
Spin–Statistics Theorem

Relativistic causality requires quantum fields at two spacetime points x and y separated by

a space-like interval (x − y)2 < 0 to either commute or anticommute with each other. The

spin–statistics theorem says that the fields of integral spins commute (and therefore must

be quantized as bosons) while the fields of half-integral spin anticommute (and therefore must

be quantized as fermions). The spin-statistics theorem applies to all quantum field theories

which have:

1. Special relativity, i.e. Lorentz invariance and relativistic causality;

2. Positive energies of all particles;

3. Hilbert space with positive norms of all states.

The theorem is valid for both free or interacting quantum field theories, and in any space-

time dimension D > 2. In these notes I shall prove the theorem for the free fields in four

dimensions and outline its generalization to D 6= 4; proving the theorem for the interactive

fields is too complicated for this class.

⋆ ⋆ ⋆

Consider a generic Lorentz multiplet φA(x) of complex quantum fields describing massive

charged particles of spin j. In general, the multiplet could be reducible, A ∈ (j+1 , j
−
1 ) ⊕

(j+2 , j
−
2 )⊕ · · · , but all the irreducible components must have

∣

∣j+ − j−
∣

∣ ≤ j ≤ (j+ + j−) and (−1)2j
+

(−1)2j
−

= (−1)2j . (1)

Free fields satisfy some kind of linear equations of motion which have plane-wave solu-

tions with p2 = M2 corresponding to relativistic particles of mass M . Let p0 = +Ep =

+
√

p2 +M2 and let

e−ipxfA(p, s) and e+ipxhA(p, s) (2)

be respectively the positive-frequency and negative-frequency plane-wave solutions. By the
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CPT theorem

hA(p, s) = fA(+p,−s)× i2s(−1)2j
−(A) (3)

where the i2s factor accompanies the spin reversal and the (−1)2j
−(A) sign is the (j+, j−)

representation of the proper-but-not-orthochronous Lorentz transform PT : xµ → −xµ.
⋆
For

the complex conjugate plane waves, we have

h∗
Ā
(p, s) = f∗

Ā
(+p,−s)× (−i)2s(−1)2j

+(Ā) (4)

where the last factor is (−1)2j
+(Ā) = (−1)2j

−(A) because the conjugation exchanges the j+

and the j− of a Lorentz multiplet.

The relation between particle’s spin and statistics follows from the spin sums

FAB̄(p)
def
=

∑

s

fA(p, s) f
∗
B̄
(p, s) and HAB̄(p)

def
=

∑

s

hA(p, s) h
∗
B̄
(p, s) (5)

and the way they transform under Lorentz symmetries. The plane-wave solutions (2) them-

selves transform according to eqs. (18) of the homework set #6:

fA(Lp, s
′) =

∑

C

∑

s

M C
A (L)C∗

s,s′(L, p) fC(p, s),

hA(Lp, s
′) =

∑

C

∑

s

M C
A (L)Cs,s′(L, p) hC(p, s).

(6)

where Cs,s′(L, p) is a unitary (2j + 1)× (2j + 1) matrix of the Lorentz transform of particle

⋆ For example, for the (12 , 0) ⊕ (0, 1
2 ) multiplet of Dirac spinor fields, the constant spinors uA(p, s) ≡

fA(p, s) and vA(p, s) ≡ hA(p, s) satisfy

vA(p, s) = +
(

√

E − pσσ ηs

)

A
= +

(

√

E − pσσ (i2sξ
−s)

)

A
= +i2s uA(p,−s)

for A ∈ (12 , 0) (the left-handed Weyl spinor components), but

vA(p, s) = −
(

√

E + pσσ ηs

)

A
= −

(

√

E + pσσ (i2sξ
−s)

)

A
= −i2s uA(p,−s)

for A ∈ (0, 1
2 ) (the right-handed Weyl spinor components); in both cases, the i2s factor comes from

ηs = i2sξ
−s while the chirality-dependent sign between the uA and the vA components is the (−1)2j

−(A)

factor.

