
PHY–396 K. Problem set #6. Due October 14, 2003.

1. First, a few exercises concerning the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of

the Dirac equation.

(a) Show that

∑
s=1,2

ua(p, s)ūb(p, s) = (6p+m)ab and
∑
s=1,2

va(p, s)v̄b(p, s) = (6p−m)ab . (1)

(b) Prove the Gordon identity

ū(p′, s′)γµu(p.s) =
(p′ + p)µ

2m
ū(p′s′)u(p, s) +

i(p′ − p)ν
m

ū(p′s′)Sµνu(p, s). (2)

Hint: First, use Dirac equations for the u and the ū′ to show that

2mū′γµu = ū′(6p′γµ + γµ 6p)u.

(c) Generalize the Gordon identity to ū′γµv, v̄′γµu and v̄′γµv.

2. The second problem concerns finite representations of the Lorentz symmetry, or rather

Spin(3, 1) ∼= SL(2,C). Consider the Lorentz generators Ĵµν : In 3–index notations, the

Ĵ ij = εij`Ĵ` generate ordinary rotations while the Ĵ0i = −Ĵ i0 = K̂i generate the Lorentz

boosts. Let

Ĵ± = 1
2

(
Ĵ ± iK̂

)
. (3)

(a) Show that the Ĵ+ and the Ĵ− commute with each other and that each satisfies the

commutations relations of an angular momentum, [Ĵk±, Ĵ
`
±] = iεk`mĴm± .

The “angular momentum” Ĵ+ is non-hermitian and hence its finite irreducible representa-

tions are non-unitary analytic continuations of the spin–j representations of a hermitian Ĵ.

The same is true for the Ĵ− = Ĵ†+. Thus altogether, the finite irreducible representations

of the Lorentz algebra are specified by two integer or half-integer ‘spins’ j+ and j−.
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The simplest non-trivial representations of the Lorentz algebra are (j+ = 1
2 , j− = 0) —

the left-handed Weyl spinor where Ĵ acts as 1
2
σσ and K̂ as − i

2
σσ, and (j+ = 0, j− = 1

2)

— the right-handed Weyl spinor where Ĵ also acts as 1
2
σσ but K̂ acts as + i

2
σσ. Together,

the two Weyl spinors comprise the Dirac spinor. From the SL(2,C) point if view, the

left-handed Weyl spinor is the doublet representation 2 which defines the SL(2,C) group

while the right-handed Weyl spinor is the conjugate doublet 2̄. As discussed in class, the

Weyl spinors transform according to

ψLα 7→ M β
α ψ

L
β and (σ2ψ

R)α̇ 7→ M∗β̇α̇ (σ2ψ
R)β̇ (4)

where M ≡ML and σ2M
∗σ2 = MR.

A generic (j+, j−) representation of the Lorentz algebra becomes in the SL(2,C) terms a

tensor Φα1...α(2j+),γ̇1...γ̇(2j−)
, totally symmetric in its 2j+ un-dotted indices α1, . . . , α(2j+) and

separately totally symmetric in its 2j− dotted indices γ̇1, . . . , γ̇(2j−); it transforms according

to

Φα1...α(2j+),γ̇1...γ̇(2j−)
7→ M β1

α1
· · ·M β(2j+)

α(2j+)
M∗ δ̇1γ̇1

· · ·U∗ δ̇(2j−)

γ̇(2j−)
Φβ1...β(2j+),δ̇1...δ̇(2j−)

. (5)

The vector representation of the Lorentz group has j+ = j− = 1
2 . To cast the action of the

Lorentz group in SL(2,C) terms (5), we define

Xαγ̇ = Xµσ
µ
αγ̇ = X0δαγ̇ − X · σσαγ̇ , (6)

or in 2× 2 matrix notations, Xµσ
µ = X0 −X · σσ where σ0 is the unit matrix while σ1, σ2

and σ3 are the Pauli matrices. In the SL(2,C) terms, we have

X ′αγ̇ = M β
α M

∗δ̇
γ̇ Xγδ̇ i. e., X ′µσ

µ = M(Xµσ
µ)M †. (7)

(b) Show that for any SL(2,C) matrix M , eq. (7) defines an orthochronous Lorentz trans-

form X ′µ = L ν
µ (M)Xν . (Hint: prove and use det(Xµσ

µ) = X2 ≡ XµX
µ).

∗ For extra challenge, show that L is proper, i.e. det(L) = +1.
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(c) Verify the group law, L(M2M1) = L(M2)L(M1).

(d) Verify explicitly that for M = exp
(
− i

2θ n · σσ
)
, L(M) is a rotation by angle θ around

axis n while for M = exp
(
−1

2r n · σσ
)
, L(M) is a boost of rapidity r (β = tanh r,

γ = cosh r) in the direction n.

