PHY-396 K. Problem set #3. Due September 21, 2004.

. An operator acting on identical bosons can be described in terms of N—particle wave functions
(the first-quantized formalism) or in terms of creation and annihilation operators in the Fock
space (the second-quantized formalism). This exercise is about converting the operators from

one formalism to another.

In class, we defined the creation and annihilation operators &E and a, in the occupation

number basis according to

dL !{n5}> = Vng+1 ’{n% =ng+ 5a5}> , (1)
i {ns}) = Vna ‘{n’ﬁ =ng —04p}) (or 0 when ny = 0). (2)

We also wrote the wave functions of the |{ng}) states: Let N = > gnp is the number of
particles and let |a1, .. ,aN> = |{n5}>, then

1
90051,...704N(X17"'7XN> = —/C— Z 90&1(X1>“'90&N(XN)7 (3)
Q15-9%N  distinet permutations
(5[1,...,641\]) Of (Ozl,...,OzN)

where Cy, .. o, is the number of distinct permutations.

N
Our first task here is to derive the wave-function action of the creation and annihilation

operators (1) and (2) using eq. (3).

(a) Consider an N-particle state [N, ¥) with a completely generic totally-symmetric wave
function W(xy,...,xy). Show that the (N — 1)-particle state |[(N — 1), V') = a., |N, ¥)

has wave function
V(x1,....xny-1) = VN [dxy b (xy) U(x1, ..., XN1,XN). (4)
Hint: First verify this formula for ¥ of the form (3), and then generalize to arbitrary (but
totally-symmetric) W by linearity.
(b) Next, show that the (N + 1)—particle state |(N + 1), U") = dg | N, ¥) has wave function
N+1

\I///(Xl, .. ;XN-H)) = \/N—liﬁ—l Z @V(Xi) \I/(Xl, ooy Ky 7XN—|—1)~ (5)
i=1

Hint: Use the fact that CALny is the hermitian conjugate of a,.



Now consider a one-body operator Aq. In the first-quantized formalism Ayor actson N —particle

states according to
N
Ag% = Zz‘h(im particle)
i=1
while in the second-quantized formalism it becomes

~(2 ~ At A
AZ) =S (a] Ay 1) dfag.
a’ﬂ

(6)

(7)

(c) Useeq. (4) and/or eq. (5) to verify that for any two N—particle states (N, ¥1| and | N, ¥a)

(N W1 A [N, W) = (N, 01| AQ) [N, W)

Hint: Use A1 = 37, 5la) (o] A1 [B) (8].

(8)

Next, consider a two-body operator By which acts in the first-quantized formalism according

to
Bt(ig = %Z By(ith and j particles)
i#j
and in the second-quantized formalism according to

A 2 ~ . . R .
BE = 13 (ol @ (B)Ba(ln) @ 16)) ahala,a,
a757’y75

(d) Again, show that for any two N—particle states (N, V1| and |N, ¥g)

1
0

(N, 1| Bi) [N, Wa) = (N, 0| B[N, ).

. Next, an exercise in bosonic commutation relations

(9)

(10)

(11)

(12)



(b) Consider three one-body operators Al, Bl, and C;. Let us define the corresponding

second-quantized operators Ag%, Bt(f,g, and ét(gt) according to eq. (7).

Show that if Cy = [Ay, By] then é(zt) = [Ag%, Bt(g‘z]'

to

T

(¢) Next, calculate the commutator [&ad%dvd& d}:&y].

(d) Finally, let A1 be a one-body operator, let By and Cy be two-body operators, and let
Ag%, Et(zt), and C’t(gt) be the corresponding second-quantized operators according to egs. (7)
and (10).

A

Show that if Cy = [(Al(lﬁ) + A1(2®)) 732] then C”t(f) = [Ag%a l%gg]

. The rest of this homework is about coherent states of harmonic oscillators and free quantum

fields. Let us start with a harmonic oscillator H = hwala.

(a) For any complex number ¢ we define a coherent state |£) dof exp(féfr — «S*d) |0). Show

that

€) = e F2e8T 0y and ale) = €le). (13)

(b) Calculate the uncertainties Ag and Ap for a coherent state |£) and verify their minimality:

AgAp = $h. Also, verify dn = /i where 7 def (n)y = [€]2.
Hint: use @ |¢) = & |¢) and (¢]af = ¢* (¢],

(c) Consider time-dependent coherent states |£(t)). Show that for £(t) = &e™ ™!, the state
|£(t)) satisfies the time-dependent Schrodinger equation ih% (1)) = H |(t)).

(d) The coherent states are not quite orthogonal to each other. Calculate their overlap (n[¢).

Now consider coherent states of multi-oscillator systems and hence quantum fields. In partic-
ular, let us focus on the creation and annihilation fields \i/T(x) and \if(x) for non-relativistic

spinless bosons.

(e) Generalize (a) and construct coherent states |®) which satisfy
U(x) @) = (x)|P) (14)

for any given classical complex field ®(x).



Show that for any such coherent state, AN = VN where

N ¥ o N o) :/dx|q>(x)|2. (15)

Let
. B2 . P s
H = [dx WV\IJ VU + V(x)U'w
and show that for any classical field configuration ®(x,t¢) that satisfies the classical field

equation

2
ih%@(x, t) = (—Q%VZ + V(x)> d(x, 1),

the time-dependent coherent state |®) satisfies the true Schrodinger equation

0 .
ih=|2) = H|[0). (16)

Finally, show that the quantum overlap | (®1|®2) |? between two different coherent states
is exponentially small for any macroscopic difference §®(x) = ®;(x) — Po(x) between the

two field configurations.



