PHY-396 K. Problem set #4. Due October 7, 2003.

. In homework#2 we developed Hamiltonian formalism for a massive vector field A*(z). Upon
quantization, the 3—vector field A(z) and its canonical conjugate —E(z) become quantum

fields subject to equal-time commutation relations

(h =1,¢ =1 units) governed by the free Hamiltonian

(V- E)?
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(we assume J* = 0). For the non-dynamical A field, its time-independent equation of motion

becomes an operatorial identity
Alg) = ——22, (3)

The purpose of the present exercise is to expand fields in terms of creation and annihilation
operators le< y and a, , where A labels three different polarization states of a vector particle
(spin = 1). Generally, bases for polarization states correspond to k—dependent complex bases

ey (k) for ordinary 3-vectors,
ey(k)-ex(k) = oy (4)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik x |

namely

ik x ey(k) = Akley(k), A=—1,0,+1. (5)

By convention, the overall phases of the helicity eigenvectors are chosen such that

egk) = o eilk) = (~1’e_\(k), e\(-k) = —ej(+k). (6)



Combining Fourier transform with a basis decomposition, we have

N A3k . N
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and ditto for the E(x) fields and its Ek7 A modes.

(a) Show that AL/\ = —fl,kﬂ\, EAIT{/\ = —Efk,/\’ and derive the equal-time commutation

relations for the Ak7 ) and EAk7 \ operators.

(b) Show that
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where wy = Vk? +m? and Cy ) = 1+ 6y o(k?/m?).

(c) Define creation and annihilation operators according to
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and verify that they satisfy (relativistically-normalized) equal-time bosonic commutation

relations.

(d) Show that
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(e) Next, consider the time dependence of the free vector field and show that

~ _ _ka A +ikx  * AT
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(f) Write down a similar formula for the A%(x,t) (use eq. (3)). Together with the previous



result, you should get
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Please note that the 4-vectors f#(k,\) are nothing but purely-spatial vectors e) (k)
Lorentz-boosted into the moving particle’s frame. In particular, for all (k, A), f#f; = —1
and ffk, = 0.

(g) Finally, verify that the vector field (12) satisfies the free equations of motion aufl“(x) =0
and (9% +m?2) At (z) = 0.

2. Now consider the Feynman propagator for the massive vector field.

(a) First, a lemma: Show that

S NN = g+ A (14
A

(b) Next, show that
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(c) Finally, the Feynman propagator: Show that
v * 1 v v a“ay
6 = T @AW = (<0 - 23 ) Grta =)
(16)
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where
T*AM(2)AY(y) = TA*(z)A(y) + 60606 (z — y). (17)

For the explanation of the T* modification of the time-ordered product of vector fields,

please see Quantum Field Theory by Claude Itzykson and Jean—Bernard Zuber.

3. Finally, an exercise in Dirac’s v matrices.
(a) Verify [SK)‘, S“V} — i(gkusfw _ g)\ysm,u _ gnus)\y + gmls)\u).

(b) Verify M~Y(L)y*M(L) = Lh for L = exp(0) (i.e., L, = &4 + 0%, + 361,07, + - - ) and
M(L) = exp(—40,55°")

(c) Caleulate {77,729}, [, 7% #7"] and [SP7, 724797,

(d) Show that ¥*ya = 4, ¥*7"a = =27, 7*9"7" 70 = 4¢" and Y 3y 7a = —29V9H
Hint: use v*y" = 2¢”“ — v¥~v“ repeatedly.

(e) Consider the electron’s spinor field ¥(z) in an electromagnetic background. Show that

the gauge-covariant Dirac equation (Z'W“DM + m)\I/(x) = 0 implies
(m? + D? 4+ qF,, S*) ¥ (z) = 0.