2



spin states. Unitarity means
∑

s′ C
∗
s1,s′

Cs2,s′
= δs1,s2 , hence

FAB̄(Lp) =
∑

s′

[

fA(Lp, s
′) =

∑

C

∑

s1

M C
A (L)C∗

s1,s′(L, p) fC(p, s1)

]

×

×

[

f∗
B̄
(Lp, s′) =

∑

D̄

∑

s2

M∗D̄
B̄

(L)Cs2,s′(L, p) f
∗
D̄
(p, s2)

]

=
∑

C,D̄

M C
A (L)M∗D̄

B̄
(L)

∑

s1,s2

fC(p, s1) f
∗
D̄
(p, s2)

(

∑

s′

C∗
s1,s′Cs2,s′ = δs1,s2

)

=
∑

C,D̄

M C
A (L)M∗D̄

B̄
(L)FCD̄(p)

(7)

and likewise

HAB̄(Lp) =
∑

C,D̄

M C
A (L)M∗D̄

B̄
(L)HCD̄(p). (8)

In other words, the spin sums (5) are Lorentz-covariant functions of the particle’s momen-

tum. And since we are only interested in the on-shell momenta with fixed pµpµ = M2, the

functional form of any covariant function of the pµ is determined by the Spin(3, 1) analogue

of the Wigner–Eckard theorem.

In three Euclidean dimensions, the Wigner–Eckard theorem usually concerns the rotational

properties of matrix elements of vector or tensor operators between states of given angular

momenta, but it can be recast in terms of rotationally-covariant functions of a vector v.

Consider a covariant matrix of functions Qa,b(v) where the indices a and b run over compo-

nents of some (possibly reducible) spin multiplet, a, b ∈ (j1)⊕ (j2)⊕ · · · . According top the

Wigner–Eckard theorem,

Qa,b(v = vn) =

j(a)+j(b)
∑

ℓ=|j(a)−j(b)|

qℓ(v)

+ℓ
∑

m=−ℓ

vℓYℓ,m(n)× Clebbsch(a, b|ℓ,m), (9)

where qℓ(v) depend only on ℓ and the magnitude v of the vector and the spherical harmonics

vℓYℓ,m(n) are homogeneous polynomials (degree ℓ) of the Cartesian components vx, vy and vz.

For a vector of fixed magnitude v2 = v2 the qℓ coefficients are constants, hence each Qa,b

is effectively a polynomial of (vx, vy, vz) comprising terms of net degree ℓ ranging from

|j(a)− j(b)| to j(a) + j(b).

3



In four Minkowski dimensions we have a similar situation, except for the spin group being

SL(2,C) instead of SU(2), hence A, B̄ ∈ (j+1 , j
−
1 )⊕ (j+2 , j

−
2 )⊕ · · · . Also, the Lorentz vector

multiplet has j+ = j− = 1
2 (unlike the 3D vector multiplet which has ℓ = 1) and consequently

the Minkowski analogues YJ,m+,m−(pµ/M) of the spherical harmonics do not have separate

integer-valued indices ℓ+ and ℓ− but rather a common index J = j+ = j− which takes both

integer and half-integer values. Hence, the Wigner–Eckard theorem for Lorentz-covariant

matrices FAB̄(p) and HAB̄(p) says:

FAB̄(p) =
Jmax
∑

J=Jmin

fJ(M)
∑

−J≤m+≤J

−J≤m−≤J

M2JYJ,m+,m−(pµ/M)× Clebbsch(A, B̄|J,m+, J,m−),

HAB̄(p) =

Jmax
∑

J=Jmin

hJ(M)
∑

−J≤m+≤J

−J≤m−≤J

M2JYJ,m+,m−(pµ/M)× Clebbsch(A, B̄|J,m+, J,m−),

(10)

where M is the particle’s mass (pµpµ = M2), the indices J , m+ and m− are all integral or

all half-integral according to

(−1)2J = (−1)2m
+

= (−1)2m
−

= (−1)2j
+(A)(−1)2j

+(B̄) = (−1)2j
−(A)(−1)2j

−(B̄), (11)

and in the sum over J ,

Jmin = max
(

|j+(A)− j+(B̄)|, |j−(A)− j−(B̄)|
)

,

Jmax = min
(

(j+(A) + j+(B̄)), (j−(A) + j−(B̄))
)

.
(12)

Similar to their 3D counterparts, the 4D “spherical harmonics” M2JYJ,m+,m−(pµ/M) are

homogeneous polynomials of the 4–Momentum components p0, px, py, pz, although in 4D the

polynomial degree is 2J rather than ℓ. Consequently, for a fixed particle mass M , all spin

sums FAB̄(p) and HAB̄(p) can be written as polynomials of the p0, px, py, pz.

