- 1. First, a few exercises concerning the plane-wave solutions $e^{-ipx}u(p,s)$ and $e^{+ipx}v(p,x)$ of the Dirac equation.
 - (a) Show that

$$\sum_{s=1,2} u_a(p,s)\bar{u}_b(p,s) = (\not p + m)_{ab} \quad \text{and} \quad \sum_{s=1,2} v_a(p,s)\bar{v}_b(p,s) = (\not p - m)_{ab}.$$
(1)

(b) Prove the Gordon identity

$$\bar{u}(p',s')\gamma^{\mu}u(p.s) = \frac{(p'+p)^{\mu}}{2m}\bar{u}(p's')u(p,s) + \frac{i(p'-p)_{\nu}}{m}\bar{u}(p's')S^{\mu\nu}u(p,s).$$
(2)

Hint: First, use Dirac equations for the u and the \bar{u}' to show that $2m\bar{u}'\gamma^{\mu}u = \bar{u}'(\not p'\gamma^{\mu} + \gamma^{\mu}\not p)u.$

- (c) Generalize the Gordon identity to $\bar{u}'\gamma^{\mu}v$, $\bar{v}'\gamma^{\mu}u$ and $\bar{v}'\gamma^{\mu}v$.
- 2. The second problem concerns finite representations of the Lorentz symmetry, or rather $\operatorname{Spin}(3,1) \cong SL(2, \mathbb{C})$. Consider the Lorentz generators $\hat{J}^{\mu\nu}$: In 3-index notations, the $\hat{J}^{ij} = \epsilon^{ij\ell} \hat{J}^{\ell}$ generate ordinary rotations while the $\hat{J}^{0i} = -\hat{J}^{i0} = \hat{K}^{i}$ generate the Lorentz boosts. Let

$$\hat{\mathbf{J}}_{\pm} = \frac{1}{2} (\hat{\mathbf{J}} \pm i \hat{\mathbf{K}}). \tag{3}$$

(a) Show that the $\hat{\mathbf{J}}_+$ and the $\hat{\mathbf{J}}_-$ commute with each other and that each satisfies the commutations relations of an angular momentum, $[\hat{J}^k_{\pm}, \hat{J}^\ell_{\pm}] = i\epsilon^{k\ell m} \hat{J}^m_{\pm}$.

The "angular momentum" $\hat{\mathbf{J}}_+$ is non-hermitian and hence its finite irreducible representations are non-unitary analytic continuations of the spin-j representations of a hermitian $\hat{\mathbf{J}}_-$. The same is true for the $\hat{\mathbf{J}}_- = \hat{\mathbf{J}}_+^{\dagger}$. Thus altogether, the finite irreducible representations of the Lorentz algebra are specified by two integer or half-integer 'spins' j_+ and j_- . The simplest non-trivial representations of the Lorentz algebra are $(j_+ = \frac{1}{2}, j_- = 0)$ the left-handed Weyl spinor where $\hat{\mathbf{J}}$ acts as $\frac{1}{2}\boldsymbol{\sigma}$ and $\hat{\mathbf{K}}$ as $-\frac{i}{2}\boldsymbol{\sigma}$, and $(j_+ = 0, j_- = \frac{1}{2})$ — the right-handed Weyl spinor where $\hat{\mathbf{J}}$ also acts as $\frac{1}{2}\boldsymbol{\sigma}$ but $\hat{\mathbf{K}}$ acts as $+\frac{i}{2}\boldsymbol{\sigma}$. Together, the two Weyl spinors comprise the Dirac spinor. From the $SL(2, \mathbf{C})$ point if view, the left-handed Weyl spinor is the doublet representation $\mathbf{2}$ which defines the $SL(2, \mathbf{C})$ group while the right-handed Weyl spinor is the conjugate doublet $\overline{\mathbf{2}}$. As discussed in class, the Weyl spinors transform according to

$$\psi^L_{\alpha} \mapsto M^{\ \beta}_{\alpha} \psi^L_{\beta} \quad \text{and} \quad (\sigma_2 \psi^R)_{\dot{\alpha}} \mapsto M^{*\dot{\beta}}_{\dot{\alpha}} (\sigma_2 \psi^R)_{\dot{\beta}} \tag{4}$$

where $M \equiv M_L$ and $\sigma_2 M^* \sigma_2 = M_R$.

