
PHY–396 K. Problem set #4. Due September 30, 2003.

1. When an exact symmetry of a quantum field theory is spontaneously broken down, it gives

rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry

was only approximate to begin with, the would-be Goldstone bosons are no longer exactly

massless but only relatively light. The best-known examples of such pseudo-Goldstone

bosons are the pi-mesons π± and π0, which are indeed much lighter then other hadrons.

The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate

chiral isospin symmetry SU(2)L×SU(2) ∼= Spin(4) which would be exact if the two lightest

quark flavors u and d were exactly massless; in reality, the current quark masses mu and

md do not exactly vanish but are small enough to be treated as a perturbation. Exact or

approximate, the chiral isospin symmetry is spontaneously broken down to the ordinary

isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of the broken Spin(4)/Spin(3)

give rise to 3 (pseudo) Goldstone bosons π± and π0.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the

spontaneously broken chiral symmetry in terms of a simpler effective theory such as the

linear sigma model. This model has 4 real scalar fields; in terms of the unbroken isospin

symmetry, we have an isosinglet σ(x) and an isotriplet π˜(x) comprising π1(x), π2(x) and

π3(x) (or equivalently, π0(x) ≡ π3(x) and π±(x) ≡
(
π1(x)± iπ2(x)

)
/
√

2). The Lagrangian

L = 1
2(∂µσ)2 + 1

2(∂µπ˜)2 − λ

8

(
σ2 + π˜2 − f2)2 + βσ (1)

is invariant under the SO(4) rotations of the four fields, except for the last term which we

take to be very small. (In QCD β ∼ mu+md

2f

〈
ΨΨ
〉

which is indeed very small because the

u and d quarks are very light.)

In class, we discussed this theory for β = 0 and showed that it has SO(4) spontaneously

broken to SO(3) and hence 3 massless Goldstone bosons. In this exercise, we let β > 0

but β � λf3 to show how this leads to massive but light pions.

(a) Show that the scalar potential of the linear sigma model with β > 0 has a unique
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minimum at

〈π˜〉 = 0 and 〈σ〉 = f +
β

λf2
+ O(β2). (2)

(b) Expand the fields around this minimum and show that the pions are light while the σ

particle is much heavier. Specifically, M2
π ≈ (β/f) while M2

σ ≈ λf2.

2. Our second exercise is about the Bogolyubov transform. Let âp and â†p be annihilation

and creation operators satisfying the bosonic commutation relations, and let

b̂p = cosh(tp)âp + sinh(tp)â†−p , b̂†p = cosh(tp)â†p + sinh(tp)â−p (3)

for some arbitrary real parameters tp = t−p.

(a) Show that the b̂p and the b̂†p satisfy the same bosonic commutation relations as the âp

and the â†p.

(b) Consider a Hamiltonian of the form

Ĥ =
∑
p

Apâ
†
pâp + 1

2

∑
p

Bp

(
âpâ−p + â†pâ

†
−p

)
(4)

where Ap = A−p and Bp = B−p. Show that as long as |Bp| < Ap ∀p, this Hamiltonian

can be “diagonalized” by means of a Bogolyubov transform (3). That is, for a suitable

choice of the tp parameters,

Ĥ =
∑
p

ωpb̂
†
pb̂p + const where ωp =

√
A2
p −B2

p . (5)

In particular, for the liquid helium,

Ap =
p2

2M
+ n0λ(p) and Bp = n0λ(p) =⇒ ωp =

√
p2

2M

(
p2

2M
+ n0λ(p)

)
.

(6)

3. The rest of this homework is about a charged relativistic scalar field Φ(x). A conserved

charge implies a complex field with a U(1) symmetry Φ(x) 7→ eiθΦ(x) which gives rise to
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a conserved Noether current

Jµ = iΦ∗∂µΦ − i(∂µΦ∗)Φ. (7)

For simplicity, let the Φ field be free, thus

L = ∂µΦ∗ ∂µΦ − m2 Φ∗Φ. (8)

In the Hamiltonian formalism, we trade the time derivatives ∂0Φ(x) and ∂0Φ
∗(x) for the

canonically conjugate fields Π∗(x) and Π(x). (Note that for complex fields Π(x) is canon-

ically conjugate to the Φ∗(x) while Π∗(x) is canonically conjugate to the Φ(x).) Canon-

ical quantization of this system yields non-hermitian quantum fields Φ̂(x) 6= Φ̂†(x) and

Π̂(x) 6= Π̂†(x) and the Hamiltonian operator

Ĥ =

∫
d3x

(
Π̂†Π̂ + ∇Φ̂† · ∇Φ̂ + m2 Φ̂†Φ̂

)
. (9)

(a) Derive the Hamiltonian (9) and write down the equal-time commutation relations

between the quantum fields Φ̂(x), Φ̂†(x), Π̂(x) and Π̂†(x).