In general, any (j+, j−) multiplet of the SL(2,C) with integer net spin j+ +j− is equivalent

to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the

tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2–index

tensor Tµν = T νµ, Tµµ = 0. For j+ 6= j− the representation is complex, but one can make a

real tensor by combining two multiplets with opposite j+ and j−, for example the (1, 0) and

(0, 1) multiplets are together equivalent to an antisymmetric 2–index tensor Fµν = −F νµ.

(e) Verify the above examples.

Hint: For any angular momentum (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).

The SL(2,C) multiplets with half-integer j+ +j− are equivalent to Lorentz spinors or spin-

tensors which carry one Weyl index as well as 0, 1 or more 4–vector indices and transform

according to

ψµ,...,να 7→ M β
α (L)Lµκ · · ·Lνλ ψ

κ,...,λ
β or ψµ,...,να̇ 7→ M∗β̇α̇ (L)Lµκ · · ·Lνλ ψ

κ,...,λ

β̇
. (8)

(f) Show that the (1, 1
2) and (1

2 , 1) multiplets are together equivalent to the Rarita–

Schwinger spin-vector Ψµ
a which has one Dirac index a and one 4–vector index µ

and satisfies a Lorentz-covariant constraint γµΨµ = 0.

3. Finally, consider the relation between Lorentz transformations of the fields and of the

particles. In mechanics (classical or quantum), one must distinguish between two opposite

kinds of rotations, namely coordinate-frame rotations of bodies and body-frame rotations

of coordinate systems. For the Lorentz transformations of fields and particles, there is a

similar distinction between the particle-frame and field-frame Lorentz transforms.

For example, consider a real (hermitian) scalar quantum field

Φ̂(x) =

∫
d3p

(2π)3 2Ep

[
e−ipx â(p) + e+ipx â†(p)

]
p0≡Ep

(9)

(where â(p) stands for the âp(t = 0) and ditto for the â†(p)). A field-frame Lorentz
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transform L acts on this field according to

Φ̂′(x′) ≡ D̂†(L) Φ̂(x′) D̂(L) = Φ̂(x = L−1x′) (10)

while the corresponding particle-frame transform acts precisely in reverse:

D̂(L) Φ̂(x) D̂†(L) = Φ̂(Lx). (11)

In both cases D̂(L) = exp
(
i
2θαβĴ

αβ
)

is a unitary operator representing the Lorentz trans-

form L in the Fock space of the quantum field theory.

(a) Show that (11) implies

D̂(L) â(p) D̂†(L) = â(Lp), D̂(L) â†(p) D̂†(L) = â†(Lp), (12)

and therefore

D̂(L) |p〉 = |Lp〉 , D̂(L) |p1, p2〉 = |Lp1, Lp2〉 , etc., etc. (13)

thus particle-frame Lorentz transform.

Now consider a generic Lorentz multiplet of quantum fields φ̂A(x) which transform into

each other according to

φ̂′A(x′) ≡ D̂†(L) φ̂A(x′) D̂(L) =
∑
B

M B
A (L) φ̂B(x = L−1x′) (14)

in the field frame, or

D̂(L) φ̂A(x) D̂†(L) =
∑
B

M B
A (L−1) φ̂B(Lx) (15)

in the particle frame. In both frames, the matrices M B
A (L) form a finite but non-unitary

representation of the Lorentz group while the Fock-space operators D(L) form a unitary

but infinite representation.
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(b) Verify that formula (15) is consistent with the same group law for both the field-

multiplet and the Fock–space representations, M C
A (L1L2) =

∑
BM

B
A (L1)M C

B (L2)

while D̂(L2L1) = D̂(L2)D̂(L1).

A free (complex) quantum field comprises particle and antiparticle creation and annihila-

tion operators according to

φ̂A(x) =

∫
d3p

(2π)3 2Ep

∑
s

[
e−ipxfA(p, s) â(p, s) + e+ipxhA(p, s) b̂†(p, s)

]
p0≡Ep

φ̂†
Ā

(x) =

∫
d3p

(2π)3 2Ep

∑
s

[
e−ipxh∗Ā(p, s) b̂(p, s) + e+ipxf∗Ā(p, s) â†(p, s)

]
p0≡Ep

(16)

where e−ipxfA(p, s) and e+ipxhA(p, s) are independent plane-wave solutions of the free field

equation for the φA, whatever that might be. For the real (i.e., non-hermitian) fields, there

are similar formulae where hA(p, s) = f∗
Ā

(p, s), b̂(p, s) = â(p, s) and b̂†(p, s) = â†(p, s), i.e.,

the particles are their own antiparticles.

(c) A particle-frame Lorentz transform should act on particle or antiparticle quantum

numbers according to

D̂(L) |p,±, s〉 =
∑
s′

Cs,s′(L, p)
∣∣Lp,±, s′〉 . (17)

Show that eqs. (15) and (17) are consistent with each other if and only if

fA(Lp, s′) =
∑
B

∑
s

M B
A (L)C∗s,s′(L, p) fB(p, s),

hA(Lp, s′) =
∑
b

∑
s

M B
A (L)Cs,s′(L, p)hB(p, s).

(18)
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