1. In homework\#2 we developed Hamiltonian formalism for a massive vector field $A^{\mu}(x)$. Upon quantization, the 3-vector field $\mathbf{A}(x)$ and its canonical conjugate $-\mathbf{E}(x)$ become quantum fields subject to equal-time commutation relations

$$
\begin{equation*}
\left[\hat{A}^{i}(\mathbf{x}), \hat{A}^{j}(\mathbf{y})\right]=0, \quad\left[\hat{E}^{i}(\mathbf{x}), \hat{E}^{j}(\mathbf{y})\right]=0, \quad\left[\hat{A}^{i}(\mathbf{x}), \hat{E}^{j}(\mathbf{y})\right]=-i \delta^{i j} \delta^{(3)}(\mathbf{x}-\mathbf{y}) \tag{1}
\end{equation*}
$$

( $\hbar=1, c=1$ units) governed by the free Hamiltonian

$$
\begin{equation*}
\hat{H}=\int d^{3} \mathbf{x}\left(\frac{1}{2} \hat{\mathbf{E}}^{2}+\frac{(\nabla \cdot \hat{\mathbf{E}})^{2}}{2 m^{2}}+\frac{1}{2}(\nabla \times \hat{\mathbf{A}})^{2}+\frac{1}{2} m^{2} \hat{\mathbf{A}}^{2}\right) \tag{2}
\end{equation*}
$$

(we assume $J^{\mu}=0$ ). For the non-dynamical $A^{0}$ field, its time-independent equation of motion becomes an operatorial identity

$$
\begin{equation*}
\hat{A}^{0}(x)=-\frac{\nabla \cdot \hat{\mathbf{E}}(x)}{m^{2}} \tag{3}
\end{equation*}
$$

The purpose of the present exercise is to expand fields in terms of creation and annihilation operators $\hat{a}_{\mathbf{k}, \lambda}^{\dagger}$ and $\hat{a}_{\mathbf{k}, \lambda}$ where $\lambda$ labels three different polarization states of a vector particle (spin $=1$ ). Generally, bases for polarization states correspond to $\mathbf{k}$-dependent complex bases $\mathbf{e}_{\lambda}(\mathbf{k})$ for ordinary 3-vectors,

$$
\begin{equation*}
\mathbf{e}_{\lambda}(\mathbf{k}) \cdot \mathbf{e}_{\lambda^{\prime}}^{*}(\mathbf{k})=\delta_{\lambda, \lambda^{\prime}} \tag{4}
\end{equation*}
$$

Of particular convenience is the helicity basis of eigenvectors of the vector product $i \mathbf{k} \times$, namely

$$
\begin{equation*}
i \mathbf{k} \times \mathbf{e}_{\lambda}(\mathbf{k})=\lambda|\mathbf{k}| \mathbf{e}_{\lambda}(\mathbf{k}), \quad \lambda=-1,0,+1 . \tag{5}
\end{equation*}
$$

By convention, the overall phases of the helicity eigenvectors are chosen such that

$$
\begin{equation*}
\mathbf{e}_{0}(\mathbf{k})=\frac{\mathbf{k}}{|\mathbf{k}|} \quad \mathbf{e}_{\lambda}^{*}(\mathbf{k})=(-1)^{\lambda} \mathbf{e}_{-\lambda}(\mathbf{k}), \quad \mathbf{e}_{\lambda}(-\mathbf{k})=-\mathbf{e}_{\lambda}^{*}(+\mathbf{k}) \tag{6}
\end{equation*}
$$

Combining Fourier transform with a basis decomposition, we have

$$
\begin{equation*}
\hat{\mathbf{A}}(\mathbf{x})=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \sum_{\lambda} e^{i \mathbf{k} \mathbf{x}} \mathbf{e}_{\lambda}(\mathbf{k}) \hat{A}_{\mathbf{k}, \lambda}, \quad \hat{A}_{\mathbf{k}, \lambda}=\int d^{3} \mathbf{x} e^{-i \mathbf{k x}} \mathbf{e}_{\lambda}^{*}(\mathbf{k}) \cdot \hat{\mathbf{A}}(\mathbf{x}) \tag{7}
\end{equation*}
$$