The plane-wave modes

Φ̂p =

∫
d3x e−ipx Φ̂(x), Π̂p =

∫
d3x e−ipx Π̂(x), (10)

of non-hermitian fields are completely independent of each other, thus Φ̂†p 6= Φ̂−p and

Π̂†p 6= Π̂−p. Consequently, we have two independent species of creation and annihilation

operators; in the relativistic normalization

âp
def
= EpΦ̂p + iΠ̂p , â†p

def
= EpΦ̂†p − iΠ̂†p ,

b̂p
def
= EpΦ̂†−p + iΠ̂†−p , b̂†p

def
= EpΦ̂−p − iΠ̂−p ,

(11)

where Ep =
√
p2 +m2 .
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(b) Verify the bosonic commutation relations (at equal times) between the annihilation

operators âp and b̂p and the corresponding creation operators â†p and b̂†p.

(c) Show that the Hamiltonian of the free charged fields is

Ĥ =

∫
d3p

(2π)3 2Ep

(
Epâ

†
pâp + Epb̂

†
pb̂p

)
+ const. (12)

Next, consider the charge operator Q̂ =
∫
d3x Ĵ0(x).

(d) Show that for the system at hand

Q̂ =

∫
d3x

(
i
2

{
Π̂†, Φ̂

}
− i

2

{
Π̂, Φ̂†

})
=

∫
d3p

(2π)3 2Ep

(
â†pâp − b̂†pb̂p

)
. (13)

Actually, the classical formula (7) for the current Jµ(x) determines eq. (13) only up to

ordering of the non-commuting operators Π̂(x) and Φ̂†(x) (and likewise of the Π̂†(x) and

Φ̂(x)). The anti-commutators in eq. (13) provide a solution to this ordering ambiguity,

but any other ordering would be just as legitimate. The net effect of changing operator

ordering in Ĵ0 amounts to changing the total charge Q̂ by an infinite constant (prove this!).

The specific ordering in eq. (13) provides for the neutrality of the vacuum state.

Now consider the stress-energy tensor of the charged field. Classically, Noether theorem

gives

Tµν = ∂µΦ∗ ∂νΦ + ∂µΦ ∂νΦ∗ − gµνL. (14)

Quantization of this formula is straightforward (modulo ordering ambiguity); for example,

Ĥ ≡ T̂ 00 is precisely the integrand on the right hand side of eq. (9).

(e) Show that the total mechanical momentum operator of the fields is

P̂mech
def
=

∫
d3x T̂ 0,i =

∫
d3p

(2π)3 2Ep
p
(
â†pâp + b̂†pb̂p

)
(15)

Physically, eqs. (15), (12) and (13) show that a complex field Φ(x) describes both a par-

ticle and its antiparticle; they have exactly the same rest mass m but exactly opposite

charges ±1.
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4. Finally, consider the time-dependence of the free charged fields Φ̂(x, t) and Φ̂†(x, t).

(a) Compare the Schrödinger and the Heisenberg pictures of the creation and annihilation

operators (11) and show that for the free Hamiltonian (12),

âHp (t) = e−itEp âSp , b̂Hp (t) = e−itEp b̂Sp , â†Hp (t) = e+itEp â†Sp , b̂†Hp (t) = e+itEp b̂†Sp .

(16)

(b) Now assemble the Heisenberg-picture quantum fields in terms of the operators (16)

and show that in relativistic notations

Φ̂H(x) =

∫
d3p

(2π)3 2Ep

(
e−ipx âSp + e+ipx b̂†Sp

)
p0=Ep

,

Φ̂†H(x) =

∫
d3p

(2π)3 2Ep

(
e−ipx b̂Sp + e+ipx â†Sp

)
p0=Ep

,

(17)

where px
def
= pµxµ = Ept− px.

Eqs. (17) allow us to derive the commutation relations between the quantum fields at

un-equal times.

(c) Show that [Φ̂H(x), Φ̂H(x′)] = 0 and [Φ̂†H(x), Φ̂†H(x′)] = 0 even for un-equal times

x0 6= x′0.

(d) Show that for un-equal times x0 6= x′0,

[
Φ̂H(x), Φ̂†H(x′)

]
= D(x− x′) − D(x′ − x) (18)

where

D(x) =

∫
d3p

(2π)3 2Ep
e−ipx

∣∣
p0=Ep

. (19)

In class, we shall see that D(x − x′) is invariant under orthochronous Lorentz transfor-

mations. Consequently, for space-like (x − x′), D(x − x′) = D(x′ − x) and therefore

[Φ̂H(x), Φ̂†H(x′)] = 0.
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In general, for any consistent quantum field theory, for any measurable local operators

Ô1(x1) and Ô2(x2) constructed from the quantum fields and their space or time derivatives

at respective points x1 and x2, the commutator [Ô1(x1), Ô2(x2)] must vanish for any space-

like interval (x1 − x2)2 < 0.
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