
PHY–396 K. Problem set #4. Due September 28, 2004.

1. When an exact symmetry of a quantum field theory is spontaneously broken down, it gives

rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry

was only approximate to begin with, the would-be Goldstone bosons are no longer exactly

massless but only relatively light. The best-known examples of such pseudo-Goldstone

bosons are the pi-mesons π± and π0, which are indeed much lighter then other hadrons.

The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate

chiral isospin symmetry SU(2)L×SU(2) ∼= Spin(4) which would be exact if the two lightest

quark flavors u and d were exactly massless; in reality, the current quark masses mu and

md do not exactly vanish but are small enough to be treated as a perturbation. Exact or

approximate, the chiral isospin symmetry is spontaneously broken down to the ordinary

isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of the broken Spin(4)/Spin(3)

give rise to 3 (pseudo) Goldstone bosons π± and π0.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the

spontaneously broken chiral symmetry in terms of a simpler effective theory such as the

linear sigma model. This model has 4 real scalar fields; in terms of the unbroken isospin

symmetry, we have an isosinglet σ(x) and an isotriplet π˜(x) comprising π1(x), π2(x) and

π3(x) (or equivalently, π0(x) ≡ π3(x) and π±(x) ≡
(
π1(x)± iπ2(x)

)
/
√

2). The Lagrangian

L = 1
2(∂µσ)2 + 1

2(∂µπ˜)2 − λ

8

(
σ2 + π˜2 − f2)2 + βσ (1)

is invariant under the SO(4) rotations of the four fields, except for the last term which we

take to be very small. (In QCD β ∼ mu+md

2f

〈
ΨΨ
〉

which is indeed very small because the

u and d quarks are very light.)

In class, we discussed this theory for β = 0 and showed that it has SO(4) spontaneously

broken to SO(3) and hence 3 massless Goldstone bosons. In this exercise, we let β > 0

but β � λf3 to show how this leads to massive but light pions.
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(a) Show that the scalar potential of the linear sigma model with β > 0 has a unique

minimum at

〈π˜〉 = 0 and 〈σ〉 = f +
β

λf2
+ O(β2). (2)

(b) Expand the fields around this minimum and show that the pions are light while the σ

particle is much heavier. Specifically, M2
π ≈ (β/f) while M2

σ ≈ λf2.

2. The rest of this homework is about the Bogolyubov transform and the superfluid helium.

Let us start with some kind of annihilation and creation operators âk and â†k be satisfying

the bosonic commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δk,k′ . (3)

Let us define new operators b̂k and b̂†k according to

b̂k = cosh(tk)âk + sinh(tk)â†−k , b̂†k = cosh(tk)â†k + sinh(tk)â−k (4)

for some arbitrary real parameters tk = t−k.

(a) Show that the b̂k and the b̂†k satisfy the same bosonic commutation relations as the âk

and the â†k.

The Bogolyubov transform — replacing the ‘original’ creation and annihilation operators

â†k and âk with the ‘transformed’ operators b̂†k and b̂k — is useful for diagonalizing quadratic

Hamiltonians of the form

Ĥ =
∑
k

Akâ
†
kâk + 1

2

∑
k

Bk

(
âkâ−k + â†kâ

†
−k

)
(5)

where for all momenta k, Ak = A−k, Bk = B−k, and Ak > |Bk|.

(b) Show that for a suitable choice of the tk parameters,

Ĥ =
∑
k

ωkb̂
†
kb̂k + const where ωk =

√
A2
k −B2

k . (6)
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Now consider the quantum field theory of superfluid helium. As discussed in class, we start

with a semi-classical ground state with a symmetry-breaking expectation value
〈

Ψ̂(x)
〉
≡

√
n =

√
µ/λ and shift the quantum fields according to

Ψ̂(x) =
√
n + ϕ̂(x), Ψ̂†(x) =

√
n + ϕ̂†(x). (7)

In terms of the shifted fields the free energy operator becomes

Ĥ − µN̂ = const + Ĥfree + Ĥint

where

Ĥfree =

∫
d3x

{
1

2M
∇ϕ̂† · ∇ϕ̂ +

λn

2

(
ϕ̂†ϕ̂† + 2ϕ̂†ϕ̂+ ϕ̂ϕ̂

)}
(8)

is quadratic with respect to the shifted fields while Ĥint comprises the cubic and the quartic

terms.

