1. In a Yukawa theory with $M_{s}>2 m_{f}$, the scalar particles are unstable against decay into fermion + antifermion pairs.

Write down the tree-level matrix element $\mathcal{M}(S \rightarrow f+\bar{f})$, sum $|\mathcal{M}|^{2}$ over final particles' spins, and calculate the total decay rate $S \rightarrow f+\bar{f}$.
2. Consider a Yukawa theory of two Dirac fields $\Psi_{1}(x)$ and $\Psi_{2}(x)$ coupled to the same real scalar field $\Phi(x)$:

$$
\begin{align*}
\mathcal{L}= & \bar{\Psi}_{1}\left(i \not \partial-m_{1}\right) \Psi_{1}+\bar{\Psi}_{2}\left(i \not \partial-m_{2}\right) \Psi_{2}+\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}-\frac{1}{2} M_{s}^{2} \Phi^{2} \\
& -g_{1} \Phi \bar{\Psi}_{1} \Psi_{1}-g_{2} \Phi \bar{\Psi}_{2} \Psi_{2} . \tag{1}
\end{align*}
$$

At the tree level, calculate the matrix element, the partial cross-section and the total cross-section for elastic scattering of one type of a fermion off the other type, $f_{1}+f_{2} \rightarrow$ $f_{1}+f_{2}$. Take the initial fermions to be unpolarized and sum over the final fermion's polarizations.
3. And now consider the pseudoscalar version of the Yukawa theory (1): Two Dirac fields $\Psi_{1}(x)$ and $\Psi_{2}(x)$ coupled to the same real pseudoscalar field $\phi(x)$:

$$
\begin{align*}
\mathcal{L}= & \bar{\Psi}_{1}\left(i \not \partial-m_{1}\right) \Psi_{1}+\bar{\Psi}_{2}\left(i \not \partial-m_{2}\right) \Psi_{2}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} M_{p}^{2} \phi^{2} \\
& -i g_{1} \phi \bar{\Psi}_{1} \gamma^{5} \Psi_{1}-i g_{2} \phi \bar{\Psi}_{2} \gamma^{5} \Psi_{2} . \tag{2}
\end{align*}
$$

(a) Write down the Feynman rules of this theory.
(b) Calculate the tree-level matrix element $\mathcal{M}\left(f_{1}+f_{2} \rightarrow f_{1}+f_{2}\right)$ for elastic scattering of two distinct fermions off each other.
(c) Calculate the partial cross section and the total cross-section for this scattering. Assume un-polarized beams of initial fermions and spin-blind detectors for the final particles.
4. Finally, let us finish the muon decay problem of homework \#10: Given the matrix element

$$
\begin{equation*}
\left\langle e^{-}, \bar{\nu}_{e}, \nu_{\mu}\right| \mathcal{M}\left|\mu^{-}\right\rangle=\frac{G_{F}}{\sqrt{2}}\left[\bar{u}\left(\nu_{\mu}\right)\left(1-\gamma^{5}\right) \gamma^{\alpha} u\left(\mu^{-}\right)\right] \times\left[\bar{u}\left(e^{-}\right)\left(1-\gamma^{5}\right) \gamma_{\alpha} v\left(\bar{\nu}_{e}\right)\right] \tag{3}
\end{equation*}
$$

show that

$$
\begin{equation*}
\left.\frac{1}{2} \sum_{\substack{\text { all } \\ \text { spins }}}\left|\left\langle e^{-}, \bar{\nu}_{e}, \nu_{\mu}\right| \mathcal{M}\right| \mu^{-}\right\rangle\left.\right|^{2}=64 G_{F}^{2}\left(p_{\mu} \cdot p_{\bar{\nu}}\right)\left(p_{e} \cdot p_{\nu}\right) . \tag{4}
\end{equation*}
$$