A generic (j_+, j_-) representation of the Lorentz algebra becomes in the $SL(2, \mathbb{C})$ terms a tensor $\Phi_{\alpha_1...\alpha_{(2j_+)},\dot{\gamma}_1...\dot{\gamma}_{(2j_-)}}$, totally symmetric in its $2j_+$ un-dotted indices $\alpha_1, \ldots, \alpha_{(2j_+)}$ and separately totally symmetric in its $2j_-$ dotted indices $\dot{\gamma}_1, \ldots, \dot{\gamma}_{(2j_-)}$; it transforms according to

$$\Phi_{\alpha_1...\alpha_{(2j_+)},\dot{\gamma}_1...\dot{\gamma}_{(2j_-)}} \mapsto M_{\alpha_1}^{\beta_1} \cdots M_{\alpha_{(2j_+)}}^{\beta_{(2j_+)}} M_{\dot{\gamma}_1}^{*\dot{\delta}_1} \cdots U_{\dot{\gamma}_{(2j_-)}}^{*\dot{\delta}_{(2j_-)}} \Phi_{\beta_1...\beta_{(2j_+)},\dot{\delta}_1...\dot{\delta}_{(2j_-)}}.$$
 (5)

The vector representation of the Lorentz group has $j_+ = j_- = \frac{1}{2}$. To cast the action of the Lorentz group in $SL(2, \mathbb{C})$ terms (5), we define

$$X_{\alpha\dot{\gamma}} = X_{\mu}\sigma^{\mu}_{\alpha\dot{\gamma}} = X_0\delta_{\alpha\dot{\gamma}} - \mathbf{X}\cdot\boldsymbol{\sigma}_{\alpha\dot{\gamma}}, \qquad (6)$$

or in 2 × 2 matrix notations, $X_{\mu}\sigma^{\mu} = X_0 - \mathbf{X} \cdot \boldsymbol{\sigma}$ where σ^0 is the unit matrix while σ^1 , σ^2 and σ^3 are the Pauli matrices. In the $SL(2, \mathbf{C})$ terms, we have

$$X'_{\alpha\dot{\gamma}} = M^{\ \beta}_{\alpha} M^{*\dot{\delta}}_{\dot{\gamma}} X_{\gamma\dot{\delta}} \qquad i. e., \quad X'_{\mu} \sigma^{\mu} = M(X_{\mu} \sigma^{\mu}) M^{\dagger}.$$
(7)

(b) Show that for any $SL(2, \mathbb{C})$ matrix M, eq. (7) defines an orthochronous Lorentz transform $X'_{\mu} = L^{\nu}_{\mu}(M)X_{\nu}$. (Hint: prove and use $\det(X_{\mu}\sigma^{\mu}) = X^2 \equiv X_{\mu}X^{\mu}$).

* For extra challenge, show that L is proper, *i.e.* det(L) = +1.

- (c) Verify the group law, $L(M_2M_1) = L(M_2)L(M_1)$.
- (d) Verify explicitly that for $M = \exp\left(-\frac{i}{2}\theta \mathbf{n} \cdot \boldsymbol{\sigma}\right)$, L(M) is a rotation by angle θ around axis \mathbf{n} while for $M = \exp\left(-\frac{1}{2}r \mathbf{n} \cdot \boldsymbol{\sigma}\right)$, L(M) is a boost of rapidity r ($\beta = \tanh r$, $\gamma = \cosh r$) in the direction \mathbf{n} .

