show that the Hamiltonian of the free charged fields is

$$
\begin{equation*}
\hat{H}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(E_{\mathbf{p}} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}+E_{\mathbf{p}} \hat{\mathrm{b}}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}\right)+\text { const. } \tag{12}
\end{equation*}
$$

Next, consider the charge operator $\hat{Q}=\int d^{3} \mathbf{x} \hat{J}_{0}(\mathbf{x})$.
(d) Show that for the system at hand

$$
\begin{equation*}
\hat{Q}=\int d^{3} \mathbf{x}\left(\frac{i}{2}\left\{\hat{\Pi}^{\dagger}, \hat{\Phi}\right\}-\frac{i}{2}\left\{\hat{\Pi}, \hat{\Phi}^{\dagger}\right\}\right)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}-\hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}\right) . \tag{13}
\end{equation*}
$$

Actually, the classical formula (7) for the current $J_{\mu}(x)$ determines eq. (13) only up to ordering of the non-commuting operators $\hat{\Pi}(\mathbf{x})$ and $\hat{\Phi}^{\dagger}(\mathbf{x})$ (and likewise of the $\hat{\Pi}^{\dagger}(\mathbf{x})$ and $\hat{\Phi}(\mathbf{x}))$. The anti-commutators in eq. (13) provide a solution to this ordering ambiguity, but any other ordering would be just as legitimate. The net effect of changing operator ordering in \hat{J}_{0} amounts to changing the total charge \hat{Q} by an infinite constant (prove this!). The specific ordering in eq. (13) provides for the neutrality of the vacuum state.

Now consider the stress-energy tensor of the charged field. Classically, Noether theorem gives

$$
\begin{equation*}
T^{\mu \nu}=\partial^{\mu} \Phi^{*} \partial^{\nu} \Phi+\partial^{\mu} \Phi \partial^{\nu} \Phi^{*}-g^{\mu \nu} \mathcal{L} . \tag{14}
\end{equation*}
$$

Quantization of this formula is straightforward (modulo ordering ambiguity); for example, $\hat{\mathcal{H}} \equiv \hat{T}^{00}$ is precisely the integrand on the right hand side of eq. (9).
(e) Show that the total mechanical momentum operator of the fields is

$$
\begin{equation*}
\hat{\mathbf{P}}_{\text {mech }} \stackrel{\text { def }}{=} \int d^{3} \mathbf{x} \hat{T}^{0, \mathbf{i}}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}} \mathbf{p}\left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}+\hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}\right) \tag{15}
\end{equation*}
$$

Physically, eqs. (15), (12) and (13) show that a complex field $\Phi(x)$ describes both a particle and its antiparticle; they have exactly the same rest mass m but exactly opposite charges ± 1.
4. Finally, consider the time-dependence of the free charged fields $\hat{\Phi}(\mathbf{x}, t)$ and $\hat{\Phi}^{\dagger}(\mathbf{x}, t)$.
(a) Compare the Schrödinger and the Heisenberg pictures of the creation and annihilation operators (11) and show that for the free Hamiltonian (12),

$$
\begin{equation*}
\hat{a}_{\mathbf{p}}^{H}(t)=e^{-i t E_{\mathbf{p}}} \hat{a}_{\mathbf{p}}^{S}, \quad \hat{b}_{\mathbf{p}}^{H}(t)=e^{-i t E_{\mathbf{p}}} \hat{b}_{\mathbf{p}}^{S}, \quad \hat{a}_{\mathbf{p}}^{\dagger H}(t)=e^{+i t E_{\mathbf{p}}} \hat{a}_{\mathbf{p}}^{\dagger S}, \quad \hat{b}_{\mathbf{p}}^{\dagger H}(t)=e^{+i t E_{\mathbf{p}}} \hat{b}_{\mathbf{p}}^{\dagger S} . \tag{16}
\end{equation*}
$$

(b) Now assemble the Heisenberg-picture quantum fields in terms of the operators (16) and show that in relativistic notations

$$
\begin{align*}
\hat{\Phi}^{H}(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(e^{-i p x} \hat{a}_{\mathbf{p}}^{S}+e^{+i p x} \hat{b}_{\mathbf{p}}^{\dagger S}\right)_{p^{0}=E_{\mathbf{p}}} \\
\hat{\Phi}^{\dagger H}(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(e^{-i p x} \hat{b}_{\mathbf{p}}^{S}+e^{+i p x} \hat{a}_{\mathbf{p}}^{\dagger S}\right)_{p^{0}=E_{\mathbf{p}}} \tag{17}
\end{align*}
$$

where $p x \stackrel{\text { def }}{=} p^{\mu} x_{\mu}=E_{\mathbf{p}} t-\mathbf{p x}$.
Eqs. (17) allow us to derive the commutation relations between the quantum fields at un-equal times.
(c) Show that $\left[\hat{\Phi}^{H}(x), \hat{\Phi}^{H}\left(x^{\prime}\right)\right]=0$ and $\left[\hat{\Phi}^{\dagger H}(x), \hat{\Phi}^{\dagger H}\left(x^{\prime}\right)\right]=0$ even for un-equal times $x_{0} \neq x_{0}^{\prime}$.
(d) Show that for un-equal times $x_{0} \neq x_{0}^{\prime}$,

$$
\begin{equation*}
\left[\hat{\Phi}^{H}(x), \hat{\Phi}^{\dagger H}\left(x^{\prime}\right)\right]=D\left(x-x^{\prime}\right)-D\left(x^{\prime}-x\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
D(x)=\left.\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}} e^{-i p x}\right|_{p^{0}=E_{\mathbf{p}}} . \tag{19}
\end{equation*}
$$

In class, we shall see that $D\left(x-x^{\prime}\right)$ is invariant under orthochronous Lorentz transformations. Consequently, for space-like $\left(x-x^{\prime}\right), D\left(x-x^{\prime}\right)=D\left(x^{\prime}-x\right)$ and therefore $\left[\hat{\Phi}^{H}(x), \hat{\Phi}^{\dagger H}\left(x^{\prime}\right)\right]=0$.

In general, for any consistent quantum field theory, for any measurable local operators $\hat{O}_{1}\left(x_{1}\right)$ and $\hat{O}_{2}\left(x_{2}\right)$ constructed from the quantum fields and their space or time derivatives at respective points x_{1} and x_{2}, the commutator $\left[\hat{O}_{1}\left(x_{1}\right), \hat{O}_{2}\left(x_{2}\right)\right]$ must vanish for any spacelike interval $\left(x_{1}-x_{2}\right)^{2}<0$.

