
PHY–396 K. Problem set #3. Due September 21, 2004.

1. An operator acting on identical bosons can be described in terms of N–particle wave functions

(the first-quantized formalism) or in terms of creation and annihilation operators in the Fock

space (the second-quantized formalism). This exercise is about converting the operators from

one formalism to another.

In class, we defined the creation and annihilation operators â†α and âα in the occupation

number basis according to

â†α
∣∣{nβ}〉 =

√
nα + 1

∣∣{n′β = nβ + δαβ}
〉
, (1)

âα
∣∣{nβ}〉 =

√
nα
∣∣{n′β = nβ − δαβ}

〉
(or 0 when nα = 0). (2)

We also wrote the wave functions of the
∣∣{nβ}〉 states: Let N =

∑
β nβ is the number of

particles and let
∣∣α1, . . . , αN〉 =

∣∣{nβ}〉; then

ϕα1,...,αN
(x1, . . . ,xN ) =

1√
Cα1,...,αN

∑
distinct permutations

(α̃1,...,α̃N ) of (α1,...,αN )

ϕα̃1
(x1) · · ·ϕα̃N

(xN ), (3)

where Cα1,...,αN
is the number of distinct permutations.

Our first task here is to derive the wave-function action of the creation and annihilation

operators (1) and (2) using eq. (3).

(a) Consider an N–particle state |N,Ψ〉 with a completely generic totally-symmetric wave

function Ψ(x1, . . . ,xN ). Show that the (N − 1)–particle state |(N − 1),Ψ′〉 = âγ |N,Ψ〉
has wave function

Ψ′(x1, . . . ,xN−1) =
√
N

∫
d3xN ϕ

∗
γ(xN ) Ψ(x1, . . . ,xN−1,xN ). (4)

Hint: First verify this formula for Ψ of the form (3), and then generalize to arbitrary (but

totally-symmetric) Ψ by linearity.

(b) Next, show that the (N + 1)–particle state |(N + 1),Ψ′′〉 = â†γ |N,Ψ〉 has wave function

Ψ′′(x1, . . . ,xN+1)) =
1√
N + 1

N+1∑
i=1

ϕγ(xi) Ψ(x1, . . . , 6xi, . . . ,xN+1). (5)

Hint: Use the fact that â†γ is the hermitian conjugate of âγ .
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Now consider a one-body operator Â1. In the first-quantized formalism Âtot acts onN–particle

states according to

Â
(1)
tot =

N∑
i=1

Â1(i
th particle) (6)

while in the second-quantized formalism it becomes

Â
(2)
tot =

∑
α,β

〈α| Â1 |β〉 â†αâβ . (7)

(c) Use eq. (4) and/or eq. (5) to verify that for any two N–particle states 〈N,Ψ1| and |N,Ψ2〉

〈N,Ψ1| Â(1)
tot |N,Ψ2〉 = 〈N,Ψ1| Â(2)

tot |N,Ψ2〉 . (8)

Hint: Use Â1 =
∑

α,β |α〉 〈α| Â1 |β〉 〈β|.

Next, consider a two-body operator B̂2 which acts in the first-quantized formalism according

to

B̂
(1)
tot = 1

2

∑
i6=j

B̂2(i
th and j th particles) (9)

and in the second-quantized formalism according to

B̂
(2)
tot = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂2(|γ〉 ⊗ |δ〉) â†αâ
†
β âγ âδ . (10)

(d) Again, show that for any two N–particle states 〈N,Ψ1| and |N,Ψ2〉

〈N,Ψ1| B̂(1)
tot |N,Ψ2〉 = 〈N,Ψ1| B̂(2)

tot |N,Ψ2〉 . (11)

2. Next, an exercise in bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (12)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].
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(b) Consider three one-body operators Â1, B̂1, and Ĉ1. Let us define the corresponding

second-quantized operators Â
(2)
tot, B̂

(2)
tot , and Ĉ

(2)
tot according to eq. (7).

Show that if Ĉ1 = [Â1, B̂1] then Ĉ
(2)
tot = [Â

(2)
tot, B̂

(2)
tot ].

(c) Next, calculate the commutator [â†αâ
†
β âγ âδ, â

†
µâν ].

(d) Finally, let Â1 be a one-body operator, let B̂2 and Ĉ2 be two-body operators, and let

Â
(2)
tot, B̂

(2)
tot , and Ĉ

(2)
tot be the corresponding second-quantized operators according to eqs. (7)

and (10).

Show that if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
then Ĉ

(2)
tot = [Â

(2)
tot, B̂

(2)
tot ].

3. The rest of this homework is about coherent states of harmonic oscillators and free quantum

fields. Let us start with a harmonic oscillator Ĥ = h̄ωâ†â.

(a) For any complex number ξ we define a coherent state |ξ〉 def
= exp

(
ξâ† − ξ∗â

)
|0〉. Show

that

|ξ〉 = e−|ξ|
2/2 eξâ

†
|0〉 and â |ξ〉 = ξ |ξ〉 . (13)

(b) Calculate the uncertainties ∆q and ∆p for a coherent state |ξ〉 and verify their minimality:

∆q∆p = 1
2 h̄. Also, verify δn =

√
n̄ where n̄

def
= 〈n̂〉 = |ξ|2.

Hint: use â |ξ〉 = ξ |ξ〉 and 〈ξ| â† = ξ∗ 〈ξ|.

(c) Consider time-dependent coherent states |ξ(t)〉. Show that for ξ(t) = ξ0e
−iωt, the state

|ξ(t)〉 satisfies the time-dependent Schrödinger equation ih̄ d
dt |ξ(t)〉 = Ĥ |ξ(t)〉.

(d) The coherent states are not quite orthogonal to each other. Calculate their overlap 〈η|ξ〉.

Now consider coherent states of multi-oscillator systems and hence quantum fields. In partic-

ular, let us focus on the creation and annihilation fields Ψ̂†(x) and Ψ̂(x) for non-relativistic

spinless bosons.

(e) Generalize (a) and construct coherent states |Φ〉 which satisfy

Ψ̂(x) |Φ〉 = Φ(x) |Φ〉 (14)

for any given classical complex field Φ(x).
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(f) Show that for any such coherent state, ∆N =
√
N̄ where

N̄
def
= 〈Φ| N̂ |Φ〉 =

∫
dx |Φ(x)|2. (15)

(g) Let

Ĥ =

∫
dx

(
h̄2

2M
∇Ψ̂† · ∇Ψ̂ + V (x)Ψ̂†Ψ̂

)

and show that for any classical field configuration Φ(x, t) that satisfies the classical field

equation

ih̄
∂

∂t
Φ(x, t) =

(
− h̄2

2M
∇2 + V (x)

)
Φ(x, t),

the time-dependent coherent state |Φ〉 satisfies the true Schrödinger equation

ih̄
∂

∂t
|Φ〉 = Ĥ |Φ〉 . (16)

(h) Finally, show that the quantum overlap | 〈Φ1|Φ2〉 |2 between two different coherent states

is exponentially small for any macroscopic difference δΦ(x) = Φ1(x)−Φ2(x) between the

two field configurations.
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