and ditto for the $\hat{\mathbf{E}}(\mathbf{x})$ fields and its $\hat{E}_{\mathbf{k}, \lambda}$ modes.
(a) Show that $\hat{A}_{\mathbf{k}, \lambda}^{\dagger}=-\hat{A}_{-\mathbf{k}, \lambda}, \hat{E}_{\mathbf{k}, \lambda}^{\dagger}=-\hat{E}_{-\mathbf{k}, \lambda}$, and derive the equal-time commutation relations for the $\hat{A}_{\mathbf{k}, \lambda}$ and $\hat{E}_{\mathbf{k}, \lambda}$ operators.
(b) Show that

$$
\begin{equation*}
\hat{H}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \sum_{\lambda}\left(\frac{C_{\mathbf{k}, \lambda}}{2} \hat{E}_{\mathbf{k}, \lambda}^{\dagger} \hat{E}_{\mathbf{k}, \lambda}+\frac{\omega_{\mathbf{k}}^{2}}{2 C_{\mathbf{k}, \lambda}} \hat{A}_{\mathbf{k}, \lambda}^{\dagger} \hat{A}_{\mathbf{k}, \lambda}\right) \tag{8}
\end{equation*}
$$

where $\omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+m^{2}}$ and $C_{\mathbf{k}, \lambda}=1+\delta_{\lambda, 0}\left(\mathbf{k}^{2} / m^{2}\right)$.
(c) Define creation and annihilation operators according to

$$
\begin{equation*}
\hat{a}_{\mathbf{k}, \lambda}=\frac{\omega_{\mathbf{k}} \hat{A}_{\mathbf{k}, \lambda}-i C_{\mathbf{k}, \lambda} \hat{E}_{\mathbf{k}, \lambda}}{\sqrt{C_{\mathbf{k}, \lambda}}}, \quad \hat{a}_{\mathbf{k}, \lambda}^{\dagger}=\frac{\omega_{\mathbf{k}} \hat{A}_{\mathbf{k}, \lambda}^{\dagger}+i C_{\mathbf{k}, \lambda} \hat{E}_{\mathbf{k}, \lambda}^{\dagger}}{\sqrt{C_{\mathbf{k}, \lambda}}} \tag{9}
\end{equation*}
$$

and verify that they satisfy (relativistically-normalized) equal-time bosonic commutation relations.
(d) Show that

$$
\begin{equation*}
\hat{H}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega_{\mathbf{k}}} \sum_{\lambda} \omega_{\mathbf{k}} \hat{a}_{\mathbf{k}, \lambda}^{\dagger} \hat{a}_{\mathbf{k}, \lambda}+\text { const. } \tag{10}
\end{equation*}
$$

(e) Next, consider the time dependence of the free vector field and show that

$$
\begin{equation*}
\hat{\mathbf{A}}(\mathbf{x}, t)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega_{\mathbf{k}}} \sum_{\lambda} \sqrt{C_{\mathbf{k}, \lambda}}\left(e^{-i k x} \mathbf{e}_{\lambda}(\mathbf{k}) \hat{a}_{\mathbf{k}, \lambda}(0)+e^{+i k x} \mathbf{e}_{\lambda}^{*}(\mathbf{k}) \hat{a}_{\mathbf{k}, \lambda}^{\dagger}(0)\right)_{k^{0}=+\omega_{\mathbf{k}}} . \tag{11}
\end{equation*}
$$

(f) Write down a similar formula for the $\hat{A}^{0}(\mathbf{x}, t)$ (use eq. (3)). Together with the previous
result, you should get

$$
\begin{equation*}
\hat{A}_{\mu}(x)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega_{\mathbf{k}}} \sum_{\lambda}\left(e^{-i k x} f_{\mu}(\mathbf{k}, \lambda) \hat{a}_{\mathbf{k}, \lambda}(0)+e^{+i k x} f_{\mu}^{*}(\mathbf{k}, \lambda) \hat{a}_{\mathbf{k}, \lambda}^{\dagger}(0)\right)_{k^{0}=+\omega_{\mathbf{k}}} \tag{12}
\end{equation*}
$$

where

$$
f^{\mu}(\mathbf{k}, \lambda)= \begin{cases}\left(0, \mathbf{e}_{\lambda}(\mathbf{k})\right) & \text { for } \lambda= \pm 1  \tag{13}\\ \left(\frac{|\mathbf{k}|}{m}, \frac{\omega_{\mathbf{k}}}{m} \frac{\mathbf{k}}{|\mathbf{k}|}\right) & \text { for } \lambda=0\end{cases}
$$

