
PHY–396 K. Problem set #2. Due September 14, 2004.

1. Consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (1)

where c = h̄ = 1, Fµν
def
= ∂µAν − ∂νAµ, and the current Jµ(x) is a fixed source for the Aµ(x)

field. Note that because of the mass term, the Lagrangian (1) is not gauge invariant.

(a) Derive the Euler–Lagrange field equations for the massive vector field Aµ(x).

(b) Show that this field equation does not require current conservation; however, if the current

happens to satisfy ∂µJ
µ = 0, then the field Aµ(x) satisfies

∂µA
µ = 0 and (∂2 +m2)Aµ = Jµ. (2)

Now, let us derive the Hamiltonian formalism for the massive vector field. As a first step, we

need to identify the canonically conjugate “momentum” fields.

(c) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

Thus, the canonically conjugate field to A(x) is−E(x) but the A0(x) does not have a canonical

conjugate! Consequently,

H = −
∫
d3x Ȧ(x) · E(x) − L. (3)

(d) Show that in terms of the A, E and A0 fields and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(4)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.
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Specifically, we have

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂∇A0

∣∣∣∣
x

= 0. (5)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

,
∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

. (6)

(e) Write down the explicit form of all these equations.

(f) Finally, verify that the equations you have just written down are equivalent to the Euler–

Lagrange equations you derived in question (a).

2. Next, consider the quantum electromagnetic fields. Canonical quantization of the massless

vector field Aµ(x) is rather difficult because of the redundancy associated with the gauge

symmetry, so let me simply state without proof a few key properties of the quantum tension

fields Ê(x, t) and B̂(x, t). In the absence of electric charges and currents, these fields satisfy

time-independent operatorial identities

∇ · Ê(x, t) = ∇ · B̂(x, t) = 0 (7)

(we assume free EM fields, i.e. no electric charges or currents), and have equal-time commu-

tation relations

[
Êi(x, t), Êj(x

′, t′ = t)
]

= 0,[
B̂i(x, t), B̂j(x

′, t′ = t)
]

= 0,[
Êi(x, t), B̂j(x

′, t′ = t)
]

= −ih̄cεijk
∂

∂xk
δ(3)(x− x′).

(8)

(a) Verify that the commutation relations (8) are consistent with the time-independent

Maxwell equations (7).
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In the Heisenberg picture, the quantum EM fields also obey the time-dependent Maxwell

equations

∂B̂

∂t
= −∇× Ê ,

∂Ê

∂t
= +∇× B̂ .

(9)

(b) Derive eqs. (9) from the free electromagnetic Hamiltonian

ĤEM =

∫
d3x

(
1
2Ê

2 + 1
2B̂

2
)

(10)

and the equal-time commutation relations (8).

3. Finally, let us quantize a charged relativistic scalar field Φ(x). A conserved charge implies a

complex field with a U(1) symmetry Φ(x) 7→ eiθΦ(x) which gives rise to a conserved Noether

current

Jµ = iΦ∗∂µΦ − i(∂µΦ∗)Φ. (11)

For simplicity, let the Φ field be free, thus classically

L = ∂µΦ∗ ∂µΦ − m2 Φ∗Φ. (12)

In the Hamiltonian formalism, we trade the time derivatives ∂0Φ(x) and ∂0Φ
∗(x) for the

canonically conjugate fields Π∗(x) and Π(x). (Note that for complex fields Π(x) is canonically

conjugate to the Φ∗(x) while Π∗(x) is canonically conjugate to the Φ(x).) Canonical quan-

tization of this system yields non-hermitian quantum fields Φ̂(x) 6= Φ̂†(x) and Π̂(x) 6= Π̂†(x)

and the Hamiltonian operator

Ĥ =

∫
d3x

(
Π̂†Π̂ + ∇Φ̂† · ∇Φ̂ + m2 Φ̂†Φ̂

)
. (13)

(a) Derive the Hamiltonian (13) and write down the equal-time commutation relations be-

tween the quantum fields Φ̂(x), Φ̂†(x), Π̂(x) and Π̂†(x).
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Next, let us expand the quantum fields into plane-wave modes:

Φ̂(x) =
∑
p

L−3/2eixpΦ̂bp, Φ̂p =

∫
d3xL−3/2e−ipx Φ̂(x), (14)

and ditto for the Φ̂†(x), Π̂(x), and Π̂†(x) fields. Note that for the non–hermitian fields

Φ̂†p 6= Φ̂−p and Π̂†p 6= Π̂−p; instead, all the mode operators Φ̂p, Φ̂†p, Π̂p, and Π̂†p are completely

independent of each other. Consequently, we have two independent species of creation and

annihilation operators, i.e. for each mode p we have independent operators

âp
def
=

EpΦ̂p + iΠ̂p√
2Ep

, â†p
def
=

EpΦ̂†p − iΠ̂†p√
2Ep

,

and

b̂p
def
=

EpΦ̂†−p + iΠ̂†−p√
2Ep

, b̂†p
def
=

EpΦ̂−p − iΠ̂−p√
2Ep

,

(15)

where Ep =
√
p2 +m2 .

(b) Verify the bosonic commutation relations (at equal times) between the annihilation op-

erators âp and b̂p and the corresponding creation operators â†p and b̂†p.

(c) Show that the Hamiltonian of the free charged fields is

Ĥ =

∫
d3x

(
Π†Π + ∇Φ† · ∇Φ + m2Φ†Φ

)
=
∑
p

(
Epâ

†
pâp + Epb̂

†
pb̂p

)
+ const. (16)

Next, consider the charge operator Q̂ =
∫
d3x Ĵ0(x).

(d) Show that for the system at hand

Q̂ =

∫
d3x

(
i
2

{
Π̂†, Φ̂

}
− i

2

{
Π̂, Φ̂†

})
=
∑
p

(
â†pâp − b̂†pb̂p

)
. (17)

Actually, the classical formula (11) for the current Jµ(x) determines eq. (17) only up to

ordering of the non-commuting operators Π̂(x) and Φ̂†(x) (and likewise of the Π̂†(x) and

Φ̂(x)). The anti-commutators in eq. (17) provide a solution to this ordering ambiguity, but

any other ordering would be just as legitimate. The net effect of changing operator ordering in

Ĵ0 amounts to changing the total charge Q̂ by an infinite constant (prove this!). The specific

ordering in eq. (17) provides for the neutrality of the vacuum state.
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Finally, consider the stress-energy tensor of the charged field. Classically, Noether theorem

gives

Tµν = ∂µΦ∗ ∂νΦ + ∂µΦ ∂νΦ∗ − gµνL. (18)

Quantization of this formula is straightforward (modulo ordering ambiguity); for example,

Ĥ ≡ T̂ 00 is precisely the integrand on the right hand side of eq. (13).

(e) Show that the total mechanical momentum operator of the fields is

P̂mech
def
=

∫
d3x T̂ 0,i =

∑
p

(
p â†pâp + p b̂†pb̂p

)
(19)

Physically, eqs. (19), (16) and (17) show that a complex field Φ(x) describes a relativistic

particle together with its antiparticle; they have exactly the same rest mass m but exactly

opposite charges ±1.
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