(c) The momentum modes of the shifted fields are shifted creation and annihilation oper-

ators ã†k = â†k −
√
Nδk,0 and ãk = âk −

√
Nδk,0. Apply Bogolyubov transform to the

shifted operators and re-write the free Hamiltonian (8) as

Ĥfree =
∑
k

ωkb̂
†
kb̂k + const (9)

where

ωk = |k| ×
√
λn

M
+

k2

4M2
. (10)

The ground state of the free Hamiltonian (9) is the state |Ω2〉 annihilated by all the b̂k

operators. To construct this state, we start with the semi-classical ground state — the

coherent state |coh〉 in which Ψ̂(x) |coh〉 ≡
√
n |coh〉 and therefore ãk |coh〉 = 0 for all k —

and then act with a unitary operator eF̂ according to

|Ω2〉 = eF̂ |coh〉 where F̂ =
∑
k

tk
2

(
ã†kã
†
−k − ã−kãk

)
= −F̂ † (11)

(∗) Optional exercise: Show that b̂k = eF̂ ãke
−F̂ , and hence b̂k |Ω2〉 = 0 for all k as well as

automatic bosonic commutation relations for the b̂k and b̂†k operators.
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The excited states of the free Hamiltonian (9) can be constructed by applying the b̂†k

operators to the ground state |Ω2〉. Thus, one can say that the b̂†k operators create quasi-

particles and the the b̂k operators annihilate them; from this point of view, the |Ω2〉 ground

state is the quasi-particle vacuum.

(d) Show that the quasi-particle created by the b̂†k operator and annihilated by the b̂k

operator has a definite mechanical momentum k, and that

P̂tot =
∑
k

k b̂†kb̂k. (12)

On the other hand, the quasi-particles do not have well-defined atomic numbers. This is

related to the spontaneous breakdown of the phase symmetry, which is generated by the

atom number operator N̂ . Physically, the quasi-particles interpolate between phonons in

the superfluid (for small k) and atoms knocked out of the Bose condensate (for large k) —

note the appropriate limits of the dispersion relation (10).

(e) Check that for large momenta b̂†k ≈ â†k and therefore the quasi-particle is approxi-

mately an atom, while for small momenta b̂†k ≈ (coeff) × (â†k + âk) and therefore the

quasiparticle is approximately an atom.

Actually, in the real helium with a finite-range interatomic potential V2(x − y), the dis-

persion relation is a bit more complicated than eq. (10) — e.g., there is a so-called ‘roton

dip’ at intermediate values of the quasiparticle momenta k — but the small–k and the

large–k limits work exactly as in this exercise. In particular, there is a positive lower

bound on quasi-particle phase velocities: ∀k, ωk ≥ vc|k|. This fact plays a crucial role in

superfluidity.

(f) Consider the superfluid in a state of uniform motion with velocity v. Use Galilean

invariance to argue that quasi-particles in moving Helium are governed by the

Ĥ ′free = Ĥfree + v · P̂ =
∑
k

(ωk + vk) b̂†kb̂k . (13)

Therefore, as long as |v| < vc, all excitations have positive energies, hence there is no

spontaneous decay of the flowing “ground” state and no energy dissipation! This is
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the physical origin of superfluidity.

On the other hand, when the Helium flows too fast, |v| > v0, some quasiparticle modes

acquire negative energies, which leads to spontaneous quasiparticle production, hence

energy dissipation and loss of superfluidity.

The critical velocity vc is governed by the dispersion relation for the quasi-particles:

vc = min(ωk/|k|). For the superfluid, vc > 0. In comparison, the ideal gas has

ωk = k2/2m, thus vc = 0 and no superfluidity at any velocity.

Actually, under most experimental conditions, there is an additional mechanism for losing

superfluidity beyond a much smaller critical velocity than the vc obtaining from the mi-

croscopic theory. Specifically, turbulence leads to spontaneous generations of vortex rings,

which move much slower than the quasi-particles and hence quench superfluidity at much

slower speeds. In very thin capillaries however, the vortex rings do not form because of

size limitations and the superfluidity persists until the microscopic critical velocity vc.
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