Now, once we have written the spin sums (5) as polynomials of the pµ components, we can

analytically continue these polynomials to negative energies p0 = −Ep or even to complex

4–momenta satisfying pµpµ = M2. This analytic continuation allows us to compare the spin

sums at opposite 4–momenta +pµ = (+E,+p) and −pµ = (−E,−p), and because every
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term in the same polynomial has the same degree 2J modulo 2, it follows that the whole

polynomial is either odd or even according to eq. (12), thus

FAB̄(−pµ) = (−1)2j
−(A)(−1)2j

−(B̄)FAB̄(+pµ),

HAB̄(−pµ) = (−1)2j
−(A)(−1)2j

−(B̄)HAB̄(+pµ).
(13)

Finally, for physical momenta (real pµ = (+Ep,p)), the CPT theorem (cf. eqs. (3) and (4))

relates the positive and the negative frequency spin sums to each other according to

HAB̄(p
µ) = FAB̄(p

µ)× (−1)2j
−(A)(−1)2j

+(B̄). (14)

Analytic continuation of the spin sums as polynomials of pµ extends eq. (14) to any complex

momenta, hence in light of eqs. (13),

HAB̄(−pµ) = FAB̄(+pµ)× (−1)2j
−(B̄)(−1)2j

+(B̄). (15)

According to eq. (1), the sign factor in the above formula does not depend on a particular

field component φ†
B̄
but only on the particle’s spin:

HAB̄(−pµ) = +FAB̄(+pµ) for particles of integral spin,

HAB̄(−pµ) = −FAB̄(+pµ) for particles of half-integral spin.
(16)

It turns out that this little red spin-dependent sign makes a big difference for the particles’

statistics.

⋆ ⋆ ⋆

A free quantum field is a superposition of plane-wave solutions with operatorial coefficients,

thus

φ̂A(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

[

e−ipxfA(p, s) â(p, s) + e+ipxhA(p, s) b̂
†(p, s)

]

p0=+Ep

,

φ̂†
B̄
(y) =

∫

d3p

(2π)3
1

2Ep

∑

s

[

e−ipyh∗
B̄
(p, s) b̂(p, s) + e+ipyf∗

B̄
(p, s) â†(p, s)

]

p0=+Ep

.

(17)

(Without loss of generality we assume complex fields and charged particles; for the neutral

particles we would have b̂ ≡ â and b̂† ≡ â†.) Regardless of statistics, positive particle energies
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require â†(p, s) and b̂†(p, s) to be creation operators while â(p, s) and b̂(p, s) are annihilation

operators, thus

â†(p, s) |0〉 = |1(p, s,+)〉 , b̂†(p, s) |0〉 = |1(p, s,−)〉 , â(p, s) |0〉 = b̂(p, s) |0〉 = 0,

(18)

and hence, in a Fock space of positive-definite norm

〈0| â(p, s) â†(p′, s′) |0〉 = 〈0| b̂(p, s) b̂†(p′, s′) |0〉 = +2Ep(2π)
3δ(3)(p− p′)δs,s′ (19)

while all the other “vacuum sandwiches” of two creation or annihilation operators vanish

identically. Consequently, regardless of particles’ statistics, vacuum expectation values of

products of two fields at distinct points x and y are given by

〈0| φ̂A(x) φ̂
†
B̄
(y) |0〉 = +

∫

d3p

(2π)3
e−ip(x−y)

2Ep

×
∑

s

fA(p, s) f
∗
B̄
(p, s) (20)

and

〈0| φ̂†
B̄
(y) φ̂A(x) |0〉 = +

∫

d3p

(2π)3
e+ip(x−y)

2Ep

×
∑

s

hA(p, s) h
∗
B̄
(p, s). (21)

And at this point, we can use the spin sums (5) and their polynomial dependence on the

particle’s 4–momenta to calculate

〈0| φ̂A(x) φ̂
†
B̄
(y) |0〉 =

∫

d3p

(2π)3
1

2Ep

e−ip(x−y)FAB̄(p)
∣

∣

∣

p0=+Ep

= FAB̄(+i∂x)D(x− y) (22)

where

D(x− y) =

∫

d3p

(2π)3
1

2Ep

e−ip(x−y)
∣

∣

∣

p0=+Ep

,

and likewise

〈0| φ̂†
B̄
(y) φ̂A(x) |0〉 =

∫

d3p

(2π)3
1

2Ep

e+ip(x−y)HAB̄(p)
∣

∣

∣

p0=+Ep

= HAB̄(−i∂x)D(y − x).

(23)

As explained in class, for a space-like distance between points x and y, D(y−x) = +D(x−y).

At the same time, the differential operators FAB̄(+i∂x) and HAB̄(−i∂x) are related to each
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other according to eq. (16). Therefore, regardless of particles’ statistics, for (x− y)2 < 0

〈0| φ̂A(x) φ̂
†
B̄
(y) |0〉 = + 〈0| φ̂†

B̄
(y) φ̂A(x) |0〉 for particles of integral spin,

〈0| φ̂A(x) φ̂
†
B̄
(y) |0〉 = −〈0| φ̂†

B̄
(y) φ̂A(x) |0〉 for particles of half-integral spin.