In general, any (j_+, j_-) multiplet of the $SL(2, \mathbb{C})$ with integer net spin $j_+ + j_-$ is equivalent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2-index tensor $T^{\mu\nu} = T^{\nu\mu}$, $T^{\mu}_{\mu} = 0$. For $j_+ \neq j_-$ the representation is complex, but one can make a real tensor by combining two multiplets with opposite j_+ and j_- , for example the (1, 0) and (0, 1) multiplets are together equivalent to an antisymmetric 2-index tensor $F^{\mu\nu} = -F^{\nu\mu}$.

(e) Verify the above examples.

Hint: For any angular momentum $(j = \frac{1}{2}) \otimes (j = \frac{1}{2}) = (j = 1) \oplus (j = 0).$

The $SL(2, \mathbb{C})$ multiplets with half-integer $j_+ + j_-$ are equivalent to Lorentz spinors or spintensors which carry one Weyl index as well as 0, 1 or more 4-vector indices and transform according to

$$\psi^{\mu,\dots,\nu}_{\alpha} \mapsto M^{\ \beta}_{\alpha}(L)L^{\mu}_{\ \kappa}\cdots L^{\nu}_{\ \lambda}\psi^{\kappa,\dots,\lambda}_{\beta} \quad \text{or} \quad \psi^{\mu,\dots,\nu}_{\dot{\alpha}} \mapsto M^{*\dot{\beta}}_{\dot{\alpha}}(L)L^{\mu}_{\ \kappa}\cdots L^{\nu}_{\ \lambda}\psi^{\kappa,\dots,\lambda}_{\dot{\beta}}.$$
 (8)

- (f) Show that the $(1, \frac{1}{2})$ and $(\frac{1}{2}, 1)$ multiplets are together equivalent to the Rarita– Schwinger spin-vector Ψ_a^{μ} which has one Dirac index a and one 4–vector index μ and satisfies a Lorentz-covariant constraint $\gamma_{\mu}\Psi^{\mu} = 0$.
- 3. Finally, consider the relation between Lorentz transformations of the fields and of the particles. In mechanics (classical or quantum), one must distinguish between two opposite kinds of rotations, namely coordinate-frame rotations of bodies and body-frame rotations of coordinate systems. For the Lorentz transformations of fields and particles, there is a similar distinction between the particle-frame and field-frame Lorentz transforms.

For example, consider a real (hermitian) scalar quantum field

$$\hat{\Phi}(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 \, 2E_{\mathbf{p}}} \left[e^{-ipx} \, \hat{a}(p) + e^{+ipx} \, \hat{a}^{\dagger}(p) \right]_{p^0 \equiv E_{\mathbf{p}}} \tag{9}$$

(where $\hat{a}(p)$ stands for the $\hat{a}_{\mathbf{p}}(t = 0)$ and ditto for the $\hat{a}^{\dagger}(p)$). A field-frame Lorentz

transform L acts on this field according to

$$\hat{\Phi}'(x') \equiv \hat{\mathcal{D}}^{\dagger}(L) \,\hat{\Phi}(x') \,\hat{\mathcal{D}}(L) = \hat{\Phi}(x = L^{-1}x') \tag{10}$$

while the corresponding particle-frame transform acts precisely in reverse:

$$\hat{\mathcal{D}}(L)\,\hat{\Phi}(x)\,\hat{\mathcal{D}}^{\dagger}(L) = \hat{\Phi}(Lx). \tag{11}$$

In both cases $\hat{\mathcal{D}}(L) = \exp\left(\frac{i}{2}\theta_{\alpha\beta}\hat{J}^{\alpha\beta}\right)$ is a unitary operator representing the Lorentz transform L in the Fock space of the quantum field theory.