Please note that the 4 -vectors $f^{\mu}(\mathbf{k}, \lambda)$ are nothing but purely-spatial vectors $\mathbf{e}_{\lambda}(\mathbf{k})$ Lorentz-boosted into the moving particle's frame. In particular, for all $(\mathbf{k}, \lambda), f^{\mu} f_{\mu}^{*}=-1$ and $f^{\mu} k_{\mu}=0$.
(g) Finally, verify that the vector field (12) satisfies the free equations of motion $\partial_{\mu} \hat{A}^{\mu}(x)=0$ and $\left(\partial^{2}+m^{2}\right) \hat{A}^{\mu}(x)=0$.
2. Now consider the Feynman propagator for the massive vector field.
(a) First, a lemma: Show that

$$
\begin{equation*}
\sum_{\lambda} f^{\mu}(\mathbf{k}, \lambda) f^{\nu *}(\mathbf{k}, \lambda)=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}} \tag{14}
\end{equation*}
$$

(b) Next, show that

$$
\begin{align*}
\langle 0| \hat{A}^{\mu}(x) \hat{A}^{\nu}(y)|0\rangle & =\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 \omega_{\mathbf{k}}}\left[\left(-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}\right) e^{-i k(x-y)}\right]_{k^{0}=+\omega_{\mathbf{k}}}  \tag{15}\\
& =\left(-g^{\mu \nu}-\frac{\partial^{\mu} \partial^{\nu}}{m^{2}}\right) D(x-y)
\end{align*}
$$

(c) Finally, the Feynman propagator: Show that

$$
\begin{align*}
G_{F}^{\mu \nu} \equiv\langle 0| \mathbf{T}^{*} \hat{A}^{\mu}(x) \hat{A}^{\nu}(y)|0\rangle & =\left(-g^{\mu \nu}-\frac{\partial^{\mu} \partial^{\nu}}{m^{2}}\right) G_{F}(x-y) \\
& =\int \frac{d^{4} \mathbf{k}}{(2 \pi)^{4}}\left(-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}\right) \frac{i e^{-i k(x-y)}}{k^{2}-m^{2}+i 0} \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{T}^{*} \hat{A}^{\mu}(x) \hat{A}^{\nu}(y)=\mathbf{T} \hat{A}^{\mu}(x) \hat{A}^{\nu}(y)+i \delta^{\mu 0} \delta^{\nu 0} \delta^{(4)}(x-y) . \tag{17}
\end{equation*}
$$

For the explanation of the $\mathbf{T}^{*}$ modification of the time-ordered product of vector fields, please see Quantum Field Theory by Claude Itzykson and Jean-Bernard Zuber.
3. Finally, an exercise in Dirac's $\gamma$ matrices.
(a) Verify $\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i\left(g^{\lambda \mu} S^{\kappa \nu}-g^{\lambda \nu} S^{\kappa \mu}-g^{\kappa \mu} S^{\lambda \nu}+g^{\kappa \nu} S^{\lambda \mu}\right)$.
(b) Verify $M^{-1}(L) \gamma^{\mu} M(L)=L_{\nu}^{\mu} \gamma^{\nu}$ for $L=\exp (\theta)$ (i.e., $L^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}+\theta^{\mu}{ }_{\nu}+\frac{1}{2} \theta^{\mu}{ }_{\lambda} \theta^{\lambda}{ }_{\nu}+\cdots$ ) and $M(L)=\exp \left(-\frac{i}{2} \theta_{\alpha \beta} S^{\alpha \beta}\right)$
(c) Calculate $\left\{\gamma^{\rho}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right\},\left[\gamma^{\rho}, \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$ and $\left[S^{\rho \sigma}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$.
(d) Show that $\gamma^{\alpha} \gamma_{\alpha}=4, \gamma^{\alpha} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu}, \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 g^{\mu \nu}$ and $\gamma^{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$. Hint: use $\gamma^{\alpha} \gamma^{\nu}=2 g^{\nu \alpha}-\gamma^{\nu} \gamma^{\alpha}$ repeatedly.
(e) Consider the electron's spinor field $\Psi(x)$ in an electromagnetic background. Show that the gauge-covariant Dirac equation $\left(i \gamma^{\mu} D_{\mu}+m\right) \Psi(x)=0$ implies

$$
\left(m^{2}+D^{2}+q F_{\mu \nu} S^{\mu \nu}\right) \Psi(x)=0 .
$$