(24)

On the other hands, relativistic causality requires for (x− y)2 < 0

φ̂A(x) φ̂
†
B̄
(y) = +φ̂†

B̄
(y) φ̂A(x) for bosonic fields,

φ̂A(x) φ̂
†
B̄
(y) = −φ̂†

B̄
(y) φ̂A(x) for fermionic fields,







regardless of particle’s spin. (25)

And the only way eqs. (24) and (25) can both hold true at the same time if all particles of

integral spin are bosons and all particles of half-integral spin are fermions.

Indeed, for bosonic particles, the creation and annihilation operators commute with each

other except for

[â(p, s), â†(p′, s′)] = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

[b̂†(p, s), b̂(p′, s′)] = −2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

(26)

and therefore the quantum fields commute or do not commute according to

[

φ̂A(x), φ̂
†
B̄
(y)

]

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ip(x−y)fA(p, s)f
∗
B̄
(p, s) − e−ip(x−y)hA(p, s)h

∗
B̄
(p, s)

)

= FAB̄(i∂x)D(x− y) − HAB̄(−i∂x)D(y − x)

= FAB̄(i∂x)
(

D(x− y) − (−1)2j D(y − x)
)

(27)

where j is the particle’s spin, cf. eq. (24). For particles of integral spin, this commutator

duly vanishes when points x and y are separated by a space-like distance. But for particles

of half-integral spin, the two terms on the last line of eq. (27) add up instead of canceling

each other, and the fields φ̂A(x) and φ̂†
B̄
(y) fail to commute — which violates relativistic

causality. To avoid this violation, bosonic particles must have integral spins only.
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Likewise, for fermionic particles, the creation and annihilation operators anticommute with

each other except for

{â(p, s), â†(p′, s′)} = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

{b̂†(p, s), b̂(p′, s′)} = +2Ep (2π)
3δ(3)(p− p′)δs,s′ ,

(28)

and therefore the quantum fields anticommute or do not anticommute according to

{

φ̂A(x), φ̂
†
B̄
(y)

}

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ip(x−y)fA(p, s)f
∗
B̄
(p, s) + e−ip(x−y)hA(p, s)h

∗
B̄
(p, s)

)

= FAB̄(i∂x)D(x− y) + HAB̄(−i∂x)D(y − x)

= FAB̄(i∂x)
(

D(x− y) + (−1)2j D(y − x)
)

.
(29)

This anticommutator vanishes when (x − y)2 < 0 for half-integral j but not for integral j.

Hence, to maintain relativistic causality, fermionic particles must have half-integral spins

only.

⋆ ⋆ ⋆

I would like to conclude these notes with a few words about spin-statistics relations in

spacetime dimensions other than four. In any dimension D, quantum fields form multiplets

of the Spin(D − 1, 1) Lorentz symmetry while massive particles form multiplets of the spin

symmetry Spin(D− 1). For D > 4, the multiplets are more complicated then in D = 4, but

they fall into the same two broad classes according to their behavior under rotations R(2π)

by 2π under any spatial axis: The single-valued tensor multiplets for which R(2π) = +1,

and the double-valued spinor multiplets for which R(2π) = −1. The relation between spin

sums (5) follows this distinction:

HAB̄(−pµ) = FAB̄(+pµ)× R(2π), (30)

although the proof is more complicated in higher dimensions. But but in any dimension,

the statistics follow the sign in eq. (30), thus particles invariant under 2π rotations must be

bosons while particles for which R(2π) = −1 must be fermions.
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For D = 3 (two space dimensions) the situation is more complicated. The Lorentz symmetry

Spin(2, 1) = SL(2,R) has finite multiplets of quantized spin J = 0, 12 , 1,
3
2 , 2, . . . , but the

space rotation group SO(2) is abelian (1 generator only), so its multiplets are singlets of

arbitrary, un-quantized mj . Ifmj happens to be an integer or half-integer, then this particle

species can be quantized as a free quantum field of definite J = mj modulo 1, and the spin–

statistics theorem works as usual: Particles with integral mj are bosons while particles with

half-integral mj are fermions. The particles with fractional spins mj are more difficult to

quantize; they are neither bosons nor fermions but anyons obeying fractional statistics where

|α, β〉 = |β, α〉 × e±2πimj , depending on how the two particles are exchanged. But even in

this case, the statistics follows the spin: When the spin is fractional, the statistics has the

same fractional phase.
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