(a) Show that (11) implies

$$\hat{\mathcal{D}}(L)\,\hat{a}(p)\,\hat{\mathcal{D}}^{\dagger}(L) = \hat{a}(Lp), \qquad \hat{\mathcal{D}}(L)\,\hat{a}^{\dagger}(p)\,\hat{\mathcal{D}}^{\dagger}(L) = \hat{a}^{\dagger}(Lp), \qquad (12)$$

and therefore

$$\hat{\mathcal{D}}(L) |p\rangle = |Lp\rangle, \quad \hat{\mathcal{D}}(L) |p_1, p_2\rangle = |Lp_1, Lp_2\rangle, \quad etc., \ etc.$$
 (13)

thus particle-frame Lorentz transform.

Now consider a generic Lorentz multiplet of quantum fields $\hat{\phi}_A(x)$ which transform into each other according to

$$\hat{\phi}'_{A}(x') \equiv \hat{\mathcal{D}}^{\dagger}(L) \,\hat{\phi}_{A}(x') \,\hat{\mathcal{D}}(L) = \sum_{B} M_{A}^{B}(L) \,\hat{\phi}_{B}(x = L^{-1}x') \tag{14}$$

in the field frame, or

$$\hat{\mathcal{D}}(L)\,\hat{\phi}_A(x)\,\hat{\mathcal{D}}^{\dagger}(L) = \sum_B \,M_A^{\ B}(L^{-1})\,\hat{\phi}_B(Lx) \tag{15}$$

in the particle frame. In both frames, the matrices $M_A^B(L)$ form a finite but non-unitary representation of the Lorentz group while the Fock-space operators $\mathcal{D}(L)$ form a unitary but infinite representation. (b) Verify that formula (15) is consistent with the same group law for both the fieldmultiplet and the Fock–space representations, $M_A^C(L_1L_2) = \sum_B M_A^B(L_1)M_B^C(L_2)$ while $\hat{\mathcal{D}}(L_2L_1) = \hat{\mathcal{D}}(L_2)\hat{\mathcal{D}}(L_1)$.

A free (complex) quantum field comprises particle and antiparticle creation and annihilation operators according to

$$\hat{\phi}_{A}(x) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3} 2E_{\mathbf{p}}} \sum_{s} \left[e^{-ipx} f_{A}(p,s) \hat{a}(p,s) + e^{+ipx} h_{A}(p,s) \hat{b}^{\dagger}(p,s) \right]_{p^{0} \equiv E_{\mathbf{p}}} \\ \hat{\phi}_{\bar{A}}^{\dagger}(x) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3} 2E_{\mathbf{p}}} \sum_{s} \left[e^{-ipx} h_{\bar{A}}^{*}(p,s) \hat{b}(p,s) + e^{+ipx} f_{\bar{A}}^{*}(p,s) \hat{a}^{\dagger}(p,s) \right]_{p^{0} \equiv E_{\mathbf{p}}}$$
(16)

where $e^{-ipx} f_A(p, s)$ and $e^{+ipx} h_A(p, s)$ are independent plane-wave solutions of the free field equation for the ϕ_A , whatever that might be. For the real (*i.e.*, non-hermitian) fields, there are similar formulae where $h_A(p, s) = f_{\overline{A}}^*(p, s)$, $\hat{b}(p, s) = \hat{a}(p, s)$ and $\hat{b}^{\dagger}(p, s) = \hat{a}^{\dagger}(p, s)$, *i.e.*, the particles are their own antiparticles.

(c) A particle-frame Lorentz transform should act on particle or antiparticle quantum numbers according to

$$\hat{\mathcal{D}}(L) |p,\pm,s\rangle = \sum_{s'} C_{s,s'}(L,p) |Lp,\pm,s'\rangle.$$
(17)

Show that eqs. (15) and (17) are consistent with each other if and only if

$$f_A(Lp, s') = \sum_B \sum_s M_A^B(L) C^*_{s,s'}(L, p) f_B(p, s),$$

$$h_A(Lp, s') = \sum_b \sum_s M_A^B(L) C_{s,s'}(L, p) h_B(p, s).$$
(18)